碳纤维综述性论文1
碳纤维综述

PAN基碳纤维摘要:聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。
本文简要介绍了其结构,制备方法,性能,应用领域及其前景。
关键词:PAN基碳纤维碳纤维结构 PAN基碳纤维制备 PAN基碳纤维性能PAN基碳纤维应用前景航天军事体育用品1.碳纤维结构碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。
碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98%~99%,杂志少。
碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。
2.PAN基碳纤维的制备从原料丙烯晴到聚丙烯晴基碳纤维的制备过程中可以看出四个关键步骤:PAN的聚合,原丝的制备,原丝的预氧化以及预氧化丝的炭化和石墨化。
2.1 PAN的聚合由于PAN分子结构的特性,纯聚体PAN不适宜作为碳纤维前驱体。
工业生产中,往往采用共聚PAN来制备PAN原丝。
引入共聚单体可以起到如下作用:减少聚合物原液中凝胶的产生;增加聚合物的溶解性和可纺性;降低原丝环化温度及变宽放热峰。
但也可能带来一些负作用:降低原丝的结构规整性和结晶度;增加大分子链结构的不均匀性;引入更多的无机和有机杂质等。
2.2 原丝的制备PAN在熔点(317°C)以下就开始分解,因此形成纤维主要通过湿法或干湿法进行纺丝。
干湿法纺丝由于将挤出膨化与表皮凝固进行了隔离,纤维的成形机理有所改变,因此湿法纺丝凝固过程中皮层破裂或径向大孔及表皮褶皱等现象基本消失,干湿法纺丝的原丝表面及内部的缺陷减少、致密性提高。
干湿法纺丝还具有高倍的喷丝头拉伸(3~10mm的空气层是有效拉伸区),纺丝速度高(为湿法纺丝的5~10倍),容易得到高强度、高取向度的纤维等特点,从而保证了碳纤维有足够的强度,是当前碳纤维原丝生产的发展方向。
碳纤维复合材料论文

碳纤维复合材料论文标题:碳纤维复合材料:制备、性能与应用摘要:碳纤维复合材料是一种重要的先进材料,在航空航天、汽车制造、体育器材以及其他领域具有广泛的应用前景。
本文综述了碳纤维复合材料的制备方法、性能特点以及其在不同领域的应用研究,旨在为碳纤维复合材料的研究和应用提供一定的参考。
1.引言随着科技的进步和产品性能需求的提高,新型材料的研究和应用成为一个重要的研究方向。
碳纤维复合材料以其高强度、低密度、优异的机械性能和化学稳定性等特点,受到了广泛关注。
2.碳纤维复合材料的制备方法2.1碳纤维的制备工艺2.2树脂基体的制备方法2.3复合材料的制备工艺2.4其他制备方法的研究进展3.碳纤维复合材料的性能特点3.1机械性能3.2热性能3.3电性能3.4耐腐蚀性能4.碳纤维复合材料在航空航天领域的应用4.1飞机结构件4.2发动机部件4.3航空航天用复合材料板5.碳纤维复合材料在汽车制造领域的应用5.1车身材料5.2引擎附件5.3车内装饰材料6.碳纤维复合材料在体育器材领域的应用6.1网球拍6.2高尔夫球杆6.3自行车车架7.碳纤维复合材料的未来发展趋势对碳纤维复合材料未来的发展趋势进行展望,并提出了一些研究方向和应用前景。
包括在材料性能的进一步提高、制备工艺的优化、成本的降低等方面。
结论:碳纤维复合材料以其出色的性能和广泛的应用领域,成为了当今研究热点。
本文综述了碳纤维复合材料的制备方法、性能特点以及在航空航天、汽车制造和体育器材等领域的应用情况,并对其未来的发展趋势进行了展望。
碳纤维复合材料在各个领域的应用前景广阔,值得进一步深入研究和应用。
碳纤维综述

碳纤维综述碳纤维指在化学组成中碳元素质量分数在 90%以上的纤维材料,是20世纪60年代开发成功的一种耐高温、耐腐蚀、热膨胀系数小、尺寸稳定性好、高强度、高模量新型碳材料。
碳纤维可采用聚丙烯腈纤维(PAN 纤维)、沥青纤维、粘胶纤维或木质素纤维等经过氧化、低温碳化、高温碳化而制成。
广泛应用于航空航天、体育休闲用品和一般工业领域。
碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用。
碳纤维是上世纪 60 年代兴起的一种新型高性能材料,它具有很多优点,是一种理想的功能材料和结构材料。
起初是为宇航工业和军用飞机的需要发展起来的,但是如今己经广泛应用于商业、民用航空、文体、工业以及运输等领域,具有广阔的应用前景。
高性能碳纤维复合材料的开发应用,进一步促进了碳纤维工业的发展[1]。
[2]二:碳纤维的分类碳纤维一般按原料不同、性能、用途来进行分类。
具体分类如下:(1)碳纤维纸根据其原料不同分为:聚丙烯腈基碳纤维、沥青基碳纤维、黏胶基碳纤维三种。
(2)碳纤维按性能可分为:高性能碳纤维和低性能碳纤维。
其中高性能碳纤维有分为高强度碳纤维、高模量碳纤维、中模量碳纤维等类型。
低性能碳纤维分为耐火碳纤维、石墨碳纤维等类型。
(3)按用途不同分为五个等级:高模量(模量>500GPa)、高强度(强度>3GPa)、中模量(模量100~500GPa)、低模量(模量100~200GPa)、普通用途(模量<100GPa ,强度<1 GPa)[3]。
三:碳纤维的性能碳纤维呈黑色,坚硬,具有强度高、重量轻等特点,是一种力学性能优异的新材料。
碳纤维具有一些非常优异的特性:抗拉强度高,可高达3000~4000MPa,比钢高4倍,比铝高6一7倍;弹性模量高,可高达600GPa;密度小、比强度高,碳纤维的密度是钢的1/4,是铝的1/2,比强度比钢大16倍,比铝合金大12倍。
此外,还有耐高低温性能好,当温度高于400℃时,才出现明显的氧化,生成Co和Co2 ; 在非氧化气氛中,可在2000℃使用,即使在3000℃也不熔、不软;在-180℃下,钢铁都变得比玻璃脆,而碳纤维依旧很柔软; 耐腐蚀性强,能耐浓盐酸、硫酸、磷酸、苯、丙酮等,将碳纤维放在浓度为50%的盐酸、硫酸和磷酸中,200天后其弹性模量、强度和直径基本没有变化,其耐腐蚀性比黄金还好;热膨胀系数小、摩擦系数小和导热系数大,可以耐急冷急热,即使从3000℃降到室温也不会炸裂;导电性能好,电阻率为10-2 ~ 10-4Ω.cm;与其它材料相容性高、与生物的相容性好;又兼备纺织纤维的柔软,可加工性,设计自由度大,可进行多种设计,以满足不同产品的性能与要求。
碳纤维复合材料范文

碳纤维复合材料范文碳纤维复合材料(Carbon Fiber Reinforced Polymer,CFRP)是一种由碳纤维与树脂基体组成的高性能复合材料。
它具有优异的力学性能、较低的密度和良好的耐腐蚀性,广泛应用于航空航天、汽车、体育用品等领域。
本文将从碳纤维的特点、制备方法、力学性能及应用领域等方面进行介绍。
碳纤维是一种由碳元素组成的纤维,具有高强度、高模量和低密度等特点。
其强度比钢材高5倍以上,模量比钢材高2倍以上,密度仅为钢材的四分之一、此外,碳纤维还具有优异的耐腐蚀性和导电性,在高温环境下也能保持良好性能。
这些特点使得碳纤维在许多领域有着广泛的应用前景。
制备碳纤维复合材料的方法主要包括预浸法、浸润法和热压法等。
预浸法是将碳纤维预先浸渍于树脂中,使其成为硬化的片材,进而进行分层堆积。
浸润法是将预浸过的碳纤维层与树脂层分别压制成预制板,再进行热压或热固化处理。
热压法则是将碳纤维与树脂在加热和压力作用下同时进行热固化,形成成品。
碳纤维复合材料具有优异的力学性能,主要表现在高强度、高模量和高韧性等方面。
由于碳纤维的高强度和高模量特性,使得复合材料能够承受更大的载荷,在相同重量下具有更高的强度。
而碳纤维的高韧性也使复合材料在受力时能够表现出更好的延展性和断裂韧性。
此外,碳纤维复合材料还具有良好的疲劳及耐腐蚀性能,使其能够在复杂的工程环境中长时间稳定运行。
碳纤维复合材料在航空航天领域有着广泛的应用。
由于其优异的力学性能和轻质化特点,它能够降低飞机结构重量,提升机翼等关键部件的强度和刚度,改善飞机的燃油效率。
同时,碳纤维复合材料还具有较高的耐腐蚀性,能够在大气、海洋等复杂环境下长期使用。
另外,碳纤维复合材料还广泛应用于航天器、导弹等领域,用于提升载荷能力和减轻结构重量。
汽车工业是另一个重要的应用领域。
碳纤维复合材料能够提升汽车的燃油效率和安全性能。
汽车零部件如车身、座椅和悬挂等,使用碳纤维材料可以降低整车重量,提升车辆的操控性和行驶稳定性。
碳纤维综述性论文1

碳纤维综述性论文摘要:碳纤维是指由有机纤维经碳化及石墨化处理而得到的微晶石墨材料,是纤维中含碳量在95%左右的碳纤维和含碳量在99%左右的石墨纤维。
碳纤维是一种新型材料,本文主要论述了碳纤维的分类及性质、生产、制造、加工,并论述了碳纤维的改性以及用途和发展前景等。
关键词:碳纤维、生产、加工、应用领域、发展趋势;前言:碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。
它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。
碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。
它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。
一、碳纤维的分类按制作原料分:(1) 纤维素基(人造丝基)(2) 聚丙烯氰基 (3)沥青基(各向同性、各向导性中间相)。
按制造方法和条件分:(1) 碳纤维(炭化温度在800~1600℃时得到的碳纤维)(2) 石墨纤维(炭化温度在2000~3000℃时得到的碳纤维)(3) 活性炭纤维 (4) 气相生长纤维。
按性能分:(1) 一般型(GP,在通电部件、耐热隔热体、滑动部分、耐腐蚀材料等领域使用一般型。
)(2) 高性能型(HP,其中高性能型分为高强型及高模型,通常大多数应用领域使用高性能型)在通电部件、耐热隔热体、滑动部分、耐腐蚀材料等领域使用一般型。
按状态分:(1)长丝 (2)短纤维 (3)短切纤维。
二、碳纤维的性质2.1碳纤维的物理性能优点:1)密度小,质量轻,比强度高。
碳纤维的密度为1.5~2g/cm3,相当于钢密度的1/4,铝合金密度的1/2。
而其比强度比刚大16倍,比铝合金大12倍。
2)强度高。
其拉伸强度可达3000~4000MPa,弹性比钢大4~5倍,比铝大6~7倍。
3)弹性模量高。
4)具有各向异性,热膨胀系数小,导热率随温度的升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂。
碳纤维复合材料发展方向及前景综述

在当今世界,碳纤维复合材料作为一种轻量化、高强度的新型材料,已经在诸多领域展现出了巨大的发展潜力。
从航空航天到汽车制造,从体育器材到建筑材料,碳纤维复合材料都展现出了其独特的优势和潜力。
本文将对碳纤维复合材料的发展方向及前景进行综述,旨在帮助读者更全面、深刻地了解这一重要材料的未来走向。
1. 碳纤维复合材料的基本概念碳纤维复合材料是由碳纤维和树脂基体组成的复合材料。
碳纤维具有轻质、高强度、高模量、耐高温和耐腐蚀等优点。
而树脂基体则起着粘结和保护作用。
碳纤维复合材料的制备工艺主要包括预浸法、纺丝法和层压法等。
2. 碳纤维复合材料在航空航天领域的应用碳纤维复合材料在航空航天领域具有重要意义。
它们可以减轻飞机和航天器的重量,提高飞行性能,延长使用寿命,并且有利于节能减排。
未来的发展方向包括更高强度、更低密度的碳纤维复合材料的研发,以及更加智能化的制造工艺和设计方法。
3. 碳纤维复合材料在汽车制造领域的应用碳纤维复合材料在汽车制造领域也有着广阔的应用前景。
它们可以降低汽车的整体重量,提高燃油效率,增加汽车的安全性和舒适性。
未来汽车领域的发展方向包括降低碳纤维复合材料的成本,加快大规模生产工艺的研发,以及更加环保和可持续的材料回收利用方案。
4. 碳纤维复合材料在体育器材领域的应用在体育器材领域,碳纤维复合材料已经成为了许多高端器材的首选材料。
它们轻盈、坚固、具有良好的弹性和吸震性能,可以有效提高运动员的表现。
未来,随着运动科技的不断发展,碳纤维复合材料在体育器材领域的应用前景将会更加广阔。
5. 碳纤维复合材料在建筑材料领域的应用在建筑领域,碳纤维复合材料在结构加固、新型材料研发等方面具有广泛的应用前景。
它们具有较高的抗拉强度、抗压强度和耐久性能,可以提高建筑结构的安全性和耐久性,同时减轻结构自重,有利于节能减排。
总结回顾通过本文的综合介绍,我们可以看到碳纤维复合材料作为一种新型材料,具有广阔的应用前景和发展空间。
碳纤维前景及应用论文

碳纤维前景及应用论文碳纤维是一种高性能纤维材料,具有轻质、高强度、高模量、耐腐蚀和耐疲劳等优良特性,被广泛应用于航空航天、汽车、体育器材、建筑工程等领域。
随着全球工业化进程的不断推进,碳纤维的需求量也在逐步增加,其未来发展前景十分广阔。
碳纤维的应用领域十分广泛。
在航空航天领域,碳纤维被用于制造飞机的机身、机翼、舵面等部件,能够大幅减轻飞机的整体重量,提高机动性和燃油效率。
在汽车领域,碳纤维被广泛应用于高性能跑车、电动车等车辆的车身、悬挂系统、内饰等组件,能够提高车辆的性能和安全性。
在体育器材领域,碳纤维被用于制造高尔夫球杆、网球拍、自行车等器材,提高了产品的性能和使用寿命。
同时,在建筑工程领域,碳纤维也被广泛应用于桥梁、建筑结构、地基处理等方面,能够提高建筑物的抗震性和耐久性。
碳纤维的未来发展前景也备受瞩目。
首先,随着科技的不断进步,碳纤维的生产工艺和技术不断提升,能够生产出更加优质的碳纤维材料,提高了其性能和稳定性。
其次,随着人们对于节能减排和资源循环利用的重视,碳纤维作为一种轻质高强度材料,能够有效减轻产品的整体重量,降低能源消耗和环境污染。
同时,碳纤维材料还可以实现回收利用,提高了资源的可持续利用性。
此外,碳纤维的市场需求量也在不断增加,随着新兴产业的不断涌现,碳纤维的应用领域也将不断扩大。
然而,碳纤维在应用过程中还面临一些挑战和问题。
首先,碳纤维的生产成本较高,限制了其在一些领域的大规模应用。
其次,碳纤维的回收利用技术还不够成熟,难以实现资源的循环利用。
同时,碳纤维的制造过程对环境造成了一定的污染,需要更加环保的生产工艺。
另外,碳纤维的安全性以及其与其他材料的复合性也需要更多的研究和改进。
综上所述,碳纤维作为一种高性能的纤维材料,具有广泛的应用前景和发展空间。
随着工业化进程的不断推进和科技的不断发展,碳纤维的生产工艺和技术将不断完善,其应用领域将不断扩大。
同时,我们也需要进一步加大对碳纤维材料的研究力度,解决其在生产、应用过程中存在的问题,推动碳纤维材料行业的可持续发展。
碳纤维复合材料论文

碳纤维复合材料论文导言碳纤维复合材料(CFRP)是一种由碳纤维和树脂基体组成的高性能材料。
随着科技的进步,CFRP在航空航天、汽车工业、体育用品等领域中得到了广泛的应用。
本论文将就CFRP的制备方法、性能特点以及应用前景进行详细探讨。
1. CFRP的制备方法CFRP的制备方法通常包括纺丝、预浸料、固化和成型四个步骤。
1.1 碳纤维纺丝碳纤维是由多个碳纤维丝束组成的。
纺丝过程中,先将碳纤维丝束在高温下拉伸,然后进行表面处理,以增加纤维与树脂的粘合性能。
1.2 预浸料制备预浸料是将纺丝得到的碳纤维与树脂基体进行浸渍得到的材料。
树脂基体一般采用环氧树脂。
预浸料制备过程中需要控制纤维的含量、纤维间的排列方式以及树脂的渗透性。
1.3 固化固化是指通过加热或加压将树脂基体中的单体或低分子量聚合物转变为高分子量聚合物的过程。
固化可以提高CFRP的强度和刚度。
1.4 成型成型是将固化后的预浸料经过特定形状的模具加热或加压成型,得到最终的CFRP产品。
2. CFRP的性能特点CFRP具有许多优良的性能特点,使其成为许多领域的首选材料。
2.1 高强度和高刚度相比于传统的金属材料,CFRP具有更高的强度和刚度。
其拉伸强度可以达到2000 MPa,弹性模量可以达到150 GPa以上。
2.2 轻质CFRP的密度大约为1.6 g/cm³,相比于钢材(7.8 g/cm³)和铝材(2.7g/cm³),CFRP具有更轻的重量优势。
2.3 抗腐蚀性由于CFRP的主要组成部分是碳纤维和树脂基体,它具有优良的抗腐蚀性能,不易受潮湿环境、化学物质和气候变化的影响。
2.4 热稳定性CFRP具有较高的热稳定性,可以在高温环境下长期使用而不发生形变或脆化。
2.5 高耐疲劳性由于CFRP的高强度和高刚度,它具有出色的耐疲劳性能,适用于长期受到重复加载的应用场景。
3. CFRP的应用前景随着CFRP技术的不断发展,其在各个领域的应用前景十分广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳纤维综述性论文摘要:碳纤维是指由有机纤维经碳化及石墨化处理而得到的微晶石墨材料,是纤维中含碳量在95%左右的碳纤维和含碳量在99%左右的石墨纤维。
碳纤维是一种新型材料,本文主要论述了碳纤维的分类及性质、生产、制造、加工,并论述了碳纤维的改性以及用途和发展前景等。
关键词:碳纤维、生产、加工、应用领域、发展趋势;前言:碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。
它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。
碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。
它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。
一、碳纤维的分类按制作原料分:(1) 纤维素基(人造丝基)(2) 聚丙烯氰基 (3)沥青基(各向同性、各向导性中间相)。
按制造方法和条件分:(1) 碳纤维(炭化温度在800~1600℃时得到的碳纤维)(2) 石墨纤维(炭化温度在2000~3000℃时得到的碳纤维)(3) 活性炭纤维 (4) 气相生长纤维。
按性能分:(1) 一般型(GP,在通电部件、耐热隔热体、滑动部分、耐腐蚀材料等领域使用一般型。
)(2) 高性能型(HP,其中高性能型分为高强型及高模型,通常大多数应用领域使用高性能型)在通电部件、耐热隔热体、滑动部分、耐腐蚀材料等领域使用一般型。
按状态分:(1)长丝 (2)短纤维 (3)短切纤维。
二、碳纤维的性质2.1碳纤维的物理性能优点:1)密度小,质量轻,比强度高。
碳纤维的密度为1.5~2g/cm3,相当于钢密度的1/4,铝合金密度的1/2。
而其比强度比刚大16倍,比铝合金大12倍。
2)强度高。
其拉伸强度可达3000~4000MPa,弹性比钢大4~5倍,比铝大6~7倍。
3)弹性模量高。
4)具有各向异性,热膨胀系数小,导热率随温度的升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂。
5)导电性好,25℃时高模量纤维为775μΩ/cm,高强度纤维为1500μΩ/cm。
6)耐高温和耐低温性好。
碳纤维可在2000℃下使用,在3000℃非氧化气氛下不融化、不软化。
在-180℃低温下,钢铁变得比玻璃脆,而碳纤维依旧很柔软,也不脆化。
缺点:耐冲击性较差,容易损伤。
2.2碳纤维的化学性能优点:1)耐酸性能好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸、苯、丙酮等介质侵蚀。
将碳纤维放在浓度为50%的盐酸、硫酸、磷酸中,200天后其弹性模量、强度和直径基本没有变化;在50%浓度的硝酸中只是稍有膨胀,其耐腐蚀性能超过黄金和铂金。
2)此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。
缺点:在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。
因此,碳纤维在使用前须进行表面处理。
三、碳纤维的制造及生产碳纤维是不能用碳作原料制造的,工业上制造碳纤维是以有机纤维作原料,在没有氧气的情况下经过高温处理转化而形成的。
通常用以下几种方法制得。
(1)用纤维素制造碳纤维,一般是以人造丝做原料。
(2) 用聚丙烯氰纤维制造碳纤维,以纯粹的丙烯氰聚合而成,再经过特殊工艺得到连续纤维作原料。
粘胶基碳纤维的生产:生产时,首先将纤维置于氮等惰性气体中作低温(400度以下)稳定化处理,进行预氧化,然后在400度以上实现芳构化过程,获得石墨类结构,从而形成碳纤维和石墨纤维。
这样一个热解碳化处理过程在五个温度阶段中实现。
第一阶段:升温至50~150度,排出吸附水。
第二阶段:升温至150~240度,纤维素环上的羟基将以水的形式脱除。
,达到400度时,整第三阶段:升温至240~400度,键断裂,生成水,CO,CO2残链。
个纤维素破坏,生成C4第四阶段:升温至400~700度,通过芳构生成碳的六元环,同时释放氢和甲烷等,再升温至900~1600度,即生成石墨类结构,形成碳纤维。
第五阶段:温度再升高,即形成沿纤维轴取向的乱层石墨成片,在温度升高至2200~2800度的石墨化温度时,形成石墨纤维,利用塑性拉伸,可使纤维的拉伸强度和初始模量大幅度提高。
四、碳纤维的加工4.1原丝的选择条件:强度高,杂质少,纤度均匀,细旦化等。
加热时不熔融,可牵伸,且CF 产率高。
常用的CF原丝:聚丙烯腈纤维、粘胶纤维、沥青纤维。
4.2碳纤维的加工方法碳元素的各种同素异形体(金刚石、石墨、非晶态的各种过渡态碳),根据形态的不同,在空气中在350℃以上的高温中就会不同程度的氧化;在隔绝空气的惰性气氛中(常压下),元素碳在高温下不会熔融,但在3800K以上的高温时不经液相,直接升华,所以不能熔纺。
碳在各种溶剂中不溶解,所以不能溶液纺丝。
碳纤维不能用熔融法或溶液法直接纺丝,只能以有机纤维为原料,采用间接方法来制造。
通常用有机物的炭化来制取碳纤维,即聚合预氧化、炭化原料单体原丝一预氧化丝一碳纤维。
碳纤维的品质取决于原丝,其生产工艺决定了碳纤维的优劣。
以聚丙烯腈(PAN) 纤维为原料,干喷湿纺和射频法新工艺正逐步取代传统的碳纤维制备方法(干法和湿法纺丝)。
4.2.1干喷湿纺法干喷湿纺法即干湿法,是指纺丝液经喷丝孔喷出后,先经过空气层(亦叫干段),再进入凝固浴进行双扩散、相分离和形成丝条的方法。
经过空气层发生的物理变化有利于形成细特化、致密化和均质化的丝条。
纺出的纤维体密度较高,表面平滑无沟槽,且可实现速纺丝,用于生产高性能、高质量的碳纤维原丝。
干喷湿纺装置常为立式喷丝机,从喷丝板喷出的纺丝液细流经空气段(干段) 后进入凝固浴,完成干喷湿纺过程;再经导向辊、离浴辊引入的丝条经后处理得到PAN纤维。
4.2.2射频法PAN原丝经过预氧化(200~350℃,射频负压软等离子法)、碳化(800~1200℃,微波加热法)到石墨化(2400~ 2600℃,射频加热法),主要受到牵伸状态下的温度控制。
在这一形成过程中达到纤维定型、碳元素富集,分子结构从聚丙烯腈高分子结构一乱层的石墨结构一三维有序的石墨结构。
国内有自主知识产权的“射频法碳纤维石墨化生工艺”开辟了碳纤维生产的创新之路,它采用射频负压软等离子法预氧化 PAN原丝,接着用微波加热法碳化,最后用射频加热法石墨化形成小丝束碳纤维。
4.3 碳纤维的加工过程碳纤维的生产制造过程基本相仿 ,主要有预氧化(即稳定化) 、低温碳化、高温碳化(又称石墨化) 、表面处理、上浆和干燥等六大工艺步骤。
目前生产的高强、高模CF主要是用PAN纤维为原料来制造的。
以PAN为原丝制造CF为例,其基本工艺流程为:五、碳纤维的改性5.1 表面改性的原因由于碳纤维表面惰性大、表面能低,缺乏有化学活性的官能团,反应活性低,与基体的粘结性差,界面中存在较多的缺陷,直接影响了复合材料的力学性能,限制了碳纤维高性能的发挥,因此可以通过表面改性提高其浸润性和粘结性。
5.2 表面改性机理(1)表面粗糙度(增加表面粗糙度有利于碳纤维与基体树脂的机械嵌合)。
(2)石墨微晶大小(微晶越小,活性碳原子的数目就越多,越有利于纤维与树脂的粘合)。
(3)碳纤维表面官能团种类与数量(官能团如-OH),经表面处理后,碳纤维表面石墨微晶变细,不饱和碳原子数目增加,极性基团增多,这些都有利于复合材料性能改善。
5.3 碳纤维的氧化处理方法(1)气相氧化法气相氧化使用的氧化剂有空气、氧气、臭氧等含氧气体。
氧化处理后,碳纤维表面积增大,官能基团增多,可以提高复合材料界面的粘接强度和材料的力学性能。
如把碳纤维在450℃下空气中氧化10min,所制备的复合材料的剪切强度和拉伸强度都有提高;采用浓度0.5-15mg/L的臭氧连续导入碳纤维表面处理炉对碳纤维进行表面处理,经处理后碳纤维复合材料的层间剪切强度可达78.4-105.8MPa。
(2)液相氧化法液相氧化处理对改善碳纤维/树脂复合材料的层间剪切强度很有效。
硝酸、酸性重铬酸钾、次氯酸钠、过氧化氢和过硫酸钾等都可以用于对碳纤维进行表面处理。
硝酸是液相氧化中研究较多的一种氧化剂,用硝酸氧化碳纤维,可使其表面产生羧基、羟基和酸性基团,利于提高纤维与基体材料之间的结合力。
(3)电化学氧化电化学氧化处理利用了碳纤维的导电性,一般是将碳纤维作为阳极置于电解质溶液中。
机理是通过电解所产生的活性氧来氧化碳纤维表面而引入极性基团,从而改善纤维的浸润、粘敷特性及与基体的键合状况,显著增加碳纤维复合材料的力学性能。
碳纤维表面氧化状况可以通过改变反应温度、电解质浓度、处理时间和电流密度等条件来进行控制。
六、碳纤维的作用及应用领域6.1 碳纤维的作用(1)有超强吸附能力,对有害化学物质和气体能起到吸收、分解异味的作用,碳元素能自动调节湿度。
(2)碳元素还在常温下可以释放负离子和远红外线,并能有效减弱磁波辐射等功能。
(3)净化床垫自身,吸尽人体汗液在床垫上残留形成的潮湿,分解具有自洁功能创造一个洁净的睡眠空间。
6.2 碳纤维的应用领域碳纤维是发展国防军工与国民经济的重要战略物资,属于技术密集型的关键材料,随着从短纤碳纤维到长纤碳纤维的学术研究,使用碳纤维制作发热材料的技术和产品也逐渐普及。
在当今世界高速工业化的大背景下,碳纤维用途正趋向多样化。
中国已经有使用长纤作为高性能纤维的一种,在要求高温,物理稳定性高的场合,碳纤维复合材料具备不可替代的优势。
材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,正是由于兼具优异性能,碳纤维在国防和民用领域均有广泛的应用前景。
6.2.1 复合材料碳纤维在传统使用中除用作绝热保温材料外。
多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。
碳纤维已成为先进复合材料最重要的增强材料。
由于碳纤维复合材料具有轻而强、轻而刚、耐高温、耐腐蚀、耐疲劳、结构尺寸稳定性好以及设计性好、可大面积整体成型等特点,已在航空航天、国防军工和民用工业的各个领域得到广泛应用。
碳纤维可加工成织物、毡、席、带、纸及其他材料。
高性能碳纤维是制造先进复合材料最重要的增强材料。
6.2.2 土木建筑土木建筑领域:碳纤维也应用在工业与民用建筑物、铁路公路桥梁、隧道、烟囱、塔结构等的加固补强,在铁路建筑中,大型的顶部系统和隔音墙在未来会有很好的应用,这些也将是碳纤维很有前景的应用方面。
具有密度小,强度高,耐久性好,抗腐蚀能力强,可耐酸、碱等化学品腐蚀,柔韧性佳,应变能力强的特点。
用碳纤维管制作的桁梁构架屋顶,比钢材轻50%左右,使大型结构物达到了实用化的水平,而且施工效率和抗震性能得到了大幅度提高。
另外,碳纤维做补强混凝土结构时,不需要增加螺栓和铆钉固定,对原混凝土结构扰动较小,施工工艺简便。