参数化时频分析理论方法及应用.
时频分析方式综述

几种时频分析方式简介1. 傅里叶变换(Fourier Transform )12/20122/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞--∞∞--∞⎫=⎫⎪=⋅⎪⎪−−−−−−−→⎬⎬⎪⎪=⋅=⎭⎪⎭∑⎰⎰∑离散化(离散取样)周期化(时频域截断) 2. 小波变换(Wavelet Transform )a. 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/)从傅里叶变换的概念可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特按时刻区段内的频率转变情形。
若是要考察h(t)在特按时域区间(比如:t ∈[a,b])内的频率成份,很直观的做法是将h(t)在区间t ∈[a,b]与函数[][]11,t ,()0,t ,a b t a b χ⎧∈⎪=⎨∈⎪⎩,然后考察1()()h t t χ傅里叶变换。
可是由于1()t χ在t= a,b 处突然截断,致使中1()()h t t χ显现了原先h (t )中不存在的不持续,如此会使得1()()h t t χ的傅里叶转变中附件新的高频成份。
为克服这一缺点,在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个滑腻的函数g(t),称为窗口函数,它在有限的区间外等于0或专门快地趋于0,然后将窗口函数与h(t)相乘取得的短时时域函数进行FT 变换以考察h(t)在特按时域内的频域情形。
22(,)()()()()(,)ft f ftf STFT ISTF G f h tg t e dth t df g t G f ed T ππτττττ+∞--∞+∞+∞-∞-∞=-=-⎰⎰⎰::图:STFT 示用意STFT 算例cos(210) 0s t 5scos(225) 5s t 10s (t)=cos(250) 10s t 15s cos(2100) 15s t 20st t x t t ππππ≤≤⎧⎪≤≤⎪⎨≤≤⎪⎪≤≤⎩图:四个余弦分量的STFTb. 窗口傅里叶变换(Gabor )到小波变换(Wavelet Transform )图:小波变换概念知足条件: ()()()()2=ˆ=00ˆ0t dt t dt f df fψψψψ+∞-∞+∞<+∞-∞+∞-∞⎰<+∞−−−−−−→⇔⎰⎰假定:的平方可积函数ψ(t)(即ψ(t)∈L 2(—∞,+∞))为——大体小波或小波母函数。
时频分析方法

• 信号具有时变均值,时变方差,相关函数与时间 起点有关
ˆ x (t )] mx (t ) E[m
ˆ x (t )] Var[m 1 2 x (t ) N
– 均方值估计为:
1 N 2 ˆ Dx (t ) xx (t ) N i 1
ˆ (t )] D (t ) – 可以证明此估计为无偏估计,即 E[ D x x
– 用 | S () |2 表示信号的能量谱密度。
ቤተ መጻሕፍቲ ባይዱ
– 信号的频率中心: 0
1 | S ( ) |2 d 2π
– 信号的带宽: 2 2 | S () |2 d
1 ( )2 | S ( ) |2 d 2π
大连理工大学 10
• 分析非平稳信号的主要方法
时频 分析法 线性变换的 时频分析法 短时傅里 叶变换 非线性变换的 时频分析法 Wigner-Ville 分布 Cohen类 时频分布
Gabor变换
小波变换
2013/12/25
大连理工大学
11
• 时频分析举例:分段正弦信号
2013/12/25
大连理工大学
STFTx (t, f )
x(u) w* (u t )e j2 fudu
• 其中信号x(t)是慢变的, w* (t )是短时窗函数,*表示共轭
– STFT与Fourier变换的关系
• STFT是加窗的Fourier变换; • STFT是时间和频率的二维函数。
2013/12/25 大连理工大学 26
– 如果随机过程(随机信号)满足下述条件:
E[ X (t )] X (t ) X E[ X 2 (t )] RX ( ) E[ X (t ) X (t )] E[ X (t t1 ) X (t t1 )]
时频分析方法

时频分析方法时频分析方法是一种有效的信号处理方法,它将时域信号转换成频域信号,从而更加清晰地定位频率分量,从而提高信号处理的效率。
时频分析方法可以被用于各种应用领域,包括信号处理,通信,音频处理等。
本文将详细介绍时频分析方法的原理和应用,并分析其优缺点。
一、时频分析方法原理时频分析方法是指将时域信号转换成频域信号,从而更加清楚地定位频率分量,从而提高信号处理的效率。
它的基本原理是将一个信号的时域特性映射到频域,以得到与时域历史信号相关的周期统计信息。
时频分析主要是通过傅里叶变换、渐进式变换和时频技术等来实现的。
傅里叶变换是把信号由时域变换到频域的一种变换,傅里叶变换的基本原理是通过将信号中的时域特性映射到频域,从而更加清楚地定位频率分量,从而提高信号处理的效率。
在傅里叶变换中,时间信号会被变换成频率信号,从而得到与时域历史信号有关的周期统计信息。
渐进变换是一种分析信号的有效方法,它可以利用信号的渐变特性来实现时频分析。
渐进变换的基本思想是先将信号折叠成多个时间小段,然后计算每个时间小段的频率,依次推导出不同时间小段的频率分布特性,从而完成时频分析。
时频技术是一种将时域信号转换成频域信号的有效方法。
这种技术可以同时兼顾时域和频域特性,综合利用信号的时域和频域特性来分析信号的复杂结构,从而提高信号处理的效率。
时频技术的关键在于如何利用时间和频率信号的特性,从而更加清楚地定位频率分量,从而提高信号处理的效率。
二、时频分析方法的应用时频分析方法可以用于各种应用领域,主要包括信号处理、音频处理、语音识别等。
1、信号处理时频分析方法可以用于信号处理,其主要作用是增强信号特性,在提取信号特征时具有较高的精度和稳定性。
时频分析方法在信号分析、压缩、滤波、采样和降噪等应用中都有着广泛的应用。
2、音频处理时频分析方法可以用于音频处理,可以改善音频质量,消除各种音色,滤除噪声并进一步提高音频质量。
3、语音识别时频分析方法在语音识别中也有重要应用,可以帮助分析语音的特征,识别音频的特征,消除噪声并得到更高的识别率。
时频分析理论和应用_刘林

设计与应用计算机自动测量与控制.2001.9(4) Computer Autom ated Measurement &Control 收稿日期:2000212215。
作者简介:刘林(1973-),男,江西省赣州市人,硕士研究生,主要从事故障诊断、信号处理、计算机应用方面的研究。
文章编号:1007-0257(2001)04-0044-02 中图分类号:TN91117 文献标识码:A时频分析理论和应用刘 林,郝保国(北京科技大学环境工程系,北京,100083)摘要:介绍了时频分析理论及常用的时频分析方法,概述了时频分析的应用和研究状况。
关键词:信号处理;时频分析;小波变换Theory and Application of Time -Frequency AnalysisL IU Lin ,HAO Bao 2guo(Department of Environmental Engineering ,Beijing University of Science and Technology ,Beijing 100083,China )Abstract :The theory of Time -Frequency Analycis and general method of Time -Frequency Analysis are introduced.The situation of application and research of Time -Frequency Analysis is described.K ey w ords :signal processing ;time -frequency analysis ;wavelet transform 在工程实践中,需要传递各种数据,其目的是把某些信息借一定的信号传递出去。
信号是信息的表现形式,信息则是信号的具体内容。
信息的利用程度和信号与信息处理技术的发展紧密相关。
几种参数化时频分析方法的比较

几种参数化时频分析方法的比较史丽丽;许萌【摘要】时频分析在实际的非平稳信号处理中得到广泛的应用并仍然具有发展潜力.在时频分析中有两项重要的评价指标,即自项的集中程度和瞬时频率估计的准确性,介绍线性调频小波变换,多项式Chirplet变换和广义Warblet变换三种参数化时频分析方法,着重从此两项指标来阐述这三种方法的优缺点,进而分析和比较这三种方法的原理及应用范围.【期刊名称】《现代计算机(专业版)》【年(卷),期】2017(000)008【总页数】4页(P31-34)【关键词】时频分析;线性调频小波变换;多项式Chirplet变换;广义Warblet变换【作者】史丽丽;许萌【作者单位】郑州升达经贸管理学院信息工程系,郑州 451191;郑州升达经贸管理学院信息工程系,郑州 451191【正文语种】中文众所周知,在实际工程中,很多信号都属于非平稳信号[1],例如瞬时电流、振动信号、语音信号、雷达波等等,因此非平稳信号的处理就显得尤为重要,而时频分析正是为此类信号的进行处理和分析。
时频分析方法的特性主要表现在时频平面上,时频分布是瞬时频率及其附近聚集信号能量的能力的具体体现。
瞬时频率是时频模式中的一个重要的参数,在信号处理过程中占有重要的作用。
根据时频特性,调频信号可以分为两大类:线性调频信号和非线性调频信号。
目前时频分析方法[2]有很多种,例如常见的短时傅里叶变换、连续小波变换、Wigner-Ville分布、Cohen类分布等,这些方法由于不需要先验知识而被称为非参数化的时频分析方法,但此类方法获得的时间和频率的分辨率并不依附于具体的信号,所以并不能对较为复杂的调频信号作出正确的时频特性;本文分析对比了线性调频小波变换,多项式Chirplet变换和广义Warblet变换[3]这三种参数化时频分析方法,通过先验知识来决定变换中核函数的参数,当核函数中参数的选择能够很好地表征信号的瞬时频率轨迹时,就说明这种参数化时频变换方法能够很好地刻画信号的时频模式。
一种新的估计多项式相位信号瞬时频率的参数化时频分析方法

其 中
=
:
・
,) t 。
唧
j
( 2 )
方法 估计信 号的瞬 时频率 , 后再进行 相位参 数 的估 然
计 。其 中 , 最为 主要 的是基 于 C h n 时频 分布 的 oe 类
)x ∑ f l =p e
a p id t si t ep ln mi l h s i n l wi b t r r e  ̄ h e f r a c f h o l e r h r lt a s o m p l o e t e mae t o y o a a e sg as t a i a y o d r As ep r o n eo e n n i a i e n f r h p hr r t m t n c p t r
摘 要: 通过 多项式非线性核 函数取代线性调频小波变换 中的线性核 函数 , 提出一种新的参数化时频分析方法: 非
线性调频小波变换 。对瞬 时频率是 时间任 意连 续函数的信号而言 , 选择合 适的多项式核特征参数 , 非线性调频小波变 换 的时频分布有 良好 的时频聚集性 。应 用非线性调频小波变换分析任意阶次 多项式相位信 号 。由于非线性调频小波 变换 的性能取决于 多项式核特 征参 数, 本文还给 出非线性调频 小波变 换的核特 征参数估计算法 , 一步可实现多项式 进 相位信号的瞬时频率和参量估计。仿真信 号验证算法 的有效性 。
is t eu eu nyt jcoy i a riay f t no me I i pp r tep l o a c i l asom s nt a o sf q ec a tr s n ab rr mco f i .n t s a e,h oy mil hr e t fr wa n a n r r e t i i t h n pt n r
参数化时频分析理论方法及应用_2016_西北工大

短时傅立叶变换
定义: ST FTx ( , ) x(t ) g (t )e jt dt
0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -5 0 t/sec 5
a=1
窗函数
本质:加窗傅立叶变换 适用对象:分段平稳信号
3 2 1 0 -1 -2 -3 0 1 2 t/sec 3 4
ψ2
参数化时频分析-方法
多频率分量信号分析-时频融合法
高通 滤波
0.1111 0.1111 0.1111 H 0.1111 0.8889 0.1111 0.1111 0.1111 0.1111
示例-SCT
STFT SCT CWT
WVD
PCT
参数化时频分析-方法
广义Warblet变换 (GWT)
旋转算子
R (t ) e
t j ( ) d 0
(t ) (i )e
i 1
N
几种时频分析方法及其工程应用

几种时频分析方法及其工程应用时频分析是一种将时间和频率维度综合起来分析信号的方法,广泛应用于信号处理、通信、音频处理、图像处理等领域。
在实际工程应用中,根据不同的需求和应用场景,可以采用多种不同的时频分析方法。
本文将介绍几种常见的时频分析方法及其工程应用。
短时傅里叶变换是一种将信号分为多个小片段,并对每个小片段进行傅里叶变换的方法。
它在时域上采用滑动窗口的方式将信号分段,然后进行傅里叶变换得到频域信息。
STFT方法具有时间和频率分辨率可调的特点,可用于信号的频域分析、谱估计、声音的频谱显示等。
工程应用:STFT广泛应用于语音处理、音频编解码、信号分析等领域。
例如在音频编解码中,可以利用STFT分析音频信号的频谱特征,进行数据压缩和编码。
2. 小波变换(Wavelet Transform)小波变换是一种时频分析方法,它通过将信号与一系列基函数(小波)进行卷积来分析信号的时间和频率特性。
小波变换具有多分辨率分析的特点,可以在不同尺度上对信号进行分析。
工程应用:小波变换可以用于信号处理、图像压缩等领域。
在图像处理中,小波变换被广泛应用于图像的边缘检测、图像去噪等处理过程中。
3. Wigner-Ville分布(Wigner-Ville Distribution,WVD)Wigner-Ville分布是一种在时间-频率平面上分析信号的方法,它通过在信号的时域和频域上进行傅里叶变换得到瞬时频率谱。
WVD方法可以展现信号在时间和频率上的瞬时变化特性。
工程应用:Wigner-Ville分布在通信领域中被广泛应用于信号的调制识别、通信信号的自适应滤波等方面。
例如在调制识别中,可以利用WVD方法对调制信号的频谱特征进行分析,从而判断信号的调制类型。
4. Cohen类分析(Cohen's class of distributions)Cohen类分析是一种将信号在时间-频率域上进行分析的方法,它结合了瞬时频率和瞬时能量的信息。