材料失效分析案例分析..

合集下载

失效分析案例课件

失效分析案例课件
• 未发现脆性解理断裂的形貌特征。
图10 裂纹源扫描电镜照片ppt精选版
14
2.3 结果分析
• 塔架用钢的材料组织状态正常, 母材常温拉伸与低温冲击试验结果 表明, 材料的塑性储备良好, 在-40℃以上没有出现冷脆开裂的现象 及风险。
• 根据宏观分析和微观分析找到了塔架焊缝开裂的裂纹源——近表面 的、深约2mm的焊接缺陷。
8
2.2 断口形貌
1.宏观形貌分析
图4 塔筒内部裂纹宏观形貌照片
失效风电塔架的塔筒内部裂纹宏观形貌: 裂纹的早期扩展阶段,裂纹扩展平稳,属于慢应变速率条件下的宏观
脆性断裂。(图4上) 裂纹扩展的末期(即裂纹末端),裂纹起伏台阶特征明显,表明裂纹
扩展进入复杂应力区,p但pt精尚选未版 进入失稳快速扩展阶段。(图4下)9
断口的近表面层发现存在40-50μm深 的全屈服变形层变形层与基体交 界面部分出现平直细小的类似解 理裂纹。
图7 裂纹微观形貌照片 ppt精选版
12
2.微观形扫描电镜照片
(2)断口的扫描电镜分析
失效主裂纹在焊缝的一侧(图 8), 金相裂纹两边存在一个约4050μm的变形组织, 变形层下有显微 开裂, 这些开裂与多次反复挤压变形 有关。
风电塔架的失效分析
ppt精选版
1
失效分析思路
• 调查收集背景资料 • 试样检验分析: 材料的化学成分,金相组织,力学性能等 • 深入分析: 断口的宏观及微观形貌分析,无损探伤检查等 • 综合分析归纳,确定失效原因 • 结论 • 改进措施
ppt精选版
2
目录
1
概况
2
失效分析
3
改进措施
ppt精选版
Contents
1.宏观形貌分析

金属材料失效分析案例PPT

金属材料失效分析案例PPT

04
案例四:金属材料脆性断裂 失效
失效现象描述
金属材料在无明显塑性变形的情况下 突然断裂,断口平齐,呈脆性断裂特 征。
断裂发生时,材料内部存在大量微裂 纹和空洞。
断裂前材料未出现明显的塑性变形, 无明显屈服现象。
失效原因分析
材料内部存在缺陷,如微裂纹、夹杂物等,降低 了材料的韧性。
金属材料在加工过程中受到较大的应力集中,如 切割、打孔等操作,导致材料内部产生微裂纹。
失效机理探讨
电化学腐蚀
金属材料与腐蚀介质发生 电化学反应,导致表面氧 化或溶解。
应力腐蚀
金属材料在应力和腐蚀介 质的共同作用下发生脆性 断裂。
疲劳腐蚀
金属材料在交变应力和腐 蚀介质的共同作用下发生 疲劳断裂。
03
案例三:金属材料热疲劳失 效
失效现象描述
金属材料表面出现裂 纹
疲劳断裂,即在交变 应力的作用下发生的 断裂
02
疲劳断裂通常发生在应力集中的 部位,如缺口、裂纹或表面损伤 处。
失效原因分析
金属材料在循环应力作用下,微观结 构中产生微裂纹并逐渐扩展,最终导 致断裂。
应力集中、材料内部缺陷或表面损伤 等因素可加速疲劳裂纹的萌生和扩展 。
失效机理探讨
金属疲劳断裂是一个复杂的过程,涉及微观结构、应力分布、材料缺陷等多个因素。
应力腐蚀开裂
在腐蚀介质和应力的共同作用下,焊接接头 处发生应力腐蚀开裂,裂纹扩展导致断裂。
感谢您的观看
THANKS
金属材料在低温环境下工作,材料的韧性下降, 容易发生脆性断裂。
失效机理探讨
金属材料的脆性断裂通常是由 于材料内部存在缺陷或应力集 中导致的微裂纹扩展。
在低温环境下,金属材料的韧 性下降,容易发生脆性断裂。

失效案例分析

失效案例分析

30
15
b.氢致开裂(HIC)
在钢的内部发生氢鼓 泡区域,当氢的压力 继续增高时,小的鼓 泡裂纹趋向于相互连 接,形成有阶梯特征 的氢致开裂。氢致开 裂发生不需要外加应 力(载荷应力、残余 应力),故从概念讲 不属于应力腐蚀破坏 范畴。
31
32
16
33
c.硫化物应力腐蚀开裂(SSCC)
• 硫化氢在液相水中,由于电化学的作用,在阴极反应时生成氢 原子渗透到钢的内部,溶解于晶格中,导致脆性增加(氢原子 渗透到钢的内部晶格,在亲和力的作用下生成氢分子,钢材晶 格发生变形,材料韧性下降,脆性增加),在外加拉应力或残 余应力的作用下形成开裂。
2、焊接裂纹有不同的特性,要根据不同的裂纹产生机理 及形式选择检测的时机与方法,提高检验的有效性。
• 延迟裂纹 • 液化裂纹
3、对于易产生焊接裂纹的钢种,一旦发现裂纹,应扩大 检验比例。
11
案例1:反应流出物换热器管箱入口不锈钢法兰开裂
某石化炼油厂,2010年大修检验发现,反应流出物换热器管箱入口 不锈钢法兰开裂。 主要原因:
P≤0.008%、Mn≤1.30%,且应进行抗HIC性能试验或恒 负荷拉伸试验。
40
20
在湿硫化氢应力腐蚀环境中使用的其它材料制设备和管 道应符合下列要求:
铬钼钢制设备和管道热处理后母材和焊接接头的硬度应不 大于HB225(1Cr-0.5Mo、1.25Cr-0.5Mo)、HB235 (2.25Cr-1Mo、5Cr-1Mo)或HB248(9Cr-1Mo);
27
湿硫化氢环境分类(NACE 8X196) 一类:不选用抗HIC钢,可不做热处理 二类:可选抗HIC钢,要进行热处理 三类:选用抗HIC钢,要进行热处理

材料失效分析

材料失效分析
考虑采用更高级别的材料或热处理工艺 :以提高材料的力学性能和耐久性
16 -
谢谢欣赏
主讲:xxx
成分分析
通过能谱仪对断口表 面的成分进行了分析 。分析结果表明,断 口表面存在一定程度 的氧化和腐蚀现象, 但并未发现其他异常 元素
失效分析过程
失效分析过程
力学性能测试
为了评估材料的力学性能,对断裂的零部件 进行了拉伸、冲击和硬度测试。测试结果显 示,材料的强度和硬度均符合设计要求,但 冲击韧性较低。这表明材料对于冲击载荷的 抵抗能力较弱
CHAPTER 2
失效分析过程
失效分析过程
宏观检查
首先,对断裂的零部件进行了 宏观检查。观察断口的形貌和 分布,发现断裂起始于零件的 表面,并呈现出疲劳断裂的特 征。断口附近没有明显的塑性 变形,也未发现其他异常现象
微观结构分析
失效分析过程
为了进一步了解材料 的微观结构,对断口 附近进行了金相显微 镜观察。结果显示, 断口附近的晶粒大小 不均匀,部分晶粒明 显粗大。同时,在断 口表面发现了一些微 小的夹杂物和裂纹
CHAPTER 4
改进建议
改进建议
根据上述分析结果,提出以下改进建议
对材料的制造过程进行严格控制:确保 晶粒大小均匀,减少微观结构的不均匀 性
加强表面处理工艺:减少表面夹杂物和 对冲击载荷的抵抗能力
对零件的设计进行重新评估:降低工作 应力,提高零件的实际使用寿命
失效分析过程
有限元分析
为了更好地了解零件的工作应力 分布和疲劳寿命,对零部件进行 了有限元分析。分析结果表明, 在正常工作条件下,零件的应力 分布较为均匀,但某些局部区域 存在较高的应力集中。此外,根 据疲劳寿命预测,该零件的疲劳 寿命应该远大于其实际工作时间

失效分析典型案例分享--镍腐蚀

失效分析典型案例分享--镍腐蚀
先在电路板裸铜表 面反应沉积形成一 层含磷7-11%的镍 镀层,厚度约35um,再于镍表面 置换一层厚度约 0.05-0.15um的纯金 层。
沉锡
沉银
无铅喷锡
(Immersion Tin) (Immersion silver) (Lead free HASL)
OSP
在电路板裸铜表面 在电路板裸铜表 在电路板裸铜表 在电路板裸铜表面 沉积形成一层平整 面经化学置换反 面经化学置换反 经热风整平形成一 而致密的有机覆盖 应形成一层洁白 应形成一层洁白 层较光亮而致密的 层,厚度约0.2而致密的锡镀层, 而致密的银镀层, 无铅覆盖锡合金层, 0.6um,既可保护 厚度约0.7-1.2um。 厚度约0.15-0.4um。 厚度约1-40um。 铜面,又可保证焊
表面易被污染而 影响焊接性能
表面易被污染,银 面容易变色,从而 影响焊接性能和外 观
表面处理温度高, 可能会影响板材和 阻焊油墨的性能
表面在保存环境差 的情况下易出现 OSP膜变色,焊接 不良等
电镍金后还经 过多道后工序, 表面处理后若 受到污染易产 生焊接不良
成本很高
完成沉锡表面处 理后如再受到高 温烘板或停放时 间较长,则可导 致沉锡层的减少
u
Pu
Pu
Pu
P uP
Pu P
uP
Pu P
u
u
Ni
Ni P
Ni
Ni
Ni
P
Ni
Ni
Ni P
Ni Ni
Ni P
Ni
Ni
Ni
P
Ni
富磷层
Ni
Ni P
Ni
Ni
Ni P
Ni
Ni
Ni

材料失效分析

材料失效分析

材料失效分析材料失效分析指的是对材料在使用过程中发生失效的原因进行分析研究。

材料失效分析的目的是为了找出失效的根本原因,并采取相应的措施,以避免类似的失效再次发生。

本文将对材料失效分析的方法、步骤和案例进行探讨。

材料失效分析的方法主要包括观察、实验和理论分析。

观察是通过对失效材料的外观进行细致观察,寻找异常的现象或特征,以确定失效的类型和程度。

实验是通过对失效材料进行性能测试,比如强度测试、硬度测试、断裂韧度测试等,以确定失效的原因和机制。

理论分析是通过对材料的结构、组成和使用条件等方面进行分析,以确定失效的根本原因。

材料失效分析的步骤包括采集失效材料样品、外观观察、性能测试、理论分析和结论总结。

首先,需要采集失效材料的样品,并进行标记和记录,以便后续的观察和测试。

然后,通过对失效材料的外观进行观察,寻找异常的现象或特征。

接下来,对失效材料进行性能测试,以确定失效的原因和机制。

在进行性能测试时,可以使用一些常见的测试方法,比如拉伸试验、冲击试验、疲劳试验等。

同时,还可以进行显微结构观察和化学分析,以进一步确定失效原因。

最后,根据观察和测试结果,结合理论分析,得出失效的根本原因,并提出相应的改进措施或预防措施。

以下是一个材料失效分析的案例:某企业生产的铝合金产品在使用过程中出现断裂失效的问题。

首先,对失效的产品进行了观察,发现断裂面上存在明显的晶粒沿晶断裂和脆性断口;然后,对失效产品进行了拉伸试验,发现其强度和韧性均明显低于设计要求;接着,通过金相显微结构观察和化学分析,发现材料中存在夹杂物和析出物,并且晶粒有明显的不均匀性。

综合观察和测试结果,并结合理论分析,得出了以下结论:失效的原因是材料中的夹杂物和析出物导致了晶粒的不均匀性,从而降低了材料的强度和韧性。

为了解决这个问题,可以采取以下措施:提高熔炼过程的质量控制,减少夹杂物和析出物的含量;优化热处理工艺,改善晶粒的均匀性;加强材料的检验和品质管理,确保产品的质量符合设计要求。

金属材料失效分析案例

金属材料失效分析案例
精品文档
3 分析
(1)断裂叶片的金相组织为正常的回火索氏体,材料化学成分 合格,主要性能指标也基本正常。
(2)叶片断裂部位在倒*形槽根部的横断面上,亦即在应力集 中部位,是裂纹源萌生地,断口具有典型的疲劳断裂特征, 裂纹扩展属穿晶走向。
精品文档
(3)叶片根部疲劳断裂与装配质量有关,高压转子叶片安 装时通常要求根部紧配合,但裂断的第+级叶片根部却是 松配合,遂导致叶片在运行过程中产生振动并传至根部, 根部与叶轮槽表面产生摩擦,从而使根部表层晶粒持续滑 移带极易萌生裂纹,即产生疲劳源,随后裂纹不断扩展, 最终造成根部疲劳断裂。
疲劳断裂。
精品文档
材料失效分析
班级:XXX 组员:XXX
精品文档
案例 漳平电厂1号机叶片断裂失效分析
1、背景
2 检查、试验
2.1宏观检查2Biblioteka 2 断口微观检查2.3化学成分
2.4硬度测试
2.5 冲击试验
2.6 金相检查
3 分析
4 结论
精品文档
1、背景 漳平电厂1号机系北京重型电机厂制造的冲动凝汽 式汽轮机,其高压转子第8级叶片材料为2Cr13。1998年4月 大修揭盖后发现该级叶片有一段围带残缺约10cm长,有一 个叶片在根部断裂丢失,部分围带铆钉头有弹起现象。修 复工作由电厂委托北京重型电机厂进行,其修复过程为: 拆除5段围带及43片叶片,更换断裂和受损的2个叶片及损 坏的2段围带,复装后叶片与围带采用焊接固定,并对2段 围带铆钉头弹起的部位进行打磨后焊补,修后机组恢复运 行。2000年5月7日,汽轮机出现异常响声,且振动不断加 剧,揭缸后发现高压转子第8级叶片丢落19个,部分围带脱 落,第9级叶片及8、9、10级部分隔板磨损变形。对照1998 年4月大修记录,发现此次丢落的19个叶片大部分为当时修 复处理过的叶片。由于此次叶片断裂事故对转子损伤较为 严重,故把整个转子送到制造厂修复。为了找出叶片断裂 的原因,我们开展了一系列精的品文失档 效分析工作。

MLCC失效分析全面案例课件

MLCC失效分析全面案例课件

全面的M1CC失效分析案例课件Q:M1CC电容是什么结构的呢?A:多层陶瓷电容器是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极)制成的电容。

TerminationsM1CC电容特点:机械强度:硬而脆,这是陶瓷材料的机械强度特点。

热脆性:M1eC内部应力很复杂,所以耐温度冲击的能力很有限。

Q:M1CC电容常见失效模式有哪些?A:焊接锡量不当r组装缺陷《[墓碑效应多层陶瓷J (陶瓷介质内空洞电容器缺陷]f内在因素«电极内部分层I本体缺陷1浆料堆积(机械应力【外在因素《热应力I电应力Q:怎么区分不同原因的缺陷呢?有什么预防措施呢?当温度发生变化时,过量的焊锡在贴片电容上产生很高的张力,会使电容内部断裂或者电容器脱帽,裂纹一般发生在焊锡少的一侧;焊锡量过少会造成焊接强度不足,电容从PCB板上脱离,造成开路故障。

2、墓碑效应(d)Norma1图3墓碑效应示意图在回流焊过程中,贴片元件两端电极受到焊锡融化后的表面张力不平衡会产生转动力矩,将元件一端拉偏形成虚焊,转动力矩较大时元件一端会被拉起,形成墓碑效应。

原因:本身两端电极尺寸差异较大;锡镀层不均匀;PCB板焊盘大小不等、有污物或水分、氧化以及焊盘有埋孔;锡膏粘度过高,锡粉氧化。

措施:①焊接之前对PCB板进行清洗烘干,去除表面污物及水分;②进行焊前检查,确认左右焊盘尺寸相同;③锡膏放置时间不能过长,焊接前需进行充分的搅拌。

本体缺陷一内在因素1、陶瓷介质内空洞图4陶瓷介质空洞图原因:①介质膜片表面吸附有杂质;②电极印刷过程中混入杂质;③内电极浆料混有杂质或有机物的分散不均匀。

2、电极内部分层图5电极内部分层原因:多层陶瓷电容器的烧结为多层材料堆叠共烧。

瓷膜与内浆在排胶和烧结过程中的收缩率不同,在烧结成瓷过程中,芯片内部产生应力,使M1CC产生再分层。

预防措施:在M1CC的制作中,采用与瓷粉匹配更好的内浆,可以降低分层开裂的风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条横向贯穿模具。根据裂纹的位置和方 向,可以判断横穿整个模具的较长的一
条裂纹最先形成,阻止了较短一条裂纹
向前扩展,故较长的为主裂纹,较短的 为次裂纹。断 Nhomakorabea微观形貌
从图中解理台阶及解理扇形花样可以判断该失效模具钢的
断裂机制为解理断裂。
④失效模具微观形貌
对失效模具切割、取样,进行金相制样,用4%硝酸酒精 腐蚀后观察其显微组织如图,从图中可看出失效模具钢中存 在块状的不均匀组织。
处理( 球化退火) 不良所致,这也是造成该模具失效的最重要
原因。
该失效模具宏观上以劈裂的形式断开,断口呈现明显的人
字条纹及放射线花样,表明裂纹的扩展是不稳定的、快速的;
微观上可见解理台阶和解理扇形花样,具有解理断裂的典型 特征。由此判断其失效形式为脆性断裂,失效机制为解理断 裂。
结论
汽车曲轴热锻模具所用H13钢化学成分与标准中规定的合
H13钢热锻模具早期失效分析
材料科学与工程1101
xxxx
xxxx
背景
检验内容及结果 讨论 结论
背景
检验内容
①原材料化学成分 ②硬度测定 ③断口形貌 1)宏观检查 2)微观检查 ④显微组织分析
①原材料化学成分
从模具的裂纹源附近提取样品,用碳硫分析仪及等离子体光
谱仪进行模具材料的化学成分分析,结果如下:
S 0.005 0.013 ≤ 0. 03
与标准规定的化学成分相比,模具的化学成分中V 含量低于
标准含量的下限成分,而Si含量处于标准含量的上限。
②硬度检测
测量部位 裂纹附近 模具芯部 模具表面 硬度值/HRC 45 45.5 45.5
由表可得,模具钢各部位的硬度基本均匀一致。 取部分失效模具试样进行冲击试验,不同试样的平均冲击韧度α KV 仅为4. 76 J /cm2,远低于常规H13 钢在室温时冲击韧度( 一般应达到 25 ~35 J /cm2 )
a) 纵截面
b) 横截面
讨论
从合金元素的分析结果来看,H13模具钢中Si含量偏高而
V含量偏低。由于汽车曲轴的锻造过程中,模具温度可能远
超过500 ℃,过高的Si含量将促进回火过程中晶间碳化物粗 化,恶化钢的抗热疲劳性能。因此,这是造成H13模具早期 失效的重要原因之一。
由失效模具微观形貌可知,该模具钢的锻后退火态存在大 块不均匀组织,可以推断,这是由于模具钢的锻造及预备热
测量位置 C Si Mn Cr Mo V P 模具基体 0.412 1.13 0.371 4.77 1.54 0.791 0.025 裂纹附近 0.483 1.21 0.365 4.75 1.5 0.452 0.025 标准值(GB/T 1299—2000) 0.32~0.45 0.80~1.20 0.20~0.50 4.75~5.50 1.10~1.75 0.80~1.20 ≤0.03
平均值 45.5
试样编号 冲击韧度值( J/cm2 )
1 5.05
2 3.75
3 5
4 4.75
5 5.25
平均值 4.76
③断口宏观形貌
模具的断裂失效部位形貌如图所示。
模具型腔未发现热磨损痕迹,没有明显
塑性变形发生,未发现龟裂,也未发现 加工刀痕的痕迹,失效模具呈现两条相
交的宏观裂纹,呈“T”字型,其中一
金元素含量相比,其裂纹源附近的V含量偏低,而Si含量偏
高。无论是锻后退火态,或者是最终热处理态的模具钢中都 存在带状组织和块状组织,表明该模具钢中的化学成分和显
微组织不均匀,致使模具的力学性能尤其是冲击韧度降低,
是造成模具早期失效的主要原因。
谢谢!
相关文档
最新文档