高光谱遥感图像高效分类与解混方法研究
高光谱遥感图像分类与分析算法研究

高光谱遥感图像分类与分析算法研究摘要:高光谱遥感图像分类与分析算法作为遥感图像处理与分析领域的重要研究内容,具有广泛的应用前景。
本文将介绍高光谱遥感图像分类与分析算法的研究现状,并探讨目前存在的问题与挑战。
然后,我们将讨论最常用的高光谱遥感图像分类与分析算法,并分析其优点和局限性。
最后,我们提出了未来的研究方向和挑战。
1. 研究现状高光谱遥感图像分类与分析算法是遥感图像处理与分析领域的重要研究内容。
随着遥感技术的发展,获取的遥感图像数据量不断增加,而高光谱遥感图像能够提供更加丰富的光谱信息,因此成为研究的热点。
目前,高光谱遥感图像分类与分析算法主要包括特征提取、特征选择、分类器设计等几个方面。
2. 问题与挑战然而,高光谱遥感图像分类与分析算法的研究仍然存在一些问题与挑战。
首先,高光谱遥感图像的数据维度较高,处理和分析起来较为复杂。
其次,不同地物或地表覆盖类型的光谱特征可能存在较大的重叠,导致分类精度下降。
此外,传统的分类算法在处理高光谱遥感图像时往往存在识别错误和误分类率高的问题。
3. 常用算法介绍针对上述问题,研究者提出了许多高光谱遥感图像分类与分析算法。
以下是一些常用的算法:3.1 监督分类算法监督分类算法是一种常用的高光谱遥感图像分类与分析方法。
它基于已知的地物类别的训练样本,通过构建分类模型来对图像进行分类。
常见的监督分类算法包括最大似然分类、支持向量机、随机森林等。
3.2 非监督分类算法非监督分类算法是一种无需先验知识的分类方法。
它主要通过对图像数据进行聚类分析,将相似的像素点归为同一类别。
K-means和谱聚类是常见的非监督分类算法。
3.3 深度学习算法近年来,深度学习算法在高光谱遥感图像分类与分析中取得了显著的进展。
深度学习模型如卷积神经网络(CNN)具有较强的学习能力和特征提取能力,能够有效处理高光谱遥感图像的分类问题。
4. 算法优缺点分析这些算法各有优缺点。
监督分类算法需要大量标记样本进行训练,模型依赖于标记样本的质量;非监督分类算法不需要标记样本,但对初始聚类中心的选择较为敏感;深度学习算法需要大量的计算资源和训练样本,模型复杂度较高。
测绘技术高光谱遥感图像分类方法的研究及其应用前景

测绘技术高光谱遥感图像分类方法的研究及其应用前景引言随着科技的不断发展,遥感技术在测绘领域的应用越来越广泛。
其中,高光谱遥感图像分类方法在地理信息系统(GIS)中具有重要的研究和应用价值。
本文将探讨测绘技术高光谱遥感图像分类方法的研究进展,以及该技术的应用前景。
一、高光谱遥感图像分类方法的研究进展1. 高光谱遥感图像分类方法概述高光谱遥感图像是通过遥感传感器获取的连续多光谱信息,能够提供地物的丰富光谱信息。
因此,高光谱遥感图像分类方法相比于传统的遥感图像分类方法具有更高的分类精度。
近年来,学者们在该领域进行了大量的研究,提出了多种分类方法,如支持向量机(SVM)、神经网络等。
2. 高光谱遥感图像分类方法的应用案例(1)农业领域:高光谱遥感图像分类方法可以帮助农业管理者实现农作物的类型分类、病虫害监测等,提高农作物种植的管理效率。
(2)城市规划领域:通过对高光谱遥感图像进行分类,可以有效地划分城市建筑、绿地、水域等区域,为城市规划和土地管理提供重要的支持。
(3)环境保护领域:高光谱遥感图像分类方法可以用于监测和评估环境中的植被覆盖状况、土壤污染等,为环境保护决策提供有力的数据支持。
二、高光谱遥感图像分类方法的应用前景1. 精细农业高光谱遥感图像分类方法在农业领域的应用前景巨大。
随着我国农业现代化进程的推进,精细农业将成为未来农业发展的趋势。
高光谱遥感图像分类方法可以帮助农民实现农田的精细管理,提高农作物产量和质量,优化农业资源的利用。
2. 灾害监测与预警高光谱遥感图像分类方法可以用于灾害监测与预警。
例如,通过分析高光谱遥感图像中的植被变化,可以提前预警火灾、洪涝等自然灾害,为相关部门采取措施提供时间窗口。
这对于减少灾害损失和保护人民生命财产安全具有重要意义。
3. 地质勘查与矿产资源开发高光谱遥感图像分类方法在地质勘查与矿产资源开发方面的应用前景广阔。
通过分析地质构造和土地变化,可以帮助勘探人员找到潜在的矿产资源。
高光谱遥感图像分类与识别算法研究

高光谱遥感图像分类与识别算法研究摘要:高光谱遥感图像是一种获取地球表面相应光谱信息的有效手段,具有广泛的应用前景。
高光谱遥感图像分类与识别算法是对高光谱遥感图像进行有效处理和分析的关键环节。
本文旨在综述当前高光谱遥感图像分类与识别算法的研究现状,并探讨其存在的问题和未来发展方向。
1. 引言高光谱遥感图像是通过在不同光谱波段收集地球表面反射光谱信息而获取的图像。
相对于传统的遥感图像,高光谱遥感图像具有较高的光谱分辨率,能提供更为丰富的光谱信息,因此在农业、环境监测、城市规划等领域有着广泛的应用前景。
2. 高光谱图像分类与识别算法2.1 特征提取高光谱遥感图像的分类与识别需要从图像中提取有效的特征信息。
常用的特征提取方法包括像素级特征、纹理特征和频域特征等。
像素级特征直接利用图像中的像素值进行分类,而纹理特征则利用图像中的纹理变化进行分类。
频域特征则是通过将高光谱图像转换到频域中,利用频率信息进行分类。
2.2 分类模型高光谱图像的分类模型主要分为监督学习和无监督学习。
监督学习是通过已知类别的样本进行训练,构建分类模型。
常用的监督学习算法包括支持向量机(Support Vector Machine,简称SVM)、随机森林(Random Forest)和深度学习等。
无监督学习则是利用样本之间的相似性进行分类,常用的无监督学习算法包括K-means聚类算法和主成分分析(Principal Component Analysis,简称PCA)等。
3. 研究现状目前,研究者们在高光谱遥感图像分类与识别算法领域取得了很多的成果。
其中,深度学习作为一种有效的分类算法在这一领域中得到了广泛的应用。
通过使用深度学习算法,研究者们成功地提取了高光谱图像中的深层特征,并取得了较好的分类效果。
此外,一些新兴算法,例如卷积神经网络(Convolutional Neural Network,简称CNN)和循环神经网络(Recurrent Neural Network,简称RNN)等也被运用于高光谱图像分类与识别任务中。
高光谱遥感图像的解混和波段选择方法研究

高光谱遥感图像的解混和波段选择方法研究高光谱遥感图像能够以纳米级的光谱分辨率提供海量数据信息,但是由于空间分辨率限制,图像中的一个像元可能包含有多种地物类型,形成混合像元,影响了对地表形态的精确测量和分析。
因此,在实际应用时经常需要将混合像元进行分解,从中得到典型地物的光谱(端元)及这些地物所占比例(丰度),以便充分发掘数据中的光谱信息,研究目标物质。
如何快速有效地进行混合像元的分解,是近年来高光谱图像处理中的一个热点问题。
本论文重点针对混合像元问题,分别从统计学和几何学的角度展开分析,并在此基础上提出相应的解混方法。
此外,针对数据的维数问题,我们还研究了复杂网络的方法,将其应用到高光谱波段选择问题中,用于数据的降维处理。
本论文的主要工作和创新点包括以下几个方面:1.提出一种有约束独立分量分析的解混方法。
该方法通过设计新的目标函数,选择符合高光谱图像物理意义的约束条件,在根本上克服了传统ICA的独立性假设,使算法能够适用于遥感数据的分析。
此外还设计了一种自适应的模型来描述数据的概率分布,能够利用蕴含在观测图像中的统计信息实现自动建模,在提高解混结果精度的同时,使算法对各种不同的遥感数据都表现出良好的适用性。
所提出的算法克服了基于独立分量分析的方法进行光谱解混时所出现的问题,能够得出更优的解。
而且,算法即使在端元数估计错误的情况下仍能得到正确结果,作为一种无需光谱先验信息的算法,为混合像元分解问题提供了一种有效的解决手段。
2.提出一种基于三角分解的端元提取框架。
这既是一种单形体类的几何方法,同时又建立在三角分解的代数原理之上。
我们通过最小化单形体体积寻找端元,在这一过程中引入了三角分解,利用递归操作,只需对数据做一轮体积比较便可完成端元提取任务,得到全局最优解。
该算法能够在原始高维数据上快速而稳定地运行,在实时处理领域有着很好的应用前景。
降维处理不是必要步骤,所以在实际应用中可以根据具体情况选择是否进行降维,具有很好的灵活性。
高光谱图像混合像元解混技术研究

高光谱图像混合像元解混技术研究高光谱图像混合像元解混技术研究随着高光谱遥感技术不断发展,高光谱图像具有显著特点:光谱分辨高,图谱合一,并广泛应用到各个领域。
但遥感技术向定量化方向进一步发展的主要障碍是广泛存在着混合像元。
为了突破遥感图像空间分辨率低的障碍与地物具有复杂多样性的影响,多种类型的地物常包含于独立的单个像元中,要在亚像元级别的精度上得到混合像元的真实属性信息,提高图像分类精度。
在高光谱图像中,关键问题之一是如何有效地对混合像元进行分解已经得到了广泛关注,并一直进行着深入地研究。
本文首先对其所研究内的相关技术及应用进行了叙述,并阐述了高光谱解混的研究现状,混合像元分解存在的问题,如解混效果不理想,算法的目标函数收敛速度慢,图像分类不精确,耗时多等。
针对以上问题,本文在NMF算法的基础上,提出了3种混合像元分解算法:(1)基于图正则和稀疏约束半监督NMF的混合像元分解算法。
该算法加入了拉普拉斯图正则化约束和部分样本的类别信息,并对丰度矩阵施加稀疏约束,最后融合到同一目标函数中,能够改善解混效果;(2)基于图正则和稀疏约束的INMF高光谱解混。
该算法将稀疏非负矩阵分解与增量型学习相结合,既能降低平均运行时间又能提高图像分类精度;(3)基于双图正则的半监督NMF混合像元解混。
该算法不仅考虑了高光谱数据流形与特征流形的几何结构,还将已知的标签类别信息施加于非负矩阵分解中,极大加快了目标函数的收敛速度,改善效果得到进一步提高,耗时少。
本文分别对提出的3种算法在真实遥感数据集上进行仿真实验,在解混性能评价指标均方根误差和光谱角度距离上与NMF和改进的NMF算法作比较,实验结果表明本文提出的3种算法解混可靠性和有效性高。
最后,对3种解混算法进行比较,得到基于双图正则的半监督NMF 混合像元解混算法耗时最少,解混效果最优。
高光谱遥感图像的分类与识别算法研究

高光谱遥感图像的分类与识别算法研究摘要:随着高光谱遥感技术的发展,高光谱遥感图像的分类与识别成为了研究的热点之一。
高光谱图像拥有丰富的光谱信息和空间信息,对地物的识别和分类具有较高的准确性和精度。
本文主要介绍了高光谱遥感图像的分类与识别算法的研究现状和发展趋势,并重点讨论了几种常见的分类与识别方法,并对未来的研究方向进行了展望。
1. 引言高光谱遥感技术是一种获取地球物体光谱反射率的近地空间技术。
与传统的遥感技术相比,高光谱遥感技术能够获取更多的连续谱段信息,能够提供更多的反射波段,有助于地物的识别和分类。
传统的遥感图像分类与识别算法在高光谱图像上存在一定的局限性,因此,高光谱遥感图像的分类与识别算法研究成为了一个重要的课题。
2. 高光谱图像分类方法2.1 基于光谱信息的分类方法基于光谱信息的分类方法是最基础的一种分类方法。
光谱信息代表了目标在不同波长下的响应情况,通过光谱信息可以对不同地物进行分类。
常见的方法包括像元分解法、主成分分析法等。
2.2 基于空间信息的分类方法高光谱图像不仅包含了光谱信息,还包含了空间信息。
基于空间信息的分类方法可以充分利用像素点的空间分布特征进行分类。
常见的方法包括最大似然法、支持向量机等。
2.3 基于特征提取的分类方法特征提取是一种将高维数据转化为低维特征向量的方法,可以提取出地物的显著特征。
常见的特征提取方法包括小波变换、主成分分析、线性光谱混合等。
3. 高光谱图像识别方法高光谱图像的识别主要是通过对图像中地物的特征进行提取和匹配,从而实现对地物的自动识别。
常见的识别方法包括主成分分析法、广义Hough变换法等。
4. 研究现状与发展趋势目前,高光谱遥感图像的分类与识别算法已经取得了一些进展。
然而,在实际应用中仍然存在一些挑战,如遥感图像的分辨率、遥感图像的质量等。
因此,未来的研究方向可以从以下几个方面展开:4.1 提高分类和识别的准确性和精度当前的高光谱遥感图像分类与识别算法还存在一些问题,如准确性和精度不高。
高光谱遥感图像光谱解混方法研究及其应用

高光谱遥感图像光谱解混方法研究及其应用近年来,随着遥感技术的发展,所获取的高光谱遥感图像的光谱分辨率和空间分辨率都得到进一步的提高,其处理手段也得到了长足的发展。
高光谱遥感图像不仅可以得到所观测区域物质的光谱特性,同时可以在视觉上直接观看图像的空间信息,以其图谱合一的特性,受到了各领域研究学者的关注。
在高光谱遥感图像获取过程中,遥感传感器以像元的形式来记录地物所反射、散射以及其他各种形式的作用所产生的光谱信息。
遥感传感器一般都是从遥远的空间距离来进行地物观测,所获取的高光谱遥感图像的空间分辨率会受到一定影响,同时,由于自然界地物的复杂多样性,所获取的高光谱遥感图像中单像元得到的光谱不一定只是一种物质的光谱,可能是几种不同物质光谱的组合。
这样的像元被称为混合像元。
相对应的,如果所获取的单像元中只有一种物质的光谱,这样的像元被称为纯像元。
所以,混合像元的存在导致无法直接获取所需要的光谱信息,这制约了高光谱遥感图像的分析及应用,进而影响了高光谱遥感技术领域的发展。
光谱解混技术就是用来解决混合像元问题的一项技术。
它将高光谱图像的混合像元分解为端元和丰度的组合,为更精细的光谱应用提供了可能。
因此,光谱解混技术是实现高光谱遥感技术定量化研究和应用的重要条件。
本文所做的主要研究工作如下:1.对高光谱遥感图像进行了线性混合模型下的解混方法研究。
针对假设图像中存在纯像元的情形,采用基于吉文斯旋转的QR 分解方法,获得高光谱数据的正交子空间,提出了一种基于吉文斯旋转的端元提取方法(Endmember Extraction Algorithm base on QR Factorization usingGivens Rotations,EEGR),进而对获取的端元,采用全约束的最小二乘法对丰度进行了估计。
采用模拟高光谱数据和真实高光谱图像进行实验分析,其端元提取精度相对于经典的同类型端元提取算法来说更为精确。
并且,由于吉文斯旋转本身的固有特性,更适合于用高性能计算来实现,这也是后续的研究内容。
空谱联合先验的高光谱图像解混与分类方法

空谱联合先验的高光谱图像解混与分类方法高光谱成像是近年来遥感领域发展较快、较前沿的技术。
由于包含丰富的空间、辐射和光谱三重信息,高光谱遥感已被广泛应用于精准农业、矿物勘测、军事目标识别、环境监测、灾害评估等领域。
因此,对高光谱数据的处理与解译具有重要的理论意义和实际应用价值。
高光谱解混和分类是高光谱遥感信息处理中的关键科学问题,也是定量分析以及后续应用的重要基础。
由于受仪器、大气辐射、光照不均、地物结构等因素的影响,相同地物的光谱曲线存在一定的差异,使得仅利用光谱信息的解混和分类方法的精度无法得到保障。
空间信息可以充分刻画地物结构,有效降低“同质异谱”的影响,空谱联合的方法受到众多学者的重视。
本文研究围绕高光谱线性解混、分类等高光谱数据处理中的热点问题,重点提出基于光谱库的l1/2正则化稀疏回归解混方法、以及空谱联合的高光谱分类方法,并在此基础上设计了相应问题的高效算法。
本文所做的主要工作和研究成果如下:1、根据高光谱线性解混模型,利用光谱库作为端元字典,将解混问题转化为稀疏回归问题;针对模型解的唯一性要求进行光谱库预优,利用l1/2范数对丰度系数向量进行稀疏正则化约束,在“和为一”、“非负性”条件下,提出了一种约束的l1/2正则化稀疏回归解混模型,并通过迭代重加权的l1算法进行优化求解。
模拟和真实高光谱数据实验表明,基于光谱库的l1/2正则化稀疏回归解混方法能够有效地从光谱库字典中选择出端元并准确反演出其对应的丰度系数。
2、针对高光谱监督分类问题,在贝叶斯最大后验框架下,利用l1-l2正则化稀疏表示方法对似然概率进行建模,并利用MRF分类标签的空间先验进行建模,提出了稀疏表示和马尔可夫场空间先验相结合的空谱联合分类模型,并通过图割算法进行了快速近似求解。
真实高光谱数据实验表明,基于稀疏表示与马尔可夫场空间先验相结合的高光谱分类模型能够有效地提升分类精度,且分类精度优于主流的分类方法。
3、在贝叶斯推断框架下,采用稀疏多项式逻辑回归方法对似然概率进行建模,并将最大后验(MAP)分布的边际概率作为实值的隐形场引入到马尔可夫空间先验中,提出了一种加权马尔可夫场空间先验的高光谱分类方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高光谱遥感图像高效分类与解混方法研究高光谱遥感兴起于20世纪80年代,是一种融合光谱学理论与成像技术的前沿技术。
高光谱遥感图像包含几十至几百个窄波段的光谱信息,能够为人类社会提供丰富且精细的观测数据。
地物识别与分析作为高光谱遥感图像的研究热点,是高光谱遥感图像处理的重要组成部分,主要可通过地物分类与像元解混两种技术实现。
地物分类技术是一种像元级处理技术,通过对观测像元进行类别标定与识别来完成对地物的分析与识别;而像元解混技术是一种亚像元级处理技术,通过对观测像元中所包含的不同纯地物进行分析并计算其含量来完成对地物的识别与分析。
虽然,高光谱图像具有光谱分辨率高及图谱合一的特点,可以为地物分类与像元解混处理提供丰富的细节信息,但同时给这两种技术带来了巨大的挑战和难度,主要原因有:(1)高光谱图像容易受到高光谱传感器在空间分辨率上的限制以及光照、大气、云层厚度等自然环境因素的影响,出现“同物异谱”和“异物同谱”的现象,这两种现象不同程度地增加了地物分类与像元解混的难度。
(2)高光谱图像光谱维度高,由小样本引起“Hughes”现象的出现,使高光谱图像地物识别性能呈现先增加后下降趋势。
(3)高光谱图像的大数据量给高光谱图像处理带来了极大的计算量。
针对上述高光谱图像在地物分类与像元解混中存在的问题,本文深入研究了基于人工神经网络的地物分类技术与基于稀疏回归的像元解混技术,提出了高效的地物分类方法和像元解混方法。
具体工作概括如下:一、基于优化极限学习机的高光谱图像分类方法研究针对高光谱图像数据量大,导致分类方法计算复杂度高、样本训练时间长等问题,
本文开创性的将极限学习机方法应用在高光谱图像分类中,并提出了一种基于优化极限学习机的高效高光谱图像分类方法。
该方法研究并发掘出训练样本数目与隐层神经元数目之间存在一种经验的线性关系,且这种线性关系可从小样本数据集延伸至大样本数据集,因此避免了大样本数据集所带来的大计算量。
同时本文基于径向基核函数实现了极限学习机的核函数版本,并将上述线性关系拓展至核函数极限学习机方法上。
相较于经典且具有较好分类精度的支持向量机方法和核支持向量机方法,本文所提方法在不损失分类精度的基础上,大幅度提高了样本训练速度。
二、基于高效径向基神经网络的高光谱图像分类方法研究针对传统基于神经网络高光谱图像分类方法存在手动调节参数多、分类精度不高的问题,本文提出了一种基于高效径向基神经网络的高光谱图像分类方法,研究并设计了无参的径向基神经网络结构。
在此基础上,本文利用简单的空间均值滤波器在不增加额外计算复杂度的基础上将空间信息与光谱信息有效结合起来,进一步提高了地物分类精度;并采用矩阵分解引理,将大矩阵分解为小矩阵,则大矩阵的求逆运算可通过小矩阵的逆运算来组合求得,因此减少了运算时间,实现了算法的并行计算架构。
相较于基于径向基核函数的支持向量机方法,本文方法不但减少了样本训练时间,而且大幅度提高了分类精度。
三、基于光谱加权全变分的稀疏高光谱解混方法研究针对高光谱图像解混研究中现有空间信息表示模型简单,且忽略了实际应用中邻域像元之间真实分布关系的问题,本文提出了一种基于邻域光谱加权的全变分高光谱图像稀疏解混方法,分析并研究了邻域像元空间信息与光谱信息之间的关系,提出一种基于邻域像元光谱加权的空间正则项,利用不同的向量范数,
形成四种不同正则化算子,本文基于这四种不同正则化算子形成不同的稀疏解混模型,根据解混模型产生新的解混方法。
分析并确定最优正则化算子,将其应用在后续的稀疏解混方法中。
与传统经典稀疏解混方法相比,本文所提解混方法性能在不同信噪比情况下提高了2至16dB不等。
四、基于区域协同的高光谱像元稀疏解混方法研究针对传统高光谱图像中异质区域之间像元相互干扰及同质区域内部像元之间相互影响的问题。
本文基于图像中同质区域包含相同端元集的前提,提出一种基于区域的高光谱图像协同稀疏解混方法。
该方法研究了高光谱图像光谱域与空间域的特点,考虑到空谱信息相结合的优势,分析了高光谱图像中分割数目对像元解混性能以及不同分割算法对高光谱像元解混性能的影响,将同质区域内部像元进行协同稀疏解混,从而像元解混性能较传统基于单个像元处理与全部像元处理的方法在性能上提升了4至7dB,为后续将高光谱图像分类方法与解混方法结合以提高地物分析与识别精度奠定了实验理论基础。