RFID简介
射频识别rfid简介介绍

RFID系统由标签和阅读器两部分组成。标签由天线和芯片组成,存储着物体的标识信息。阅读器通过 天线发送射频信号,与标签进行通信,获取标签中的信息,并将信息传输到计算机系统进行处理。
RFID技术的历史与发展
起源
RFID技术最早起源于二战时期, 用于识别飞行中的友军飞机。
早期发展
20世纪60年代,RFID技术开始应 用于商业领域,如超市的商品防 盗系统。
非法跟踪
不法分子可以利用RFID技术追踪特定目标,侵犯个人隐私 。
恶意干扰
攻击者可以通过干扰RFID通信,导致标签无法正常工作或 篡改数据。
解决方案
加密技术
访问控制
对RFID标签中的敏感数据进行加密处理, 确保数据在传输和存储过程中的安全性。
限制对RFID标签的访问权限,只有授权人 员才能读取或修改标签数据。
THANKS
谢谢您的观看
药品管理与追溯
通过RFID技术,可以实现药品的追溯和管理,提高药品安全性 和监管效率。
身份识别与门禁控制
快速身份验证
RFID技术可以实现快速、准确的身份验证,提高安全性和通行效 率。
门禁控制与管理
通过RFID技术,可以实现门禁控制和管理,确保特定区域的安全 访问。
数据安全与隐私保护
在身份识别与门禁控制应用中,需注意数据安全和隐私保护问题, 确保个人信息不被泄露和滥用。
03
RFID系统的组成
RFID标签
01
02
03
标签类型
RFID标签分为被动式、主 动式和半主动式三种类型 ,其中被动式标签应用最 为广泛。
标签结构
RFID标签由芯片和天线组 成,芯片负责存储和传输 数据,天线则负责接收和 发送信号。
简述RFID定义和工作原理

简述RFID定义和工作原理
RFID(Radio Frequency Identification)是一种无线射频识别技术,可用于在
短距离范围内识别和追踪标签中的信息。
RFID系统由读写器和标签组成,读写器
通过无线电信号与标签通信,从而读取或写入信息。
RFID的定义
RFID是一种识别技术,通过无线射频信号识别存储在标签中的信息。
标签可
以附着在物品上,如商品、动物或人员,使其可以被追踪和识别。
RFID技术是自
动识别技术中的一个重要分支,广泛应用于物流、仓储、支付系统等领域。
RFID的工作原理
1.标签传输信息:RFID标签中包含一个芯片和天线,芯片存储数据,
天线用于接收和发送信号。
当标签处在读写器的射频范围内,读写器发送信号激活标签,标签接收信号并回传存储在其中的信息。
2.读写器接收信息:读写器是RFID系统中的接收和发送设备,它通过
天线发送无线电信号与标签通信。
读写器接收从标签回传的信息并处理,通常与后台系统连接,以实现信息的获取和管理。
3.数据处理:读写器收到标签的数据后,会对数据进行解码和处理。
这包括验证标签的合法性、解析数据内容等操作,确保数据的准确性和可靠性。
4.信息应用:读写器处理完数据后,可以将信息发送到后台系统,或
直接用于控制设备、门禁系统等。
RFID技术可以实现物品跟踪、门禁管理、支付系统等多种应用。
总结
RFID技术通过无线射频识别实现对标签中信息的读取和写入,广泛应用于物
品追踪和管理中。
了解RFID的定义和工作原理有助于我们更好地理解这一技术的
应用范围和工作原理。
射频识别技术简介及应用领域

射频识别技术简介及应用领域射频识别技术(Radio Frequency Identification,简称RFID)是一种通过无线电波进行数据传输和识别的技术。
它由一个读取器(Reader)和一个或多个标签(Tag)组成。
标签内置有一个芯片和一个天线,能够接收和发送无线电信号。
读取器通过发送无线电波激活标签,并接收标签返回的数据。
这种技术已经在各个领域得到广泛应用。
首先,RFID技术在物流和供应链管理中起到了重要作用。
通过在物品上附着RFID标签,可以实现对物品的追踪和管理。
在仓库中,RFID标签可以帮助管理人员快速准确地找到特定的物品,提高了物流效率。
在供应链中,RFID技术可以实现对物品的溯源和监控,确保产品的质量和安全。
其次,RFID技术在零售业也有广泛的应用。
通过在商品上附着RFID标签,可以实现商品的自动识别和结算。
顾客只需将商品放入购物车,系统就能自动识别商品并计算价格,提高了购物的便利性和效率。
此外,RFID技术还可以用于反欺诈和防窃盗,帮助零售商提高安全性和盈利能力。
此外,RFID技术在智能交通领域也有广泛的应用。
通过在车辆上安装RFID标签,可以实现车辆的自动识别和通行费的自动扣费。
这种技术可以减少人工操作,提高通行效率。
此外,RFID技术还可以用于车辆的定位和追踪,帮助交通管理部门更好地管理和监控交通流量。
另外,RFID技术在医疗保健领域也有重要的应用。
通过在医疗设备和药品上附着RFID标签,可以实现对设备和药品的追踪和管理。
这有助于医疗机构提高设备的利用率和药品的安全性。
此外,RFID技术还可以用于病人的身份识别和病历管理,提高医疗服务的质量和效率。
最后,RFID技术在农业领域也有重要的应用。
通过在农产品上附着RFID标签,可以实现对农产品的追踪和溯源。
这有助于提高农产品的质量和安全性,并满足消费者对食品安全的需求。
此外,RFID技术还可以用于农业设备的管理和养殖动物的追踪,提高农业生产的效率和可持续发展。
rfid 名词解释

RFID名词解释一、引言无线射频识别(Radio Frequency Identification,简称RFID)是一种非接触式的自动识别技术,通过无线电波在一定距离内识别特定目标并读写相关数据。
RFID技术最早可追溯到20世纪30年代,但直到近年来,随着微电子技术、计算机技术、网络技术的飞速发展,RFID技术才得以广泛应用。
它无需直接接触或光学可视即可完成信息的输入和处理,被广泛应用于生产制造、物流管理、跟踪定位、门禁控制等众多领域。
二、RFID系统组成一个基本的RFID系统通常由三部分组成:标签(Tag)、阅读器(Reader)和天线(Antenna)。
1.标签(Tag):也被称为射频卡或智能标签,由耦合元件及芯片组成。
每个标签都有一个唯一的电子编码,用于存储数据。
标签通常附着在物品上以标识目标对象。
2.阅读器(Reader):用于读取和写入标签信息的设备。
阅读器通过天线与标签进行无线通信,将信号发送至标签并接收来自标签的应答信号。
3.天线(Antenna):用于传输射频信号的设备。
天线在阅读器和标签之间传递信号,使两者之间的通信成为可能。
三、RFID的工作原理RFID系统在工作时,阅读器通过天线发送射频信号,处于工作区域的标签接收到该信号后,凭借感应电流所获得的能量发送出存储在芯片中的信息,阅读器再通过天线接收并识别标签发送的信号,最后对接收到的信号进行处理以完成对目标对象的识别。
这一过程无需人工干预,可实现自动化快速识别。
四、RFID的优势RFID技术的优势主要表现在以下几个方面:1.快速扫描:RFID的读取速度极快,单个标签的读取速度可达到0.1秒甚至更快,可以实现批量识别和高速移动物体的识别。
2.远距离识别:在一定的距离范围内,RFID技术可以实现非接触式的远距离识别,无需直接接触或可视即可完成信息的读取。
3.环境适应性:RFID标签具有较强的环境适应性,可在各种恶劣环境下工作,如高温、低温、潮湿、污染等。
《RFID简介》课件

RFID的分类
RFID根据频率和工作模式的 不同可以分为不同类型,如 低频RFID、高频RFID和超高 频RFID等。
RFID的工作原理
1
RFID读写器与标签通讯原理
读写器向标签发出无线电信号,标签通过反射信号返回存储的数据给读写器,实 现信息的读取和写入。
RFID简介
RFID(Radio Frequency Identification)是一种无线通信技术,用于识别 和跟踪标签内的数据。它可以应用于各个领域,并具有广阔的发展前景。
什么是RFID
RFID的定义
RFID是一种通过无线电信号 进行自动识别和追踪的技术。 它由读写器和标签组成。
RFID的构成
2
RFID的频率和通信距离
RFID工作在不同的频段,距离和存取速度受到频率的影响。较低频率通常具有 较短的通信距离。
3
RFID的优缺点
RFID具有高效、自动化、非接触式等优点,但也存在着安全性和成本等缺点。
RFID的应用
物流领域的应用
RFID可以实现自动化的库存管理 和追踪货物的流动,提高物流效 率。
仓储管理的应用
车载应用的应用
通过RFID,可以实现库房自动化 管理、减少库存错误和提高效率。
பைடு நூலகம்
RFID技术可以实现车辆识别和控 制,提升车辆安全性和效率。
RFID的发展前景
1
RFID市场的发展趋势
随着物联网和自动化技术的发展,RFID市场将继续增长,并应用于更多领域。
2
RFID技术的发展方向
RFID技术将更加小型化、智能化,增加能源效率和安全性,提高通信距离和速 度。
rfid是什么技术

rfid是什么技术RFID是射频识别技术的简称,它是一种通过无线电波识别特定物体的技术。
RFID技术在各个领域都有广泛的应用,包括物流管理、智能交通、零售业、供应链管理等等。
本文将对RFID技术的原理、应用和未来发展进行介绍。
首先,RFID技术的原理是通过在被识别物体上植入一种微型芯片和天线,利用无线电波来感应和识别该芯片发出的信号。
这个芯片内部存储了物体的唯一标识码,可以理解为物体的身份证号码。
当RFID读写器(也称为RFID阅读器)靠近被识别物体时,会发送一定频率的无线电波去激活芯片,并读取芯片中存储的数据。
这样,就可以实现对物体的快速准确识别。
RFID技术的应用非常广泛。
在物流管理方面,RFID技术可以实现对货物的实时跟踪和定位,提高物流效率。
例如,利用RFID技术,可以实现实时盘点仓库中的货物,避免人工盘点的繁琐和错误。
在智能交通领域,RFID技术可以应用于收费系统和车辆管理。
通过在车牌或标签上植入RFID芯片,可以实现快速、无人工干预的收费系统,提高交通效率。
在零售业中,RFID技术可以应用于商品的库存管理和防盗系统。
通过将RFID标签植入商品,可以实现即时库存监控和自动结算。
RFID技术还可以应用于供应链管理,实现对物资和成品的全程追踪。
通过在物资上植入RFID芯片,可以实时监测物资的流向和状态,提高供应链的可视化和控制性。
此外,RFID技术还可以应用于身份认证、门禁系统和医疗健康等领域。
虽然RFID技术在许多领域取得了重要的进展,但仍然存在一些挑战和限制。
首先,RFID技术的成本较高,芯片和阅读器的价格较高,限制了其在大规模应用中的推广。
其次,RFID技术涉及到对个人隐私的管理和风险。
由于RFID技术可以实现对物体的实时跟踪和监控,人们对个人信息的保护提出了一定担忧。
同时,RFID技术也存在一定的技术难题,如阅读器的读取范围受限等。
在未来,RFID技术可能会迎来更广泛的应用和发展。
RFID介绍

一、RFID的定义射频识别技术,英文Radio Frequency Identification的缩写。
又称电子标签。
是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据。
二、RFID的发展历程[1] [2]RFID自二战时期最早应用于作战时辅助敌我识别之后主要经历了一下的发展阶段:表1:RFID的发展历程如今RFID技术逐渐由13.56MHz以下的低频段向技术更为复杂、应用更为丰富的中高频段发展,特别是近来860—960MHz的远距离技术的发展,使RFID 的市场应用逐渐普遍。
三、RFID的组成[2] [6]RFID系统由5部分组成:1.标签(Tag):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象.2.阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式.3.天线(Antenna):是RFID标签和读写器之间实现射频信号空间传播和建立无线通讯连接的设备。
4.中间件(middleware)是一种面向消息的、可以接受应用软件端发出的请求、对指定的一个或者多个读写器发起操作并接收、处理后向应用软件返回结果数据的特殊化软件。
5.应用软件(application software)是直接面向RFID应用最终用户的人机交互界面,协助使用者完成对读写器的指令操作以及对中间件的逻辑设置,逐级将RFID原子事件转化为使用者可以理解的业务事件,并使用可视化界面进行展示。
四、RFID技术的工作原理:RFID技术的工作原理可以用以下三步来解释:1.读取:标签进入磁场后,收到阅读器发出的射频信号,从而发出标签中存储的信息。
2.解码:读取信息并解码后,送至中央信息系统进行有关数据处理。
3.写入:中央处理器经过分析后,通过阅读器对标签发出命令或写入数据。
图1:RFID工作原理五、RFID的分类:[3]1.按工作频率分(1)低频(LF):频率范围在100-500KHz,读取范围可达50厘米,主要应用有门禁控制、生物识别、车辆门锁等。
rfid的种类原理及应用

RFID的种类原理及应用1. RFID技术简介RFID(Radio Frequency Identification)的中文名称为无线射频识别技术,是一种通过无线电信号识别目标物的技术。
RFID技术主要由RFID标签、读写器和后台管理系统组成。
RFID标签内部嵌入有一个微型芯片和一个天线,能够将存储在芯片中的数据通过无线电信号传递给读写器。
RFID技术可以实现自动识别、远程读写和快速获取目标物信息的功能。
2. RFID的种类2.1 主动式RFID主动式RFID标签内部嵌入有电池,可以主动发送信号,无需外部电源供电。
主动式RFID标签的传输距离较远,一般可以达到几十米甚至几百米,适用于需要远距离识别的场景,如车牌识别、门禁系统等。
2.2 被动式RFID被动式RFID标签无内置电池,依靠外部读写器的射频信号供电,并通过接收读写器的信号进行数据传输。
被动式RFID标签的传输距离较短,一般为几厘米到几米,适用于近距离物体识别和物流管理等场景。
2.3 半主动式RFID半主动式RFID标签也称为半被动式RFID标签,结合了主动式和被动式的特点。
半主动式RFID标签内部嵌入有电池,但只在接收到读写器的信号时才会主动回应。
由于可以在一定范围内主动发送信号,半主动式RFID标签的传输距离相对被动式RFID标签更远。
3. RFID的工作原理RFID系统由读写器和RFID标签组成。
读写器通过天线发射一定频率的无线射频信号,当RFID标签处于读写器的射频信号范围内时,标签的天线接收到射频信号并从中获得能量,用于激活标签内部的芯片。
标签芯片接收到能量后,向读写器发送存储在其内部的数据,完成信息的传输。
4. RFID的应用领域4.1 物流管理在物流管理领域,RFID技术能够实现物品的追踪和溯源。
通过在物品上贴附RFID标签,可以实现对物品的自动识别和无感知的监控。
在仓库管理中,可以利用RFID技术快速实现库存盘点,提高工作效率和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RFID简介2012年06月目录1RFID背景概述 (1)2RFID电子标签分类 (1)3RFID电子标签的安全设置 (2)4RFID电子标签在应用中的安全机制 (3)5RFID应用系统的安全设计 (4)1 RFID背景概述RFID电子标签在国内的应用越来越多,其安全性也开始受到重视。
RFID电子标签自身都是有安全设计的,但是RFID电子标签具备足够的安全吗?个人信息存储在电子标签中会泄露吗?RFID电子标签的安全机制到底是怎样设计的?本文围绕目前应用广泛的几类电子标签探讨RFID电子标签的安全属性,并对RFID电子标签在应用中涉及的信息安全方面提出了建议。
RFID技术最初源于雷达技术,借助于集成电路、微处理器、通讯网络等的技术进步逐渐成熟起来。
RFID技术经美国军方在海湾战争中军用物资管理方面的成功应用,使其在交通管理、人员监控、动物管理、铁路和集装箱等方面得到推广。
随着全球几家大型零售商WalMart、Metro、Tesco等出于对提高供应链透明度的要求,相继宣布了各自的RFID计划,并得到供应商的支持,取得了很好的成效。
从此,RFID技术打开了一个巨大的市场。
随着成本的不断降低和标准的统一,RFID技术还将在无线传输网络、实时定位、安全防伪、个人健康、产品全生命周期管理等领域进行广泛的应用。
可以预见,随着数字化时代的发展,以网络信息化管理、移动计算、信息服务等为迫切需求和发展动力,RFID这项革命性的技术将对人类的生产和生活方式产生深远的影响。
2 RFID电子标签分类谈及RFID电子标签的安全性,需要先了解RFID电子标签的种类及特性。
随着RFID技术概念的深化,很多人把非接触智能卡也归入RFID的范畴。
RFID电子标签按供电方式分为无源标签和有源标签二种;按工作方式分为被动,半主动,主动三种;按工作频率分为低频30kHz ~300kHz、高频3MHz ~30MHz、超高频433MHz,902~928MHz、微波2.45GHz,5.8GHz;根据芯片的类型还可分为存储型、逻辑加密型和CPU型。
3 RFID电子标签的安全设置RFID电子标签的安全属性与标签分类直接相关。
一般来说安全性等级中存储型最低,CPU型最高,逻辑加密型居中,目前广泛使用的RFID电子标签中也以逻辑加密型居多。
存储型RFID电子标签没有做特殊的安全设置,标签内有一个厂商固化的不重复不可更改的惟一序列号,内部存储区可存储一定容量的数据信息,不需要进行安全认证即可读出或改写。
虽然所有的RFID电子标签在通信链路层都没有采用加密机制,并且芯片(除CPU型外)本身的安全设计也不是非常强大,但在应用方面因为采取了很多加密手段使其可以保证足够的安全性。
CPU型的RFID电子标签在安全方面做的最多,因此在安全方面有着很大的优势。
但从严格意义上来说,此种电子标签不应归属为RFID电子标签范畴,而应属非接触智能卡类。
可由于使用ISO 14443 Type A/B协议的CPU非接触智能卡与应用广泛的RFID高频电子标签通讯协议相同,所以通常也被归为RFID 电子标签类。
逻辑加密型的RFID电子标签具备一定强度的安全设置,内部采用了逻辑加密电路及密钥算法。
可设置启用或关闭安全设置,如果关闭安全设置则等同存储卡。
如OTP(一次性编程)功能,只要启用了这种安全功能,就可以实现一次写入不可更改的效果,可以确保数据不被篡改。
另外,还有一些逻辑加密型电子标签具备密码保护功能,这种方式是逻辑加密型的RFID电子标签采取的主流安全模式,设置后可通过验证密钥实现对存储区内数据信息的读取或改写等。
采用这种方式的RFID电子标签使用密钥一般不会很长,四字节或六位字节数字密码。
有了安全设置功能,逻辑加密型的RFID电子标签还可以具备一些身份认证及小额消费的功能。
如第二代公民身份证、Mifare(菲利普技术)公交卡等。
CPU类型的广义RFID电子标签具备极高的安全性,芯片内部的COS本身采用了安全的体系设计,并且在应用方面设计有密钥文件,认证机制等,比前几种RFID电子标签的安全模式有了极大的提高;也保持着目前唯一没有被人破解的记录。
这种RFID电子标签将会更多地被应用于带有金融交易功能的系统中。
4 RFID电子标签在应用中的安全机制首先,探讨存储型RFID电子标签在应用中的安全设计。
存储型RFID电子标签的应用主要是通过快速读取ID号来达到识别的目的,主要应用于动物识别、跟踪追溯等方面。
这种应用要求的是应用系统的完整性,而对于标签存储数据要求不高,多是应用惟一序列号的自动识别功能。
如果部分容量稍大的存储型RFID电子标签想在芯片内存储数据,对数据做加密后写入芯片即可,这样信息的安全性主要由应用系统密钥体系安全性的强弱来决定,与存储型RFID本身就没有太大关系。
逻辑加密型的RFID电子标签应用极其广泛,并且其中还有可能涉及小额消费功能,因此它的安全设计是极其重要的。
逻辑加密型的RFID电子标签内部存储区一般按块分布,并有密钥控制位设置每数据块的安全属性。
先来解释一下逻辑加密型的RFID电子标签的密钥认证功能流程,以Mifare one (菲利普技术)为例,参见图1。
由图1可知,认证的流程可以分成以下几个步骤:1、应用程序通过RFID读写器向RFID电子标签发送认证请求;2、RFID电子标签收到请求后向读写器发送一个随机数B;3、读写器收到随机数B后向RFID电子标签发送使用要验证的密钥加密B 的数据包,其中包含了读写器生成的另一个随机数A;4、RFID电子标签收到数据包后,使用芯片内部存储的密钥进行解密,解出随机数B并校验与之发出的随机数B是否一致;5、如果是一致的,则RFID使用芯片内部存储的密钥对A进行加密并发送给读写器;6、读写器收到此数据包后,进行解密,解出A并与前述的A比较是否一致;如果上述的每一个环节都成功,则验证成功;否则验证失败。
这种验证方式可以说是非常安全的,破解的强度也是非常大的,比如Mifare的密钥为6字节,也就是48位;Mifare一次典型验证需要6ms,如果在外部使用暴力破解的话,所需时间为248×6ms/3.6×106小时,结果是一个非常大的数字,常规破解手段将无能为力。
CPU型RFID电子标签的安全设计与逻辑加密型相类似,但安全级别与强度要高得多,CPU型RFID电子标签芯片内部采用了核心处理器,而不是如逻辑加密型芯片那样在内部使用逻辑电路;并且芯片安装有专用操作系统,可以根据需求将存储区设计成不同大小的二进制文件、记录文件、密钥文件等。
使用FAC 设计每一个文件的访问权限,密钥验证的过程与上述相类似,也是采用随机数+密文传送+芯片内部验证方式,但密钥长度为16字节。
并且还可以根据芯片与读写器之间采用的通讯协议使用加密传送通信指令。
5 RFID应用系统的安全设计以上几种RFID电子标签芯片的安全设计我们已经初步了解了,那么它的安全模式真的就很安全么?2008年2月荷兰政府发布了一项警告,指出目前广泛应用的MifareRFID产品赖以保证安全的密钥存在很高的风险。
这个警告的起因是:一个是德国的学者Henryk Plotz,和一个是弗吉尼亚大学的在读博士Karsten Nohl,他们表示已破解Mifare的Crypto-1加密算法,利用普通的计算机在几分钟之内就能够破解出Mifare Classic的密钥,一时之间RFID电子标签的安全再度受到审视。
那么这两位专家是怎么破解的:他们使用了反向工程方法,一层一层剥开芯片,从而分析芯片中近万个逻辑单元,并且幸运的是,他们发现了16位随机数发生器的原理,可以准确预测下一次产生的随机数,根据48位逻辑移位寄位器的加密算法,利用普通计算机通过向读卡器发送几十个随机数,就能够猜出卡片的密钥是什么。
国内有些地区也曾经出现Mifare交通卡被破解,被人私自充值的问题。
其实那些破解更多的是针对系统而不是RFID电子标签本身,所以不会对其他地区和其他系统造成威胁和破坏,但是Nohl和Plotz这两人所做的完全不同,他们几乎可以让Mifare Classic在一夜之间从这个地球上被淘汰。
能够看出,RFID电子标签尽管已经极力做好安全设计,但是还是被破解了(仅是Mifare,CPU型的目前无人能破解),那么RFID电子标签还安全么?RFID 应用系统又要怎么做来保证和加强安全性呢?答案只有一个,那就是RFID应用系统采用高安全等级的密钥管理系统,密钥管理系统相当于在RFID电子标签本身的安全性基础上再加上一层保护壳,这层保护壳的强度决定于建立于数学基础上的密钥算法。
目前应用广泛的主要有PKI体系(非对称密钥算法RSA及椭圆曲线)及简易的对称加密体系(DES及3DES等),以在RFID行业应用比较广泛的对称密钥管理系统来说明。
参见图2。
从图2上可以看到,通过复杂并保密的生成算法,得到根密钥,再通过多级分散(根据实际需要)最终获得要写入RFID电子标签芯片的密钥,此时,每一个RFID芯片根据ID号不同写入的密钥也不同,这就是“一卡一密”。
如果采用了这种管理方式,前面破解的这种RFID电子标签芯片,也只是破解了一张RFID电子标签的密钥而已,破解了一张RFID电子标签不代表可以破解整个应用系统的密钥,系统还是安全的。
那么系统中持卡人可以效仿这种破解么?且不说这需要多么精深的专业技术,要使用多么专业的设备,即使破解成功了,应用系统的管理功能足可以在下一次账目分析处理时使不合理消费记录无处藏身,那么破解的这一张RFID电子标签芯片也将被加入系统黑名单而无法再次使用。
对被破解的这一张RFID电子标签有可能采取更高的安全设计么?更多的事实表明,RFID应用系统中被破解主要是系统中的安全漏洞,和密钥的管理不善,也就是说,内部管理风险比外部破解风险要大得多,做好这些远比保护被专家采用那么多专业手段来破解的这一张RFID电子标签要重要的多。
目前在金融领域,POBC2.0的推行使RFID电子标签在金融消费领域会更加安全,规定中不仅采用了专用交易流程限制,在认证安全方面又使用了PKI体系的静态认证、动态认证、混合认证,安全性能又提高了一个等级。
所以我们完全有理由认为,RFID电子标签自身的安全设计虽有不足,但完善的RFID应用系统可以弥补并保证RFID电子标签安全地运行。
RFID电子标签只是信息媒介,在RFID电子标签自有的安全设置基础上,加上应用系统更高级别的安全设计才能使RFID电子标签的安全无懈可击。