变频器谐波干扰的解决方法
变频器谐波干扰485通讯现象

变频器谐波干扰485通讯现象近年来,随着工业自动化的快速发展,变频器作为一种重要的电力调节设备,被广泛应用于各个行业。
然而,随之而来的问题也逐渐显现出来,其中之一就是变频器谐波干扰485通讯现象。
485通讯是一种常用的工业通讯协议,具有传输距离远、抗干扰能力强等优点,因此在工业自动化领域得到广泛应用。
然而,由于变频器的工作原理,会产生大量的谐波干扰信号,这些信号会对485通讯造成干扰,导致通讯质量下降甚至中断。
变频器谐波干扰485通讯的原因主要有两个方面。
首先,变频器内部的电子元件和电路会产生谐波信号,这些信号会通过电源线、信号线等途径传播出去,进而干扰到485通讯线路。
其次,变频器的工作频率通常较高,这也增加了谐波干扰的可能性。
变频器谐波干扰485通讯的表现形式多种多样。
一方面,通讯质量下降,数据传输速率变慢,甚至出现数据丢失的情况。
另一方面,通讯线路上会出现噪声,干扰其他设备的正常工作。
此外,谐波干扰还可能导致通讯设备的故障,甚至损坏设备。
为了解决变频器谐波干扰485通讯的问题,可以采取以下几种措施。
首先,可以在变频器的输入端安装滤波器,用于抑制谐波信号的产生。
其次,可以在485通讯线路上安装屏蔽罩,减少谐波信号的干扰。
此外,还可以采用光电隔离等技术手段,将变频器和485通讯设备进行隔离,避免谐波干扰的传播。
除了以上措施,还需要加强对变频器的设计和制造过程的控制。
在设计变频器时,应尽量减少谐波信号的产生,采用合适的电子元件和电路结构。
在制造过程中,应严格控制产品质量,确保变频器的工作稳定性和可靠性。
总之,变频器谐波干扰485通讯是一个需要引起重视的问题。
只有通过合理的措施和技术手段,才能有效地解决这一问题,保证工业自动化系统的正常运行。
同时,也需要加强对变频器的研究和开发,提高其抗干扰能力,为工业自动化的发展做出贡献。
变频器谐波治理方案

变频器谐波治理方案变频器是现代电力传动系统中的核心,其优点包括高效率、低噪声、易于控制和维护。
然而,变频器也会产生谐波,这会给电力系统带来一些问题,如加剧电网电压畸变、损坏设备等。
因此,需要制定一些变频器谐波治理方案来解决这些问题。
第一种谐波治理方案是使用谐波滤波器。
这种方法是通过添加一个LC谐波滤波器来滤除变频器产生的谐波。
通过选用合适的谐波滤波器,可以有效地减少电网的谐波含量,从而达到谐波治理的目的。
然而,谐波滤波器的成本较高,其安装和调试也相对复杂,需要专业的工程师来完成。
第二种谐波治理方案是使用变频器自带的谐波控制技术。
现代变频器通常都具有谐波控制技术,可以通过自带的谐波控制回路来降低谐波含量。
这种方法不需要额外的滤波器,可以减少成本和安装难度。
但需要注意的是,这种方法只适用于小功率的变频器,对于大功率的变频器,谐波控制技术并不是非常有效。
第三种谐波治理方案是使用多电平变频器。
多电平变频器通过使用多级电路来减少谐波含量。
这种方法可以有效地降低谐波含量,并且具有较低的电磁干扰和噪声。
然而,多电平变频器的成本和体积都相对较大,需要更高的设计和维护技术。
第四种谐波治理方案是采用无谐波变频器。
无谐波变频器通过使用原理与多电平变频器相似的PWM调制技术来消除谐波。
这种方法可以有效地消除谐波含量,并且不需要使用谐波滤波器或谐波控制技术。
但需要注意的是,无谐波变频器通常成本较高。
综上所述,针对变频器产生的谐波问题,我们有多种谐波治理方案可供选择。
具体选用哪种方案需要根据不同的应用场合和需求综合考虑。
无论选择何种方法,都需要确保谐波含量在电网允许范围内,并且满足国家相关标准和法规的要求。
变频器谐波问题干扰范围及处理方法

变频器常见谐波问题以及解决方法变频器常见谐波问题以及解决方法在现代化港口、矿井、运输港的建设中,变频软启动渐渐替代机械软启动,如常规液力耦合器,CST液力软启动,成为市场主流,其主要原因为可控性高,精度强。
变频器在使用过程中也会相应的出现自己的问题,重点介绍下在现场安装中变频器谐波问题以及处理办法。
就矿井使用的变频器而言,非下运皮带大都使用二象限的,因不需要对电网进行电能反馈,下运皮带在运行以后对电网进行电能反馈,既逆向输送电力,而非使用电力,四象限变频器就是除了正反转外还能控制,实现能量反馈回电网的变频器。
2象限指的就是普通的控制速度的变频器。
内部除了控制方式不同外,硬件方面主要就是4个象限变频器整流和逆变电路都使用可双向导通的半导体元件,一般是IGBT。
而2象限的整流部分一般是晶闸管或二极管。
而就谐波问题而言,问题重点出现在四象限变频器,因产生的奇数次谐波较强,且干扰问题严重,频器正常工作中,由于变频器高次谐波的影响引发控制电路发生串联谐振,造成系统电源故障,就功率等级而言,75KW以上四象限变频器因考虑进行谐波治理,而二象限变频功率在100KW以下可以进行常规处理即可。
在变频器使用过程中,经常出现误指示、乱码等情况;变频器停止工作时系统完全恢复正常。
很明显这是由于变频器高次谐波分量对电源的干扰造成的,通常,对此最为行之有效的办法就是对控制电路的供电电源加装电源滤波器。
在加装市售的通用电源滤波器后,系统恢复了正常,但是随之又有新的问题出现了,控制电路中的熔断器频繁熔断。
停电后对电路进行检查,经现场详细观察发现,在系统逐渐升速过程中,变频器运行输出在某个频段之间时频繁发生短路故障。
而且,将变频器的负载(电动机)断开后,该故障现象仍频繁出现,在去掉电源滤波器后该故障消失。
因此,首先对该滤波器进行了检查,拆开后发现滤波器采用的是常见的π型滤波。
检查发现电源滤波器本身没有任何故障,进一步分析变频器的工作原理可知,在交-直-交型变频器中,电网通过三相整流桥给变频器供电,供电电流利用傅立叶级数可以分解为包含基波和6K±1次谐波(K=1,2,3…)分量等一系列谐波分量,谐波含量随进线电抗和和直流滤波电抗的电感量增加而减少。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言随着现代工业的发展,变频器作为一种重要的电力调节设备,在工业生产中得到广泛应用。
然而,变频器在工作过程中会产生一定的电磁干扰,给周围的电子设备和系统带来不利影响。
本文将详细介绍变频器产生的干扰原因及解决方案。
二、变频器产生的干扰原因1. 高频噪声:变频器内部的开关器件工作频率较高,会产生高频噪声,对周围的电子设备造成干扰。
2. 电磁辐射:变频器在工作时会产生电磁辐射,这种辐射会干扰周围的电子设备的正常工作。
3. 电源谐波:变频器的输入端需要接入电源,其工作过程中会产生电源谐波,对电网和其他设备造成干扰。
4. 地线干扰:变频器的接地电流会通过接地线路传播,对周围的设备产生干扰。
三、解决方案1. 电磁屏蔽:在变频器周围设置电磁屏蔽罩,有效阻挡变频器产生的电磁辐射,减少对周围设备的干扰。
2. 滤波器:通过在变频器输入端安装滤波器,可以有效抑制电源谐波,减少对电网和其他设备的干扰。
3. 线缆绝缘:使用具有良好绝缘性能的线缆,可以减少变频器产生的地线干扰,保护周围设备的正常工作。
4. 接地措施:合理设置变频器的接地电流路径,避免接地电流通过其他设备产生干扰,同时保证变频器的接地电阻符合要求。
5. 滤波电容器:在变频器输出端并联安装滤波电容器,可以有效吸收高频噪声,减少对周围设备的干扰。
6. 屏蔽电缆:使用屏蔽电缆连接变频器和其他设备,可以有效防止电磁干扰的传播。
四、结论变频器作为一种重要的电力调节设备,在工业生产中发挥着重要作用。
然而,变频器产生的干扰问题也不可忽视。
通过采取合适的解决方案,如电磁屏蔽、滤波器、线缆绝缘等措施,可以有效降低变频器产生的干扰,保证周围设备的正常工作。
在今后的工程实践中,应根据具体情况选择合适的解决方案,确保变频器的稳定运行和周围设备的正常工作。
变频器干扰现象怎么破?四大方法助你轻松解决!

变频器⼲扰现象怎么破?四⼤⽅法助你轻松解决!在⽇常的⼯作中,变频器⼲扰问题⼀直很让⼈头痛,⽽且⼲扰严重时甚⾄会导致控制系统⽆法投⼊使⽤。
因此,今天⼩编想和⼤家聊聊的就是怎么解决变频器的⼲扰问题。
⼀变频器⼲扰的常见现象1.换热站变频器⼀开,压⼒变送器就乱跳;2.⽤变频器控制供⽔当中,压变作为采集压⼒的信号,压变受变频器⼲扰;3.当变频器启动电机时,压变信号不稳,跳动厉害;4.压变(4-20mA)在变频器启动后乱跳,⽽附近的⼀体化热电阻(4- 20mA)却不受影响,信号线都没有屏蔽;出现这些现象,都是由于受到了变频器的⼲扰。
⼆为什么变频器会产⽣⼲扰?⾸先,⼤家应该知道变频器是⽤来改变频率的。
变频器包括整流电路和逆变电路,输⼊的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。
⽤这个PWM电压驱动电机,就可以起到调整电机⼒矩和速度的⽬的。
这种⼯作原理会导致以下三种电磁⼲扰:1、谐波⼲扰整流电路会产⽣谐波电流,这种谐波电流在供电系统的阻抗上产⽣电压降,导致电压波型发⽣畸变,这种畸变的电压对于许多仪表形成⼲扰,常见的电压畸变是正弦波的顶部变平。
谐波电流⼀定时,电压畸变在弱电源的情况下更加严重,这种⼲扰的特征是会对使⽤同⼀个电⽹的设备形成⼲扰,⽽与设备与变频器之间的距离⽆关。
2、射频传导发射⼲扰由于负载电压为脉冲状,因此变频器从电⽹吸取电流也是脉冲状,这种脉冲电流中包含了⼤量的⾼频成分,形成射频⼲扰,这种⼲扰的特征是会对使⽤同⼀个电⽹的仪表形成⼲扰,⽽与仪表与变频器之间的距离⽆关。
3、射频辐射⼲扰射频辐射⼲扰来⾃变频器的输⼊电缆和输出电缆。
变频器的输⼊输出电缆上有射频⼲扰电流时,由于电缆相当于天线,必然会产⽣电磁波辐射,产⽣辐射⼲扰。
变频器输出电缆上传输的PWM电压,同样包含丰富的⾼频的成分,会产⽣电磁波辐射,形成辐射⼲扰。
辐射⼲扰的特征是,当其他电⼦设备靠近变频器时,⼲扰现象变得严重。
变频器的谐波干扰与抑制及参数设定

变频器的谐波干扰与抑制变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其他邻近电气设备。
在实际使用过程中,经常遇到变频器谐波干扰问题,下面简单介绍谐波产生的机理、传播途径及有效抑制干扰的方法。
1.变频器谐波产生机理变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。
在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。
在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。
同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。
另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。
2.抑制谐波干扰常用的方法谐波的传播途径是传导和辐射,解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离;解决辐射干扰就是对辐射源或被干扰的线路进行屏蔽。
具体常用方法:(1)变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流。
(2)在变频器输入侧与输出侧串接合适的电抗器,或安装谐波滤波器,滤波器的组成必须是LC型,吸收谐波和增大电源或负载的阻抗,达到抑制谐波的目的。
(3)电动机和变频器之间电缆应穿钢管敷设或用铠装电缆,并与其他弱电信号在不同的电缆沟分别敷设,避免辐射干扰。
(4)信号线采用屏蔽线,且布线时与变频器主回路控制线错开一定距离(至少20cm以上),切断辐射干扰。
(5)变频器使用专用接地线,且用粗短线接地,邻近其他电器设备的地线必须与变频器配线分开,使用短线。
变频器谐波干扰485通讯现象

变频器谐波干扰485通讯现象引言:随着电力系统的不断发展,变频器在工业控制系统中起着越来越重要的作用。
通过控制交流电机的转速,变频器可以大大提高系统的效率和精度。
然而,随之而来的问题是变频器发出的谐波信号对485通讯线路造成了干扰,导致通讯信号的失真和不稳定。
本文将对变频器谐波干扰485通讯现象进行深入探讨,并提出相应的解决方案。
一、变频器谐波干扰对485通讯的影响1.信号失真变频器发出的谐波信号会在485通讯线路中产生干扰,导致通讯信号的波形失真。
这种失真会使得接收端难以正确解析发送端发出的数据,从而影响整个通讯系统的稳定性和可靠性。
2.通讯中断谐波干扰会导致485通讯线路的信号严重受损,甚至在严重情况下造成通讯中断。
一旦通讯中断发生,工业控制系统将无法正常工作,严重影响生产效率和质量。
3.通讯距离受限变频器谐波干扰会缩短485通讯线路的传输距离,限制了通讯系统的覆盖范围。
这对于大型工业生产线或设备间的远距离通讯将会带来严重的问题。
二、变频器谐波干扰的原因1.变频器本身的设计问题部分变频器在设计上未考虑到谐波干扰对通讯线路的影响,没有采取有效的措施来减少谐波干扰的产生。
这导致了变频器在运行时产生大量的谐波信号,严重干扰了通讯线路。
2.通讯线路的抗干扰能力不足部分485通讯线路的抗干扰能力比较弱,无法有效抵御变频器发出的谐波信号,导致谐波干扰对通讯线路的影响更加明显。
三、解决方案1.优化变频器设计变频器制造商在设计变频器时应考虑到谐波干扰对通讯线路的影响,采取有效的措施来减少谐波信号的产生。
比如在变频器输出端安装滤波器,通过滤除谐波信号来减少对通讯线路的干扰。
2.加强通讯线路的抗干扰能力对485通讯线路进行改造,提高其抗干扰能力。
比如采用屏蔽线缆、安装干扰滤波器等措施,可以有效减少变频器谐波干扰对通讯线路的影响。
3.间隔设置在工业控制系统中,可以通过合理设置变频器和通讯设备之间的间隔距离,将变频器谐波干扰对通讯线路的影响降到最低。
变频器产生谐波的危害及解决方法

变频器产生谐波的危害及解决方法摘要:在交流变频调速方式中,变频器作为一种频率可变的交流电动机驱动器,因其节能效果明显、精度高、运行可靠、维护简单等优点,已经广泛应用于电力、机械、工业、生活等各个领域中。
但变频器主要组成器件是电力电子元件,具有非线性特性及其冲击性用电工作方式,会产生大量谐波,严重干扰电力系统,所以变频器谐波问题日益引起人们的关注。
关键词:变频器;谐波;危害变频器控制的系统具备精度高,运行可靠、调节方便、维护简单、网络化等优点,使得变频器在交流调速领域中得到了很大的发展,已经广泛应用于电力、工业、生活等各个领域。
但变频器的高频基波,高次谐波对电网和其他设备带来的干扰问题亦倍受关注。
一、变频器谐波产生的原因谐波产生的根本原因是由于变频器本身的高频基波所产生。
将直流电通过斩波的方式得到一组脉冲宽度和频率可调的方波脉冲串。
脉冲串的功率包络线近视于正弦波的波形,而基波的实质还是方波脉冲。
而方波是由无限次奇次谐波组成的。
谐波是正弦波,谐波频率是基波频率的奇数倍。
影响最严重的是3次5次7次9次谐波。
从结构组成上变频器可分为直接变频和间接变频两大类。
目前应用较多的还是间接变频器。
间接变频器主电路为交-直-交结构,经三相桥式不可控整流成直流电压,经滤波电容滤波及大功率晶体管开关元件逆变为频率可调的交流信号。
变频器就是利用这一原理将50Hz的工频交流电通过整流和逆变转换为频率可调的交流电源。
变频器输入部分为整流电路,输出部分为逆变电路,这些都是由电力电子非线性元件组成的,这些电力电子装置成为变频器最主要的谐波源。
因此在其开断过程中其输入端和输出端都会产生谐波。
二、谐波的危害一般来讲,变频器对容量相对较大的电力系统影响不很明显,而对容量小的系统,谐波产生的干扰就不可忽视,谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,给周围的通信系统和公用电网以外的设备带来危害。
谐波污染对电力系统的危害严重性主要表现在:1、谐波对供电线路产生了附加谐波损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器谐波干扰的解决方法
变频器以其节能显著,保护完善,控制性能好,使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流,怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成为我们关注的焦点。
近年来,随着我厂变频器投用量增多,变频设备干扰引起故障也在增多,电气设备出现的谐波干扰问题主要表现有以下几方面:(1)谐波干扰导致电力系统无功功率增大,造成功率因数明显降低;(2)现场电机受到变频谐波干扰引起电机噪声与振动增大,温度升高;(3)谐波干扰造成系统电缆故障率增多,绝缘老化,引起电缆对地故障;(4)谐波干扰引起断路器工作不稳定,引起开关误动作;(5)谐波干扰对通讯电路的干扰,引起联锁电路误动作等。
一、变频器的基本原理和电路组成变频器有主回路和辅助控制电路组成,其中主回路有整流模块、平波电容、滤波电容、逆变电路、限流电阻和接触器等元器件组成;辅助控制电路由驱动电路、保护信号检测电路、控制电路脉冲发生及信号处理电路等组成,如下为变频器逆变电路图。
这种电路特点是,电源采用三相电流全波整流,中间
直流环节的储能单元采用大容量电容作为储能元件,负载的无功功率将由它来缓冲。
由于大电容的作用,主电路的直流电压比较平稳。
然后经过 6 个功率管IGBT 进行信号调制,产生电动机端的电压为方波或波电流。
故称为电压型变频器。
现在普遍应用的都是电压型变频器。
二、变频器应用中的谐波干扰问题及危害谈到变频器的谐波干扰问题,首先要了解干扰的来源,变频器本身就是一种谐波干扰源,变频器谐波是由交流电整流电路和直流电转换为交流过程中产生的。
当电子元件IGBT 工作于开关模式作高速切换时,产生大量耦合性电磁电流。
因此变频器对电气系统内其它电子、电气设备来说是一个电磁干扰源。
在现实工作中,变频器产生的谐波电流从输出端经过电缆传导到电动机定子绕组上,造成电机铜损、铁损大幅增加。
致使电机无功损耗增大,温度升高,严重影响电机的运转特性;另一方面变频器输入回路产生的3 次谐波经过电源电缆影响到电力系统,它可在变压器内形成环流,造成变压器内部温度升高,影响变压器的使用效率;谐波干扰还会引起断路器保护电路检测产生误差,导致断路器误动,造成电气设备失电,严重影响装置生产;所以谐波污染对电气系统和电气设备的正常运行带来重要威胁。
三、变频器干扰信号传播方式
1、谐波信号电路传导方式
即谐波信号通过电源电缆的传播过程。
变频器的输入和输出电流中都含有很多高次谐波成分。
它经过电缆将高
次谐波信号向系统电源及负载传导,造成系统电源波形产
生畸变,从而影响系统内其他设备的正常工作。
2、谐波信号感应耦合方式
频器谐波的感应耦合方式,是当变频器的输入和输出线路与其它电气设备输出线路在电缆敷设时挨得很近时,
将引起变频器的高次谐波信号通过电缆感应的方式传播,
引起其它电气设备产生高次谐波干扰故障。
3、谐波信号辐射方式
即谐波信号以电磁波方式向空中辐射的过程,这是频率很高谐波分量的传播方式。
它对附近无线电设备产生干扰。
对通信、有线电视等信号回路产生杂音干扰,甚至造
成通信故障。
四、变频调速系统的抗干扰对策
根据变频器谐波干扰的基本原理,变频器形成电磁干扰须具备两个因素:一个是电磁干扰源、另一个是电磁干扰途径,为了防止电磁干扰,一般可以从这两个方面入手,采取有效抑制措施降低谐波对电气设备的干扰,从而保证电力系统的正常运行。
根据我厂电气系统频器谐波污染的问题,提出了如下相关整改措施:
1、在变频器输入和输出加装电抗器,滤除高次谐波信号对电气系统及现场电机的干扰
另外在电源系统加装无功集中补偿电容器组,补偿因变频引起的无功损耗,并提高了电源系统的功率因数,使电源系统提高功率因数达到0.98 以上。
2、选取双屏蔽电缆作为控制线,有效防止谐波信号感应干扰
其他设备的电源线和信号线与变频器电缆交叉敷设时,采用套镀锌管隔离并做好接地,其他设备的电源线和信号线应避免与变频器电缆平行敷设。
这样可减少干扰信号的感应传播。
3、采用变频器正确接地抑制外来干扰在实际应用中,有一部分变频器安装时,没有参照变频器说明书安装要求,在变频器安装时误把工作零线与系统保护接地线、控制系统屏蔽地线一起连接,造成变频系统工作不稳定。
所以正确接地是抑制变频器噪声干扰的重要措施。
2008 年,长丝车间增压泵电机夏季运行时,正常工作电动机负载电流为额定值90%,电机的温度高达78C,尽管引入了空调风强制冷却,效果仍不理想,后来经过分析,造成温度升高是由变频器谐波干扰引起的,变频器是以开关方式工作的,谐波干扰引起电机无功损耗增大,造成电机铜损和铁损增加,导致铁芯的涡流损耗增大,导致
电机温度升高。
根据故障原因,我们在变频器输出端加装
电抗器的方法达到了滤除谐波干扰的效果,电抗器的接入,有效抑制谐波污染,经过整改,电机负载温度回落到62C,电机运行平稳正常。
2008年至2010年间,我们先
后对长丝车间工艺空调、环境空调做相应的改造,效果明显。
经过实际应用,电气设备谐波干扰问题得到缓解。
电气设备的运行更加平稳可靠。
随着社会的发展,人们对变频器的使用越来越多,这对变频设备健康发展,以及电气系统的稳定运行具有重要意义。
目前有些公司已经研究出有源滤波器,并且在实践中取得明显效果,如果把这种技术应用到变频器上,那么变频器谐波干扰问题就能得到彻底解决。
我们相信满足实际需要的“绿色”变频器将会很
快出现,变频器的谐波干
扰问题一定会得到有效解决。
(作者单位:中国石化洛阳分公司聚酯管理部)。