高中数学三角函数的万能公式与应用解析
高中数学三角函数公式大全全解

三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。
注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
高中三角函数公式汇总与解析

高中三角函数公式汇总与解析【引言】三角函数是高中数学中的一大重点内容,掌握三角函数的公式是学好数学的基础。
本文将对高中三角函数的公式进行汇总与解析,以帮助读者更好地理解和运用这些公式。
【正文】一、角度与弧度的转换在三角函数中,角可以用度数表示,也可以用弧度表示。
两者之间的转换关系如下:1度=π/180弧度1弧度=180/π度二、基本三角函数公式1. 正弦函数(sin)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. sin(-x) = -sin(x)b. sin(x+π) = -sin(x)2. 余弦函数(cos)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. cos(-x) = cos(x)b. cos(x+π) = -cos(x)3. 正切函数(tan)①定义域:x≠(2k+1)π/2,其中k为整数②值域:实数集R③周期性:T=π④奇偶性:a. tan(-x) = -tan(x)b. tan(x+π) = tan(x)三、和差角公式1.正弦函数:sin(A±B) = sin(A)cos(B)±cos(A)sin(B) 2.余弦函数:cos(A±B) = cos(A)cos(B)∓sin(A)sin(B)tan(A±B) = (tan(A)±tan(B))/(1∓tan(A)tan(B))四、倍角公式1.正弦函数:sin(2A) = 2sin(A)cos(A)2.余弦函数:cos(2A) = cos²(A) - sin²(A) = 2cos²(A) - 1 = 1 - 2sin²(A) 3.正切函数:tan(2A) = (2tan(A))/(1 - tan²(A))五、半角公式1.正弦函数:sin(A/2) = ±√[(1-cos(A))/2]2.余弦函数:cos(A/2) = ±√[(1+cos(A))/2]3.正切函数:tan(A/2) = ±√[(1-cos(A))/(1+cos(A))]六、倒数公式1.正弦函数:csc(A) = 1/sin(A)sec(A) = 1/cos(A)3.正切函数:cot(A) = 1/tan(A)七、和角公式1.正弦函数:sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)2.余弦函数:cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)3.正切函数:tan(A) + tan(B) = (sin(A)+sin(B))/(cos(A)+cos(B))【结论】本文对高中三角函数的公式进行了汇总与解析,包括角度与弧度的转换、基本三角函数公式、和差角公式、倍角公式、半角公式、倒数公式和和角公式。
高考数学中的三角函数计算中的技巧总结

高考数学中的三角函数计算中的技巧总结三角函数是高中数学中的一个重要概念,也是高考数学不可避免的考点。
在三角函数的计算中,有一些技巧是必须掌握的,本文将对常用的技巧进行总结。
一、公式的推导对于三角函数的计算,最重要的是理解和掌握各种公式的推导,这样才能更好地理解三角函数的运算规律和应用。
1. 正弦和余弦的和差公式。
假设有两个角α和β,则有:cos(α±β)=cosαcosβ∓sinαsinβsin(α±β)=sinαcosβ±cosαsinβ其中,加号表示正弦和余弦的和,减号表示正弦和余弦的差。
这个公式的推导可以通过向量法或三角形法进行。
以向量法为例,假设有两个长度为1的向量OA和OB,头顶角分别为α和β,如图所示:[IMG]则有:OA⋅OB=cosα|OA||OB|OA⊥OB,所以OAOB为直角三角形,也就是OAOB 的面积是 OA x OB所以:OA⋅OBsinα = OB⋅OA sinβOA⋅OBsinα + OA⋅OBcosα = OB⋅OA sinβ + OB⋅OA cosβOA⋅OB (sinα + cosα) = OA⋅OB (sinβ + cosβ)sin(α+β) = sinαcosβ + sinβcosαcos(α+β) = cosαcosβ - sinαsinβ同样地,对于差的情况,只需要令β’=-β就可以了。
2. 正切的和差公式。
tan(α±β)=tanα±tanβ/(1∓tanαtanβ)这个公式的推导可以采用倍角公式,将两个角变为一个角的形式,再代入已知的正切值进行求解。
3. 万能公式。
tanx=(sinx)/(cosx)cotx=(cosx)/(sinx)tan2x=2tanx/(1-tan^2x)cot2x=(cot^2x-1)/(2cotx)sin2x=2sinxcosxcos2x=cos^2x-sin^2xsin^2x+cos^2x=1这些公式的推导可以通过三角函数的定义和之前所学的公式推导来得到。
三角函数的万能公式解析与应用

三角函数的万能公式解析与应用三角函数在数学中具有广泛的应用,而其中最为重要的便是三角函数的万能公式。
万能公式是指,通过使用正弦、余弦和正切函数之间的关系,能够将一个三角函数表达式转化为其他形式的表达式。
本文将对三角函数的万能公式进行解析,并介绍其在实际问题中的应用。
一、三角函数的万能公式三角函数的万能公式是基于三角恒等式的推导得到的。
其中最常用的万能公式如下:1. 正弦函数的万能公式:sin(A±B) = sinAcosB ± cosAsinB2. 余弦函数的万能公式:cos(A±B) = cosAcosB ∓ sinAsinB3. 正切函数的万能公式:tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)二、三角函数的万能公式解析下面以正弦函数的万能公式为例,对其进行解析。
sin(A±B) = sinAcosB ± cosAsinB可以通过使用辅助角的概念来推导正弦函数的万能公式。
假设角A和角B都是锐角,那么在以角A为基准的直角三角形中,可以将角B分解为两个角:角B = (π/2 - A) + α。
其中,角α为辅助角度。
根据三角函数的定义可知:sinA = 对边A / 斜边HcosA = 临边B / 斜边Hsin(π/2 - A) = 对边(π/2 - A) / 斜边Hcos(π/2 - A) = 临边(π/2 - A) / 斜边H利用三角函数的定义,将sinB和cosB分别写成对边与斜边的比值,可以得到:sinB = sin(π/2 - A) = cosAcosB = cos(π/2 - A) = sinA因此,将sinAcosB ± cosAsinB代入sin(A±B)的公式中,可得:sin(A±B) = sinAcosB ± cosAsinB这便是正弦函数的万能公式的解析过程。
高中数学三角函数常用公式

高中数学三角函数常用公式三角函数是高中数学中非常重要的内容,掌握了三角函数的常用公式,能够对解题提供很大的帮助。
下面是一些常用的三角函数公式。
1.基本公式:正弦函数(sin):sin(A+B) = sinA * cosB + cosA * sinBsin(A-B) = sinA * cosB - cosA * sinBsin2A = 2 * sinA * cosA余弦函数(cos):cos(A+B) = cosA * cosB - sinA * sinBcos(A-B) = cosA * cosB + sinA * sinBcos2A = cos^2A - sin^2A = 2cos^2A-1 = 1-2sin^2A正切函数(tan):tan(A+B) = (tanA + tanB) / (1 - tanA * tanB)2.万能公式:sinA = 2tan(A/2) / (1 + tan^2(A/2))cosA = (1 - tan^2(A/2)) / (1 + tan^2(A/2))tanA = 2tan(A/2) / (1 - tan^2(A/2))3.诱导公式:s in(π/2 - A) = cosAcos(π/2 - A) = sinAtan(π/2 - A) = 1 / tanAcot(π/2 - A) = 1 / tanAsec(π/2 - A) = 1 / cosAcsc(π/2 - A) = 1 / sinA 4.任意角公式:sin(-A) = -sinAcos(-A) = cosAtan(-A) = -tanAtan(A + π) = tanAsin(π - A) = sinAcos(π - A) = -cosAsin(A + π) = -sinAcos(A + π) = -cosAsin(2π -A) = -sinAcos(2π - A) = cosAsin(A + 2π) = sinAcos(A + 2π) = cosA5.等差关系:sin(A + nπ) = sinAcos(A + nπ) = cosAtan(A + nπ) = tanA6.倍角公式:sin(2A) = 2sinAcosAcos(2A) = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan(2A) = (2tanA) / (1 - tan^2A)7.半角公式:sin(A/2) = ±√((1 - cosA) / 2)cos(A/2) = ±√((1 + cosA) / 2)tan(A/2) = ±√((1 - cosA) / (1 + cosA))8.三角恒等式:sin^2A + cos^2A = 11 + tan^2A = sec^2A1 + cot^2A = csc^2A这些是高中数学中常用的三角函数公式,掌握了这些公式,能够在解题过程中准确、快速地计算三角函数的值,帮助解决许多复杂的问题。
高中三角函数公式汇总与解析

高中三角函数公式汇总与解析三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积 sina+sinb=2sin 2ba +cos 2b a -sina-sinb=2cos 2ba +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2)2(tan 12tan 2aa+ cosa=22)2(tan 1)2(tan 1aa+-tana=2)2(tan 12tan 2aa- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1sec(a) =a cos 1双曲函数 sinh(a)=2e-e -a a cosh(a)=2ee -a a + tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -co tα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b ≤a ≤b|a-b|≥|a|-|b| -|a|≤a ≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n 项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA•tanB•tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)•sin(B/2)•sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA•sinB•sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。
在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。
本文将从公式的定义、推导及应用方面进行详细解析。
一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。
三角函数公式大全带解析

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
积化和差公式
三角函数的积化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
★记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学三角函数的万能公式与应用解析
在高中数学的学习中,三角函数是一个重要的概念。
它们广泛应用于各个领域,包括物理、工程和计算机科学等。
而在解题过程中,我们经常会遇到各种复杂的三角函数方程,这时候万能公式就派上了用场。
一、万能公式的推导与定义
万能公式是指将三角函数中的任意一个函数用其他三个函数来表示的公式。
它
的推导过程基于勾股定理和三角函数的定义,通过将三角函数互相转化,可以得到以下三个万能公式:
1. 正弦函数的万能公式:
$$\sin A = \frac{2\tan \frac{A}{2}}{1+\tan^2\frac{A}{2}}$$
2. 余弦函数的万能公式:
$$\cos A = \frac{1-\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}}$$
3. 正切函数的万能公式:
$$\tan A = \frac{2\tan \frac{A}{2}}{1-\tan^2\frac{A}{2}}$$
这三个万能公式是相互关联的,通过其中一个公式,可以推导出其他两个公式。
二、万能公式的应用解析
万能公式在解题中的应用非常广泛,下面我将通过具体的题目来说明其应用。
例题1:已知 $\sin A = \frac{3}{5}$,求 $\cos A$ 和 $\tan A$ 的值。
解析:根据万能公式,我们可以利用正弦函数的万能公式来求解。
首先,根据
正弦函数的定义,我们可以得到 $\sin^2 A + \cos^2 A = 1$,将已知条件代入得到$\frac{9}{25} + \cos^2 A = 1$,解得 $\cos A = \pm \frac{4}{5}$。
然后,利用余弦函
数的万能公式,可以得到 $\cos A = \frac{1-
\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}}$,代入已知条件,解得 $\tan A = \pm
\frac{3}{4}$。
这个例题中,我们通过利用正弦函数的万能公式和余弦函数的万能公式,成功求解了 $\cos A$ 和 $\tan A$ 的值。
例题2:已知 $\cos A = \frac{1}{3}$,求 $\sin A$ 和 $\tan A$ 的值。
解析:同样地,根据余弦函数的万能公式,我们可以得到 $\cos A = \frac{1-
\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}}$,代入已知条件,解得 $\tan A = \pm
\frac{2}{3}$。
然后,利用正弦函数的万能公式,可以得到 $\sin A = \frac{2\tan
\frac{A}{2}}{1+\tan^2\frac{A}{2}}$,代入已知条件,解得 $\sin A = \pm
\frac{\sqrt{2}}{3}$。
通过这个例题,我们可以看到万能公式的应用非常灵活,通过转化不同的三角函数,我们可以得到其他三角函数的值。
三、万能公式的一反三思想
除了在解题过程中直接应用万能公式外,我们还可以运用一反三思想,通过将已知条件进行适当的转化,来求解其他相关的问题。
例题3:已知 $\sin A = \frac{1}{2}$,求 $\cos 2A$ 的值。
解析:根据万能公式,我们可以将 $\cos 2A$ 转化为 $\sin A$ 的函数。
利用正弦函数的万能公式,我们可以得到 $\sin A = \frac{2\tan
\frac{A}{2}}{1+\tan^2\frac{A}{2}}$,代入已知条件,解得 $\tan \frac{A}{2} =
\frac{1}{3}$。
然后,利用 $\cos 2A = 1 - 2\sin^2 A$ 的公式,代入已知条件,解得$\cos 2A = -\frac{7}{9}$。
通过这个例题,我们可以看到通过一反三思想,我们成功地将求解 $\cos
2A$ 的问题转化为了求解 $\tan \frac{A}{2}$ 的问题,并最终得到了答案。
综上所述,高中数学三角函数的万能公式在解题中起到了重要的作用。
通过灵活运用万能公式,我们可以轻松求解各种复杂的三角函数方程。
同时,通过一反三思想,我们可以将已知条件进行适当的转化,进一步扩展了万能公式的应用范围。
因此,高中学生在学习数学时,应该熟练掌握万能公式的推导和应用,以提高解题的效率和准确性。