北师大版初一数学上册知识点

合集下载

初一上册数学北师大知识点

初一上册数学北师大知识点

初一上册数学北师大知识点初一上册数学北师大知识点涵盖了数的认识与数的应用两个方面,主要内容包括集合、数字的认识与应用、运算与应用、比较与估算等。

一、集合1.集合的概念:集合是由一些符合某种特定性质的元素所构成的总体。

2.集合的表示方法:用列举法、描述法、分离法等。

3.集合的运算:包括并、交、差、补等。

4.集合的关系:包括子集关系、相等关系等。

二、数字的认识与应用1.整数的认识:正整数、负整数、零以及它们的比较、排序等。

2.小数的认识:小数的概念、小数的读法、小数的运算等。

3.百分数的认识:百分数的概念、百分数与分数、小数的转化等。

4.整数四则运算:加法、减法、乘法、除法以及它们的应用。

5.小数的四则运算:加法、减法、乘法、除法以及它们的应用。

6.百分数的四则运算:加法、减法、乘法、除法以及它们的应用。

三、运算与应用1.近似数与估算:近似数的概念、数的比较与排序、数的估算与三位数整数的加减法运算、数的整体与部分之间的关系等。

2.倍数与约数:倍数的概念与判断、最大公约数、最小公倍数等。

3.两数的关系:奇数、偶数的概念、约分与最简分数、相邻数等。

4.乘法与分数:分数的概念与认识、分数的加减法与乘法、整数与分数的混合运算等。

5.平均数:平均数的概念、算术平均数的计算等。

总结:初一上册数学北师大知识点主要包括集合、数字的认识与应用、运算与应用等内容。

学生通过学习这些知识点,可以更好地认识和理解数的概念,并运用数学知识解决实际生活中的问题。

这些知识点的掌握对于学生打下坚实的数学基础,为后续学习打下良好的基础。

北师大七年级数学上册知识点

北师大七年级数学上册知识点

北师大七年级数学上册知识点北师大版七年级数学上册知识点概述一、数与代数1. 有理数的混合运算- 正数和负数的概念- 有理数的加法、减法、乘法和除法- 有理数的乘方- 有理数的混合运算顺序和运算法则2. 整式的加减- 单项式和多项式的概念- 同类项和合并同类项- 去括号法则- 整式的加减运算3. 一元一次方程- 方程的概念- 解方程的基本步骤- 利用方程解决实际问题4. 几何图形的初步认识- 点、线、面、体的基本概念- 直线、射线、线段的性质- 角的概念和分类- 平行线的性质5. 数据的收集和处理- 统计调查的基本方法- 数据的整理和图表表示- 频数和频率的计算- 利用图表分析数据二、几何1. 平面图形的性质- 平行四边形的性质和判定- 矩形、菱形、正方形的性质和判定 - 三角形的分类和性质- 全等三角形的判定条件2. 几何图形的计算- 三角形、四边形的周长和面积计算 - 圆的周长和面积计算- 体积的概念和计算方法三、统计与概率1. 统计- 统计图表的阅读和理解- 抽样调查和全面调查的比较- 统计数据的误差分析2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件的概率计算四、解题技巧与策略1. 解题方法- 分析问题、寻找条件- 归纳法和演绎法- 逆向思维和分类讨论2. 策略选择- 题目类型的识别- 适当运用数学工具- 时间管理和检查策略五、数学思维的培养1. 逻辑思维- 论证的严密性- 逻辑推理的训练2. 创新思维- 探索性问题的解决- 数学建模的初步尝试3. 数学应用- 数学与现实生活的联系- 数学问题的解决与实际应用六、课程复习与总结1. 知识点的梳理- 重点、难点的回顾- 易错点的总结2. 练习题与测试- 典型题目的练习- 模拟测试与自我评估3. 学习方法的调整- 学习计划的制定- 学习方法的改进以上是北师大版七年级数学上册的主要知识点概述。

在学习过程中,学生应该注重理论与实践相结合,通过大量的练习来巩固知识点,并通过实际问题的解决来提高数学应用能力。

2024年北师大版初一数学上册知识点汇总

2024年北师大版初一数学上册知识点汇总

2024年北师大版初一数学上册知识点汇总2024年北师大版初一数学上册知识点汇总1整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

2024年北师大版初一数学上册知识点汇总2七年级上册数学知识点总结之有理数及其运算板块:1、整数包含正整数和负整数,分数包含正分数和负分数。

正整数和正分数通称为正数,负整数和负分数通称为负数。

2、正整数、0、负整数、正分数、负分数这样的数称为有理数。

3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。

七年级上册数学知识点总结之整式板块:1、单项式:由数与字母的乘积组成的式子叫做单项式。

2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3、整式:单项式与多项式统称整式。

4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。

七年级上册数学知识点总结之一元一次方程。

1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。

2、移项:把等式一边的某项变号后移到另一边,叫做移项等。

其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。

大家平时要注意整理与积累。

配合多加练习。

一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。

一个个知识点去通过。

我相信只要做个有心人,就可以在数学考试中取得高分。

2024年北师大版初一数学上册知识点汇总31.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的`运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.2024年北师大版初一数学上册知识点汇总4__内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

北师大版七年级数学上册知识点总结

北师大版七年级数学上册知识点总结

北师大版七年级数学上册知识点总结北师大版七年级数学上册知识点总结1代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。

(分母中含有字母有除法运算的,那么式子叫做分式)1.单项式:数或字母的积(如5n),单个的数或字母也是单项式。

(1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的'系数。

(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。

(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。

2.多项式(1)概念:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

一个多项式有几项就叫做几项式。

(2)多项式的次数:多项式中次数最高的项的次数就是该多项式的次数。

(3)多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

在做多项式的排列的题时注意:(1)由于单项的项包含了前面的属性符号,所以在排列时,每一项的属性符号仍应视为该项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。

b.确定按这个字母降幂排列,还是升幂排列。

3.整式:单项式和多项式统称为整式。

4.列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .整式的加减运算1.同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。

初一上册数学知识点归纳北师大版

初一上册数学知识点归纳北师大版

初一上册数学知识点归纳北师大版第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是最小值也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的略去形式。

(无理数是不能写成两个之比的形式,它写成小数形式,小数点此后的数字是无限不图象循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或由下而上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它更为重要,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值有大的加数的符号,并用较大的绝对值减去较小的绝对值。

个数互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把后前两个数相加,或者先把后两个数则相加,和不变。

5.a-b=a+(-b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成表示法,然后定符号,最后求结果。

初一数学上册北师大版知识点总结

初一数学上册北师大版知识点总结

初一数学上册北师大版知识点总结北师大版初一数学上册的知识点总结北师大版初一数学上册主要内容包括:数与代数、图形与几何、函数与方程、数据和概率等四大部分。

下面我将对每个部分的知识点进行总结。

一、数与代数1.整数的概念和性质:正整数、零、负整数、相反数、绝对值等。

2.整数的加减法运算:整数相加减的规律和方法,整数的加减运算中的进位和借位等。

3.整数的乘法运算:带有括号的整数乘法、相反数的乘法、零的乘法等。

4.除法的概念和整数除法:求商和余数,整数除法中的几点特殊情况等。

5.最大公约数和最小公倍数:整数的因数、倍数的概念,最大公约数和最小公倍数的求法等。

二、图形与几何1.点、线、线段、直线和射线的概念:点的坐标、线段的度量、直线的特点等。

2.角的概念和表示方法:角的度量单位、角的种类、角的补角、余角、相等的角等。

3.三角形和四边形:三角形的构造和性质、四边形的性质和分类等。

4.平行线和相交线:平行线和相交线的性质、平行线和斜线的关系等。

5.计算周长和面积:不规则图形的周长和面积的计算方法,平行四边形、三角形、矩形和正方形的面积计算等。

三、函数与方程1.函数的概念:独立变量和因变量,函数的表示方法等。

2.表示函数的方法:函数关系的图表法、符号法、一元二次方程等。

3.一元一次方程:解一元一次方程的方法和步骤。

4.一元二次方程:二次函数的图像、根的判定、求解二次方程等。

5.图象和函数关系:函数关系的图象、线性函数的特点和图象等。

四、数据与概率1.统计调查和数据整理:调查方法、数据的整理和总结等。

2.直方图和折线图:直方图和折线图的绘制和解读。

3.概率的概念和计算:事件和概率、概率的计算方法等。

4.排列和组合:排列的计算方法、组合的计算方法等。

综上所述,北师大版初一数学上册的知识点涵盖了数与代数、图形与几何、函数与方程、数据和概率等多个方面。

掌握了这些知识点,学生就能够建立起初中数学的基础,并为进一步学习打下坚实的基础。

北师大版七年级数学上册知识点汇总

北师大版七年级数学上册知识点汇总

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:[七年级数学上册]定理知识点汇总第一章 丰富的图形世界1、2、3、球体:由球面围成的(球面是曲面)4、立体图形与平面图形(1)长方体、正方体、球、圆柱、圆锥等都是立体图形。

此外棱柱、棱锥也是常见的立体图形。

(2)长方形、正方形、三角形、圆等都是平面图形。

(3)许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

5、点、线、面、体(1)几何图形是由点、线、面构成的。

(2)几何体也简称体。

长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

(3)包围着体的是面。

面有平的面和曲的面两种。

(4)面和面相交的地方形成线。

(5)线和线相交的地方是点。

6、棱柱(1)棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

(2)侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

(3)棱柱的上、下底面的形状相同,侧面的形状都是长方形。

(4)根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形…… (5)长方体和正方体都是四棱柱。

(6)棱柱的性质:①棱柱的上下底面形状完全相同;②棱柱的所有侧棱长均相等;③棱柱的的所有侧面均为长方形。

7、圆柱和圆锥(1)圆柱的侧面展开后是一个长方形,长为圆柱的底面周长,宽为圆柱的高; (2)圆锥的侧面展开后是一个扇形,扇形的弧长为圆锥的底面周长。

(3)圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

(4)圆锥的表面展开图是由一个圆形和一个扇形连成。

8、展开图正方体的表面展开后由六个小正方形组成,展开时剪刀走的路线不同,得到的图形不同,常见的有:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数9、截面图(1)用一个平面去截一个几何体,截出的面叫截面。

北师大版 七年级数学上册 知识点汇总

北师大版    七年级数学上册  知识点汇总

第十节 科学计数法 定义:一般地,一个大于10的数可以表示成a✖10∧n,其中1<a<10,n是正整 数,这种记数方法叫做科学记数法
第十一节 有理数的混合运算 运算顺序 先算乘方,再算乘除,最后算加减 如果有括号,先算括号里面的
第十二节 用计算器进行计算
第三章 整式及其加减
第一节 用字母表示数 字母可以表示任何数
第五章 一元一次方程
第一节 认识一元一次方程 一元一次方程:只含有1个未知数,且未知数的次数都是1的方程,叫做一元一 次方程 方程的解:使得方程左右两边的值相等的未知数的值,叫做方程的解 本质:一元一次方程的本质是带有未知数的等式 等式的基本性质 等式两边同时加上(或减去)同一个代数式,所得结果仍是等式 等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式
第四节 整式的加减 同类项:所含字母相同,并且相同字母的指数也相同的项 合并同类项:指把同类型合并成一项(即进行计算) 规则:合并同类项时,把同类项的系数相加,字母和字母的指数不变 去括号法则
法则1:括号前是”+”号,把括号和它前面的“+”去掉,原括号里各项的符号都 不改变 法则2:括号前是“-”号,把括号和它前面的“-”去掉,原括号里各项的符号都 要改变
第二节 代数式 定义:用运算符号把数和字母连接而成的式子,叫做代数式 注意:单独的一个数或一个字母也是代数式
第三节 整式 含义:单项式和多项式统称为整式 单项式:表示数字与字母乘积的代数式 单独的一个数或者一个字母也是单项式 单项式的系数:单项式中的数字因数 单项式的次数:单项式中所有字母的指数和 注意:指数为1时,一般不写出来 多项式:几个单项式的和叫做多项式 【注意】“和”包括了减法,因为减去一个数等于加上这个数的相反数。减法 运算都可转化为加法运算 多项式的项:每个单项式叫做多项式的项 多项式的次数:次数最高的项的次数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初一数学上册知识点
北师大版初一数学上册学问点
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;π不是有理数;
(2)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;
4.肯定值:
(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;
(2)肯定值可表示为:
肯定值的问题常常分类商量;
(3)a|是重要的非负数,即|a|≥0;留意:|a|?|b|=|a?b|, 5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.
北师大版初一数学上册学问点
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).
4.二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;
(3)留意:推断如何解简洁是关键.
※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解
(2)对于方程组,若方程个数与未知数个数相等时,一般可求
出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要转变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式全部解的集合,叫做这个不等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但肯定要留意不等式性质3的应用;留意:在数轴上表示不等式的解集时,要留意空圈和实点.
北师大版初一数学上册学问点
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,根据代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,全部字母的指数的和叫做这个单项式的次数。

2、多项式
(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的挨次排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的挨次排列,叫做升幂排列。

三、整式的加减
1、整式加减的理论依据是:去括号法则,合并同类项法则,以及乘法安排率。

去括号法则:假如括号前是“十”号,把括号和它前面的“+”
号去掉,括号里各项都不变符号;假如括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都转变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:
a.精确的找出同类项。

b.逆用安排律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在把握合并同类项时留意:
a.假如两个同类项的系数互为相反数,合并同类项后,结果为
0.
b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确推断同类项。

3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:
(1)代数式化简
(2)代入计算
(3)对于某些特别的代数式,可采纳“整体代入”进行计算。

图形的初步熟悉
一、立体图形与平面图形
1、长方体、正方体、球、圆柱、圆锥等都是立体图形。

此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、很多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以绽开成平面图形。

二、点和线
1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延长所形成的图形叫做射线。

三、角
1、角是由两条有公共端点的射线组成的图形。

2、围着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、围着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

四、角的比较
从一个角的顶点动身,把这个角分成相等的两个角的射线,叫做这个角的平分线。

类似的,还有叫的三等分线。

五、余角和补角
1、假如两个角的和等于90(直角),就说这两个角互为余角。

2、假如两个角的和等于180(平角),就说这两个角互为补角。

3、等角的补角相等。

4、等角的余角相等。

六、相交线
1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线相互垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2、留意:
⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特别状况。

⑷垂直的记法:a⊥b,AB⊥CD。

3、画已知直线的垂线有很多条。

4、过一点有且只有一条直线与已知直线垂直。

5、连接直线外一点与直线上各点的全部线段中,垂线段最短。

简洁说成:垂线段最短。

6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

两条直线相交,有2对对顶角。

对顶角相等。

七、平行线
1、在同一平面内,两条直线没有交点,则这两条直线相互平行,记作:a∥b。

2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3、假如两条直线都与第三条直线平行,那么这两条直线也相互平行。

4、判定两条直线平行的〔方法〕:
(1)两条直线被第三条直线所截,假如同位角相等,那么这两
条直线平行。

简洁说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行。

简洁说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行。

简洁说成:同旁内角互补,两直线平行。

5、平行线的性质
(1)两条平行线被第三条直线所截,同位角相等。

简洁说成:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。

简洁说成:两直线平行,内错角相等。

(3)两条平行线被第三条直线所截,同旁内角互补。

简洁说成:两直线平行,同旁内角互补。

相关文档
最新文档