刀具合理几何参数的选择
刀具几何参数的选择

刀具几何参数的选择刀具的切削性能主要是由刀具材料的性能和刀具几何参数两方面打算的。
刀具几何参数的选择是否合理对切削力、切削温度及刀具磨损有显著影响。
选择刀具的几何参数要综合考虑工件材料、刀具材料、刀具类型及其他加工条件(如切削用量、工艺系统刚性及机床功率等)的影响。
一、前角的选择前角是刀具上最重要的几何参数之一。
增大前角可以减小切削变形,降低切削力和切削温度;但过大的前角使刀具楔角减小,刀刃强度下降,刀头散热体积减小,刀具温度上升,使刀具寿命下降。
针对某一详细加工条件,客观上有一个最合理的前角取值。
工件材料的强度、硬度较低时,前角应取得大些;加工塑性材料宜取较大的前角,加工脆性材料宜取较小的前角。
刀具材料韧性好时宜取较大前角,硬质合金刀具就应取比高速钢刀具较小的前角。
粗加工时,为保证刀刃强度,应取小前角;精加工时,为提高表面质量,可取较大前角。
工艺系统刚性较差时,应取较大前角。
为减小刃形误差,成形刀具的前角应取较小值。
用硬质合金刀具加工中碳钢工件时,通常取;加工灰铸铁工件时,通常取。
二、后角的选择后角的主要功用是减小切削过程中刀具后刀面与工件之间的摩擦。
较大的后角可减小刀具后刀面上的摩擦,提高已加工表面质量。
在磨钝标准取值相同时,后角较大的刀具,磨损到磨钝标准时,磨去的刀具材料较多,刀具寿命较长;但是过大的后角会使刀具楔角显著减小,减弱切削刃强度,减小刀头散热体积,导致刀具寿命降低。
可按下列原则正确选择合理后角值。
切削厚度(或进给量)较小时,宜取较大的后角。
进行粗加工、强力切削和承受冲击载荷的刀具,为保证刀刃强度,宜取较小后角。
工件材料硬度、强度较高时,宜取较小的后角;工件材料较软、塑性较大时,宜取较大后角;切削脆性材料,宜取较小后角。
对精度要求高的定尺寸刀具(例如铰刀),宜取较小的后角;由于在径向磨损量NB 取值相同的条件下,后角较小时允许磨掉的刀具材料较多,刀具寿命长。
车削中碳钢和铸铁工件时,车刀后角通常取为6~8°。
刀具合理几何参数的选择

于加工紫铜、不锈钢等高塑性材料,γo可增至25°~30°。
卷屑槽宽Wn愈小,切屑卷曲半径愈小,切屑愈易折断;
但太小,切屑变形很大,易产生小块的飞溅切屑, 也不好。
过大的Wn也不能保证有效地卷屑或折断。一般根据工件材料 和切削用量决定,常取Wn=(1~10)f。
(1) 考虑刀具材料和结构。刀具材料有高速钢、硬质合金 等;而刀具结构有整体、焊接、机夹、可转位等。
(2) 考虑工件的实际情况。如材料的物理机械性能、毛坯 情况(铸、 锻等)、形状、材质等。
(3) 了解具体加工条件。如机床、夹具情况,系统刚性、 粗或精加工、自动线等。
(4) 注意几何参数之间的关系。如选择前角,应同时考虑 卷屑槽的形状、是否倒棱、刃倾角的正、负等。
(a) 不同刀具材料; (b) 不同工件材料
③考虑具体的加工条件:
粗加工,特别是断续切削,或有硬皮时,如铸、
锻件,γo可小些; 但在需强化切削刃或刀尖时, γo可适当加大;
工艺系统刚性差、机床功率不足时,γo应大些,
减小切削力和振动;
成形刀具,如成形车刀、铣刀,为防止刃形畸
变, 可取γo=0°;
数控机床、自动机或自动线上用的刀具,考虑 应有较长的刀具耐用度及工作稳定性, 常取较小
但αo太大时将显著削弱刀头强度,使散热条件恶化而
降低刀具耐用度;并使重磨量和时间增加,提高了磨刀 费用。
图 αo对刀具磨损量的影响
2、 选择
切削时同样存在着一个合理的αoPt。αoPt随γo的减小 而增大;也因刀具材料不同而改变, 硬质合金的γo小于 高速钢,rβ大于高速钢,所以αoPt大于高速钢。
直线圆弧形的槽底圆弧半径Rn和直线形的槽底角对切屑的卷
刀具合理几何参数的选择

04
加工精度与表面质量保障 措施
加工精度影响因素剖析
机床精度
机床本身的制造精度、刚度、热稳定性等都 会直接影响加工精度。
刀具磨损
刀具在切削过程中会逐渐磨损,导致加工尺 寸和形状精度下降。
切削参数
切削速度、进给量、切削深度等参数的选择 不合理会导致加工精度降低。
工件材料
工件材料的硬度、韧性等物理特性对加工精 度也有一定影响。
主偏角优化
主偏角的大小会影响切削分力和径向力的大小,进而影响 加工精度和表面质量。需要根据具体加工要求选择合适的 主偏角。
刃倾角优化
刃倾角可以影响切屑的流向和切削刃的受力情况,通过调 整刃倾角可以改善切屑的排出效果和切削刃的受力状况, 提高加工精度和表面质量。
05
生产效率与经济效益提升 途径
生产效率现状分析
合理选择刀具材料
根据工件材料和加工要求选择适合的 刀具材料,如高速钢、硬质合金、陶 瓷等。
优化刀具几何参数
通过调整前角、后角、主偏角等参数, 降低切削力、切削热,提高刀具耐用 度。
采用涂层技术
在刀具表面涂覆一层或多层硬质薄膜, 提高刀具的硬度、耐磨性和耐热性。
控制切削用量
合理选择切削速度、进给量和背吃刀 量,避免过大的切削力导致刀具快速 磨损。
感谢您的观看
THANKS
刀具合理几何参数的选择
目录
• 刀具几何参数概述 • 切削力与切削热分析 • 刀具磨损与耐用度评估 • 加工精度与表面质量保障措施 • 生产效率与经济效益提升途径 • 总结与展望
01
刀具几何参数概述
定义与分类
刀具几何参数定义
描述刀具形状和尺寸的各参数, 包括切削刃形状、前角、后角、 主偏角、副偏角等。
第五章 切削用量及刀具几何角度的选择(机械制造技术A)

Thank you for your listening!
测试1:
1、积屑瘤在粗、精加工中各起什么作用?当其有害 时怎样抑制它?
2、影响积屑瘤大小的因素?精加工外圆时怎样抑制它? 为什么?
3、试推导变形系数ξ与剪切角Φ之间的关系。
4、单位切削力的定义?
5、切削用量三要素对切削力的影响与对刀具耐用度 的影响有什么不同?请利用指数公式对该问题进行 分析,并提出降低切削力和提高刀具耐用度的措施。
5.4 过渡刃与修光刃参数的选择
一、过渡刃及其参数选择 ⑴外圆车刀过渡刃参数:
过渡刃偏角
rs
1 2
r
过渡刃长度
bs=0.5~2mm
⑵切断刀过渡刃参数 过渡刃偏角 κrs=45° 过渡刃长度 bs=(0.20~0.25)ap
Κ'r
Κr
3)圆弧过渡刃
⑴高速钢车刀 r 0.5 ~ 5mm ⑵硬质合金车刀 r 0.5 ~ 2mm
3.负前角单面型 优点:刃口强度高。 缺点:刃口钝,对切削层的挤压严重。
使用场合: ⑴主要用于硬质合金车刀和铣刀; ⑵切削高强度、高硬度材料和切削淬火钢; ⑶当磨损主要发生在后刀面时。
4.正前角正倒棱 使用场合:适用于高速钢刀具 正倒棱尺寸参数:
br1 (0.5 ~ 1) f ; 01 0 ~ 5
在刀具前刀面上,切屑流出的方向与切削刃法线 间的夹角Ψλ称为流屑角。
主切削刃法线 主切削刃
(1)用测定切屑宽度bc的方法求流屑角:
cos
bc b
cos s
⑵实际切削角 ①流屑剖面:包含切屑流出方向和切削速度的剖面Pλ。 ②实际切削角:在流屑剖面内测量的角度 实际切削前角
sin oe cos sin n cos s sin sin s sin oe sin2 s cos2 s sin n
第9章刀具合理几何参数的选择及切削用量优化

刀具合理几何参数和切削用量的选择是否合理对刀具使用寿命、加工质量、生产效率和加工成本等有着重要影响。
刀具的“合理”的几何参数是指在保证加工质量的前提下能够获得最高刀具耐用度达到提高切削效率或降低生产成本目的的几何参数。
第一节概述什么是刀具的合理或最佳几何参数呢在保证加工质量的前提下能够满足生产效率高、加工成本低的刀具几何参数称为刀具的合理几何参数。
一般地说刀具的合理几何参数包含以下四个方面基本内容1 刃形刃形是指切削刃的形状有直线刃、折线刃、圆弧刃、月牙弧刃、波形刃、阶梯刃及其他适宜的空间曲线刃等。
刃形直接影响切削层的形状影响切削图形的合理性刃形的变化将带来切削刃各点工作角度的变化。
因此选择合理的刃形对于提高刀具使用寿命、改善已加工表面质量、提高刀具的抗振性和改变切屑形态等都有直接的意义。
2 切削刃刃区的剖面型式及参数通常将切削刃的剖面型式简称为刃区型式。
针对不同的加工条件和技术要求选择合理的刃区型式如锋刃、后刀面消振棱刃、前刀面负倒棱刃、倒圆刃、零度后角的刃带及其合理的参数值是选择刀具合理几何参数的基本内容。
图所示为五种刃区型式。
图常见的五种刃区形式a锋刃b消振棱c-负倒棱d-倒圆刃e刃带3 刀面型式及参数前刀面上的卷屑槽、断屑槽后刀面的双重刃磨、铲背以及波形刀面等都是常见的刀面型式。
选择合理的刀面型式及其参数值对切屑的变形、卷曲和折断对切削力、切削热、刀具磨损及使用寿命有着直接的影响其中前刀面的影响和作用更大。
4 刀具角度刀具角度包括主切削刃的前角γ0、后角а0、主偏角κr、刃倾角λs和副切削刃的副后角а??0、副偏角κ??r等。
刀具合理几何参数的选择主要决定于工件材料、刀具材料、刀具类型及其他具体工艺条件如切削用量、工艺系统刚性及机床功率等。
当确定了刀具几何参数后还需选定合理的切削用量才能进行切削加工。
在机床、刀具和工件等条件一定的情况下切削用量的选择最富有灵活性和能动性。
对于充分发挥机床和刀具的功能以取得生产的最大效益来说切削用量的选择如果得当就可能最大限度地挖掘出生产潜力倘若选择不当会造成很大的浪费或导致生产事故。
刀具几何参数和切削用量的合理选择

加工条件:工艺系统刚性差时,易出现振
动,应选取较小的后角αo;加工表面质量要求 较高时,为减轻刀具与工件之间的摩擦,应选
取较大的后角αo;尺寸精度要求较高时,应选 取较小的后角αo,以减小刀具的径向磨损值NB 值,如下图所示。
硬质合金车刀合理后角的参考值如下表所示。
② 后角αo的选择
切削厚度hD:粗加工时,切削厚度hD较大,要 求切削刃坚固,应选取较小的后角αo。精加工时, 切削厚度hD较小,磨损主要发生在后刀面上,为降 低磨损,应选取较大的后角αo。
工件材料:工件材料强度和硬度较高时,为提
高切削刃强度,应选取较小的后角αo;工件材料软、 塑性大时,后刀面磨损严重,应选取较大的后角αo; 工件材料脆性较大时,载荷集中在切削刃处,为提
负前角双面型:该形式的刀具使刀具的重磨次数 增加,最大程度地减少了前刀面和后刀面的磨损。同 时负前角的倒棱应有足够的宽度,以确保切屑沿该棱 面流出。
(3)倒棱
倒棱是增强切削刃强度的一种措施。在用脆性大 的刀具材料粗加工或断续切削时,磨倒棱能够减小刀 具崩刃,显著提高刀具耐用度(可提高1~5倍)。
倒棱宽度br1不可太大,以便切屑能沿前刀面 流出。br1的取值与进给量f有关,常取br1≈ (0.3~0.8)f。其中,精加工时取小值,粗加工
② 前角γo的选择
工件材料:工件材料的强度、硬度较低,塑
性较好时,应选取较大的前角γo;工件材料脆性较 大时应选取较小的前角γo;工件材料强度、硬度较 高时,应选取较小的前角γo,甚至负前角。
刀具材料:刀具材料的强度和韧度高时,如高 速钢,可选取较大的前角γo;反之,刀具材料的强度 和韧度差时,如硬质合金,应选取较小的前角γo。
刀具合理几何参数的选择

2. 选择原则 刀具合理前角主要取决与刀具材料和工件材料的性能,
即: (1)刀具材料的抗弯强度及冲击韧度较高时,可选择较 大前角。(图10.2) (2)工件材料的强度或硬度较大时,选用较小前角,以 保证刀具刃口强度;反之,选用加大前角。 加工塑性较大材料时,应选加大前角;加工脆性材料 (如铸铁、青铜)时,宜选较小前角。(图10.3)
eg:车阶梯轴时,主偏角必须为90°(表10.3)
3. 副偏角的选择
主要功用是形成已加工表面,因此应首先考虑以 加工表 面要求,综合考虑刀尖强度,散热与振动等。
合理主偏角选用原则如下:
1)工艺系统刚度好,不产生振动的条件下,应选用较小 主偏角,以减小已加工表面粗糙度值。 2)精加工时,副偏角比粗加工选的小些;必要时,磨出 一段副偏角为0°的修光刃,用来进行大走刀的光整加工。 (图10.10) 修光刃长度应略大于进给量f,一般取bε =(1.2~1.5)f
是指在保证加工质量前提下,能使刀具使用寿命最长、 生产效率提高或生产成本降低的刀具几何参数。 一般原则:
1.要考虑工件材料、刀具材料及刀具类型等 2.要考虑刀具各几何参数间的相互联系 3.要考虑具体加工条件 4.要考虑刀具锋利性与强度的关系
10.2 刀具合理几何角度及其选择
10.2.1 前角
1. 前角的功用
④根据工件材料来选取
加工高硬度工件材料时,宜取负刃倾角。
合理主偏角应根据工艺系统刚度、兼顾工件材料硬度 和工件形状等要求来选择。 1)工艺系统刚度足够时,应选用较小主偏角,以提高 刀具使用寿命和加工表面质量;系统刚度较差时,选择较 大主偏角,以减小背向力。
2)加工很硬的工件材料时,宜取较小主偏角,以减轻 单位长度切削刃负荷,改善刀尖散热条件,提高刀具使用 寿命。 3)应综合考虑工件形状和具体条件。
10-刀具合理几何参数的选择

削刃形状等。 • 刀具合理几何参数指在保证加工质量的前 提下,能够获得最高刀具耐用度,从而达到 提高切削效率,降低生产成本的目的。原则: • 1、考虑刀具材料和结构; • 2、考虑工件的实际情况; • 3、具体锋锐性与强度、耐磨性的关系。
具耐用;但NB加大,影响尺寸精度。 • α0增大,β0减小,刀刃锋利,表面质量 好,耐用度提高。但过小,强度减弱,散 热条件差,耐用度下降。
同样存在一个合理的α0区间,随着前角以及 刀具材料的不同而变化。 • 2、选择 • 根据切削厚度αc :粗加工,要求刀刃强度, 选择较小的α0 ;精加工αc小,为减小后刀面 的磨损,应取较大的。 • 通常:f>0.25/r, • α0 =5-8; • f<0.25/r, • α0 =10-12;
•
精加工:工艺系统好,影响残留面积, 副偏角可取5-10度。 • 为了提高工件表面质量,有时将刀刃修 磨出0度的修光刃。 • 三、刀尖形状 • 为了增加刀尖强度和改善散热条件,将 刀尖刃磨成直线或圆弧的过渡刃。 • 直线型:适宜粗加工,刃磨容易。 • 圆弧过渡刃:适合精加工,可减少表面 粗超度,但刃磨困难。
• 2、选择 • 1)、加工一般钢材、铸铁等; • 加工淬火钢、高强度、高锰钢; • 2)、强力刨刀; • 3)、金刚石、立方氮化硼刀具; • 4)工艺系统刚性不足情况下; • 刀具角度相互之间有联系和影响,孤立
的选择某一个角度,并不能得到所希望的 合理值。
• 三、带卷屑槽的前刀面形状 • 加工韧性材料。常在前刀面上磨出卷屑
槽,便于切屑排出和清理。 • 卷屑槽圆弧半径和角度对切屑的卷曲变 形有直接的影响。较小时卷曲半径小,切 屑变形大,易折断。 • 一般情况: • Rn=(0.4-0.7)Wn • 底角110-130。 • Wn=(7-10)f
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刀具的几何参数包括刀具的切削角度,刀面的形式(如平前刀面,带卷屑断屑槽的前刀面、波形刀面等)以及切削刃的形状(直线形、折线形、圆弧形等)。
刀具的几何参数对切屑变形、切削力、切削温度和刀具磨损都有显著影响,从而影响切削加工生产率、刀具耐用度、加工质量和加工成本。
刀具的合理几何参数.是指在保证加工质量的前提下,能够获得最高刀具耐用度,从而能达到提高切削效率,降低加工成本目的的几何参数。
选择刀具合理几何参数主要取决于工件材料、刀具材料、刀具类型,也与切削用量、工艺系统刚性和机床功率等因素有关。
第一节前角及前刀面形状的选择一、前角的功用及选择前角是刀具上重要的几何参数之一,它的大小决定切削刃的锋利程度和强固程度,直接影响切削过程。
前角有正前角和负前角之分。
取正前角的目的是为了减小切屑被切下时的弹塑性变形和切屑流出时与前面的摩擦阻力,从而可减小切削力和切削热,使切削轻快,提高刀具寿命,并提高已加工表面质量。
但前角过大时,楔角过小,会削弱切削刃部的强度并降低散热能力,反而会使刀具寿命降低。
由图可知,加工不同材料时,前角太大或太小,刀具耐用度都较低。
在一定加工条件下,存在一个耐用度为最大的前角,即合理前角。
取负前角的目的在于改善刃部受力状况和散热条件,提高切削刃强度和耐冲击能力。
负前角刀具通常在用脆性刀具材料加工高强度高硬度工件材料而当切削刃强度不够、易产生崩刃时才采用。
前角的合理数值选取原则刀具合理前角的选择主要取决于刀具材料、工件材料的种类与性质:1.刀具材料:强度和韧性较高时可选择较大的前角。
高速钢的强度高,韧性好;硬质合金脆性大,怕冲击,易崩刃。
因此,高速钢刀具的前角可比硬质合金刀具选得大一些,可大5°~10°。
陶瓷刀具的脆性更大,故前角应选择得比硬质合金还要小一些。
选择要充分注意增加切削刃强度,常取负值(多在-4°~-15°范围)以改善刀具受力时的应力状态,并选负的刃倾角(取0°~-10°)与之配合以改善切入时承受冲击的能力。
立方氮化硼由于脆性更大,都采用负前角高速切削。
2.工件材料1)加工塑性材料时,切屑呈带状,沿刀具前面流出时和前面接触长度较长,摩擦较大,为减小变形和摩擦,一般都采用正前角。
工件材料塑性愈大,强度和硬度愈低时,前角应选得愈大。
如加工铝及铝合金取γo=25°~35°,加工低碳钢常取γo=20°~25°。
当工件材料强度较大、硬度较高时,前角宜取小值,如正火高碳钢取γo=10°~l5°。
当加工高强度钢时,为增强切削刃,才取负前角。
2)加工脆性材料(如灰铸铁)时,塑性变形小,切屑呈崩碎状,刀屑接触长度短,摩擦不大,切削力集中在切削刃附近且产生冲击,容易造成崩刃。
所选前角应比加工塑性材料时小一些,以提高切削刃强度和散热能力。
如加工灰铸铁取γo=5°~15°。
前角数值随脆性材料强度和硬度的增大而逐渐减小。
在加工淬火钢、冷硬铸铁等高硬度难加工材料时,宜取负前角。
实验证明,用正前角硬质合金车刀加工高硬度淬火钢时,切削刃几乎一开始切削就会发生崩刃。
3.具体加工条件:粗加工时或断续切削时,切削力和冲击较大,为使切削刃有足够强度,宜取较小前角;精加工时,切削刃强度要求较低,为使刀具刀刃锋利,降低切削力,以减小工件变形和减负倒棱前的金属滞留区 负倒棱前角对总切削力方向的影响 小表面粗糙度值,宜取较大前角。
在工艺系统刚性较差或机床马达功率不足时,宜取较大前角;在自动机床上加工时,为使刀具稳定,宜取小一些的前角。
4.其他参数的选择:前角的合理数值不是孤立的,还和刀面形状及刃区参数以及其他角度有关,特别是和刃倾角有密切关系。
例如:带负倒棱的刀具允许采用较大前角;大前角刀具常与负刃倾角相匹配来保证切削刃强度和抗冲击能力。
许多先进刀具就是在针对某种加工条件,善于灵活运用这些原则而产生的。
下表是一般情况下硬质合金车刀合理前角的经验数值,可供选用时参考。
二、刃区参数及前面形状的选择1. 刃区参数刃区剖面型式有锋刃型、倒棱型和钝圆切削刃型三种。
1)锋刃:指刃磨前面和后面直接形成的切削刃。
但它也并不是绝对锐利的,而在刃磨后自然形成一个切削刃钝圆半径r n .其数值取决于刀具材料、刃磨工艺和楔角的大小。
并且在切削过程中随着磨损而有增大的趋势,刀面表面粗糙度值越大,增大的速度也越大。
优点:与倒棱切削刃和钝圆切削刃相比,锋刃的钝圆半径很小,切削刃比较锋利。
适合作精加工和超精加工的切削刃,如超精铣削或超精镗削,以及精加工和半精加工轻金属及其合金。
缺点:锋刃的强度和抗冲击性能较差,产生微小裂纹导致崩刃的可能性也较大。
因此,对于精细切削和微量切削的刀具锋刃,都要求仔细刃磨和研磨,以获得小的切削刃钝圆半径,消除微小裂纹,提高刃口质量;采用锋刃切削时,一般应采用较小的进给量(O.05~0.lmm/r 以下),以避免崩刃并减缓刃区裂纹的出现。
2)倒棱:倒棱就是沿切削刃研磨出很窄的负前角棱面(又称第一前面),是增强刀刃强度的有效措施。
当负倒棱面宽度和棱面前角选取合理时,在切削过程中,棱面上将形成滞留金属三角区。
在复杂应力状态下可能转化为积屑瘤,使切屑层同工件的分离面发生在刃前三角区的峰部,如图所示。
这时,切屑仍沿着正前角的前面流出,切削力增大不明显,却使切削刃加强并受到三角区滞留金属的保护,刀具寿命明显提高。
另一原因是使切削合力的方向发生变化。
实验结果看出,当倒棱宽度b γ一定时,刀具总切削力的方向与后面的夹角随负倒棱前角γ01的增大而增大,从而在一定程度上改变了刀片的受力状况,减小了对切削刃产生弯曲应力的比例分量。
它对脆性刀具材料提高冲击能力是极为有利的。
倒棱参数的选取:主要取决于进给量、刀具材料和工件材料。
a)进给量:无论刃区取何参数,随进给量的增加,刀具寿命就下降,但下降的程度随参数值而异。
对应于某个进给量值,总有一个使刀具寿命最高的倒棱参数值。
一般讲,精加工时γ01要小些;粗加工时,进给量大,γ01要大些。
用硬质合金刀具加工钢时,负倒棱宽度b γ1一般不宜超过进给量。
这时,切削力与锋刃相比增大较小,b γ1大于f 时,切削力将有明显增大趋势。
当负倒棱宽度大于一定数值时,切屑流出时只和负倒棱部分接触,随即卷曲而去,根本不和具有正前角的前面接触,这时,负倒棱实际上即变成负前角的前面。
b)刀具材料:用硬质合金车刀车削碳钢、合金钢时,一般可取bγ(0.3~0.8)f,γ01=-10°~-15°。
对WC基硬质合金刀片,bγ取小值;高速钢刀具强度和韧性较好,一般不磨负倒棱,必要时可研磨出零度或小前角正倒棱。
c)工件材料:加工低碳钢、不锈钢、灰铸铁时,可取bγ≤0.5f,γ01=-5°~-10°;当加工有硬皮的锻件和铸钢件时,在机床功率和刚度足够的条件下,倒棱负前角可减小到-30°,当冲击严重时,负倒棱宽度可取bγ =(1.5~2)f,但这时切削力增大较多。
3) 钝圆切削刃:是在负倒棱的基型上进一步修磨而成,或直接通过刀片钝化处理而成。
特点:钝圆半径比锋刃增大了一定数值,它不但在提高切削刃强度方面获得和负倒棱同样的效果,而且比负倒棱更有利于消除刃区微小裂纹,使刀具获得最佳寿命。
同时,在切削过程中对已加工表面还有一定的熨压和消振作用,有利于提高已加工表面质量。
经刃口钝化处理的可转位刀片和硬质合金涂层刀片就是采用了钝圆切削刃,已获得广泛应用。
钝圆切削刃的钝圆半径rn根据刀具材料、工件材料和切削条件三个方面选择。
可制成轻型,(rn 约为0.025~0.05mm)、中型(rn约为0.05~0.1mm)和重型(rn约为0.1~0.15mm)三种。
刀具材料的强度和韧性影响钝圆切削刃钝圆半径的最佳数值。
高速钢刀具一般取正前角锋刃或轻型钝圆切削刃。
陶瓷刀片一般要求负倒棱且带有重型钝圆切削刃,而WC基硬质合金刀片一般多采用中型钝圆切削刃。
TiC基硬质合金的钝圆切削刃参数则介于两者之间选择。
工件材料的切削加工性也影响切削刃钝圆半径的合理数值,切削可加工性较好的有色金属,如铜、铝合金时,刀具刃区常采用轻型钝圆切削刃或锋刃。
切削灰铸铁、球墨铸铁、可锻铸铁时,由于其多孔性及其分布不均匀而产生冲击,刀具刃区通常采用中型钝圆切削刃。
切削普通钢材时,其刃区参数可根据含碳量确定。
切削低碳钢和大多数不锈钢的刀具可采用轻型钝圆切削刃,而切削高硬度合金时,刀具刃区需要中型乃至重型钝圆切削刃。
在切削加工条件中,进给量和切削刃钝圆半径rn也有一定关系,当用WC基硬质合金切削钢材时,一般可取rn ≤f/3,而用Tic基硬质合金刀片和涂层刀片时,则可取rn≤f/l.5。
rn过小时,切削刃容易产生裂纹和崩碎,但rn过大时,也会使切削刃严重挤压切削层而降低刀具寿命,并增大已加工表面冷硬程度,甚至引起振动。
2.前刀面形状前刀面形状分平面型和断屑前面型两大类。
在切削过程中金属材料受到变形,如变形程度超过了材料的断裂应变,则切屑将自行折断。
但多数情况下,只靠切削过程中的变形还不能使切屑折断,必须采用断屑器使切屑得到附加的二次变形。
在加工塑性材料时,为使切屑卷成螺旋形或折断成C形,使之易于排出和清理,常在前刀面上制成卷断屑槽。
卷断屑槽可作成直线圆弧型、直线型和全圆弧型三种。
直线圆弧型和直线型断屑槽适用于切削碳素钢、合金结构钢、工具钢等,γ=5︒~15︒。
直线圆弧型的槽底圆弧半径Rn和直线型的槽底角(180°-σ)较小时,切屑卷曲半径较小,切屑变形大,易于折断,但此时切屑易堵塞在槽内,会增大切削力,甚至造成崩刃。
一般取Rn=(0.4~0.7)Wn,(180°-σ)=110°~130°。
全圆弧型适用于切削紫铜、不锈钢等高塑性材料,γ可增大至25︒~30︒。
目前机夹可转位硬质合金刀片压制有各种形状及尺寸的断屑槽,可供不同切削情况下选用。
第二节后角及后刀面形状的选择一、后角的功用及合理后角后角的作用主要是:减小后面与过渡表面和已加工表面之间的摩擦;影响楔角β的大小,从而可配合前角调整切削刃的锋利程度和强度。
对刀具耐用度和加工表面质量有很大影响。
适当增大后角可提高刀具耐用度.这是因为;✧增大后角时能减小已加工表面弹性恢复层△h与后面的摩擦面积,从而减小后面摩擦与磨损。
✧后角增大,楔角则减小,刀刃钝圆半径可以减小,切削刃锋利,刀刃易切入工件,可减小工件表面的弹性恢复。
✧在一定的后刀面磨损量VB下,后角较大时,所允许磨去的金属体积较大。
但后角过大时,将使楔角且过小,削弱切削刃强度,减小散热体积而使刀具耐用度降低。
所以,在一定条件下,后角也有一个对应于最高刀具寿命的合理数值。