时间序列分析教程汇总
(整理)时间序列分析讲义__第01章_差分方程.

第一章 差分方程差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ (1.1)在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:ct bt t t t r r I m m 019.0045.019.072.027.01--++=-上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程:0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφt t =:t t t w y y ++=-110φφ依次进行叠代可以得到:1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ0111122113121102)1(w w w y y φφφφφφφ++++++=-i ti i t t i it w y y ∑∑=-=++=011110φφφφ (1.2)上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。
精选时间序列分析时间序列讲解讲义

§1.2 平稳序列
一· 平稳序列
定义 如果时间序列 {X t} {X t : t N满}足
(1) 对任何的
t
N,
EX
2 t
(2) 对任何的 t N , EX t
(3) 对任何的 t, s N , E[( X t )( X s )] ts
就称是 X平t 稳时间序列,简称时间序列。称实数 为 的{自 t协} 方差X函t 数。
a则j 称 是绝对可{a和j}的。
j
对于绝对可和的实数列
,{a{定Xj}{义tX}零t}均值白噪声 的无穷{滑t动} 和
如下 X t a j t j ,t ,Z则 是{X平t}稳序列。下面说明 是
j
{X t}
平稳序列。
由 Schwarz不等式得到
E[ a jt j ] a j E t j a j
j0
k
q
0, k q
{ X t }平稳
第三十七页,共74页。
例:X t t 0.36 * t1 0.85 * t2 , t ~ WN (0,22 )
第三十八页,共74页。
概率极限定理:
定理 (单调收敛定理) 如果非负随机变量序列单调不减: 0 1 2
lim 则当 n ,a时s ,有 E
{St }
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
第五页,共74页。
减去趋势项后,所得数据 {Xt Tˆt}
第六页,共74页。
2、季节项 {Sˆt}
第七页,共74页。
3.随机项的估计 Rˆt xt Tˆt Sˆt ,t 1,2,,24.
第八页,共74页。
方法二:回归直线法
当 0, 2 称1为标准白噪声。
《时间序列分析法》课件

目录
• 时间序列分析法概述 • 时间序列数据的预处理 • 时间序列的模型选择 • 时间序列的预测与分析 • 时间序列分析法的实际应用案例 • 时间序列分析法的未来发展与挑战
01
时间序列分析法概述
时间序列分析法的定义
时间序列分析法是一种统计方法,通 过对某一指标在不同时间点的观测值 进行统计分析,以揭示其内在的规律 和趋势。
处理速度要求高
大数据时代要求快速处理和分析时间序列数据 ,以满足实时性和高效率的需求。
数据质量与噪声处理
大数据中存在大量噪声和异常值,需要有效的方法进行清洗和预处理。
时间序列分析法与其他方法的融合
统计学方法
时间序列分析法可以与统计学方 法相结合,利用统计原理对数据 进行建模和推断。
深度学习方法
深度学习在处理复杂模式和抽象 特征方面具有优势,可以与时间 序列分析法相互补充。
ARIMA模型
适用于平稳时间序列的预测, 通过差分和整合方式处理非平
稳数据。
指数平滑法
适用于具有趋势和季节性变化 的时间序列,通过不同权重调 整预测值。
神经网络
适用于复杂非线性时间序列, 通过训练数据建立预测模型。
支持向量机
适用于小样本数据和分类问题 ,通过核函数处理非线性问题
。
预测精度评估
均方误差(MSE)
它通常用于预测未来趋势、分析周期 波动、研究长期变化等方面。
时间序列分析法的应用领域
金融市场分析
用于股票、债券、商品等市场的价格预测和 风险评估。
气象预报
通过对历史气象数据的分析,预测未来的天 气变化。
经济周期研究
分析经济周期波动,预测经济走势。
金融科技中的时间序列分析算法使用教程

金融科技中的时间序列分析算法使用教程引言时间序列分析是金融领域中一项重要的技术,它可用于预测未来金融市场趋势、分析金融数据的相关性以及发现隐藏的模式。
随着金融科技的迅速发展,时间序列分析算法在金融科技中的应用也变得日益重要。
本文将为您介绍金融科技中常用的时间序列分析算法及其使用方法。
一、移动平均法移动平均法是一种简单而有效的时间序列分析算法,适用于平滑时间序列数据。
它通过计算数据点的移动平均值来减少数据中的噪音,并识别数据中的趋势。
移动平均法有两种常见的类型:简单移动平均法(SMA)和指数移动平均法(EMA)。
1. 简单移动平均法(SMA)简单移动平均法是最基本的移动平均法,它计算一段时间内数据的平均值。
可以通过以下步骤来使用简单移动平均法:a) 选择一个时间段(如10天)作为移动窗口大小。
b) 将窗口内的数据相加,然后除以窗口大小,得到平均值。
例如,我们有一组股票价格的时间序列数据,我们可以使用简单移动平均法来平滑数据并找到价格的中长期趋势。
2. 指数移动平均法(EMA)指数移动平均法是一种给予最近数据点更高权重的移动平均法,它能够更迅速地反映出最新的市场趋势。
使用指数移动平均法的步骤如下:a) 选择一个适当的平滑因子(如0.2)。
b) 计算当前数据点的指数移动平均值。
指数移动平均法在金融科技领域常用于预测股票价格的短期趋势。
二、自回归移动平均模型(ARIMA)自回归移动平均模型(ARIMA)是一种用于分析和预测时间序列数据的更复杂的算法。
ARIMA模型包括三个主要组成部分:自回归(AR)、差分(I)和移动平均(MA)。
1. 自回归(AR)自回归是指将当前数据点与以前的数据点进行比较,以确认它们之间的关系。
自回归可以用数学公式表示为 Y(t) = m + b1Y(t-1) + b2Y(t-2) + ... + bnY(t-n)。
2. 差分(I)差分是指通过将数据点减去前一个数据点,得到一系列差分值。
时间序列 8种方法

时间序列分析是一种用于处理和分析时间序列数据的方法,它可以帮助我们理解数据的变化趋势、周期性、随机性等特征。
以下是在时间序列分析中常用的8种方法:
1. 描述性统计:这是最基本的数据分析方法,包括平均值、中位数、标准差、极值等。
2. 趋势图:将数据以图表的形式展示出来,可以直观地看到数据的变化趋势。
3. 季节性分析:如果数据具有季节性特征,可以使用季节性指数、移动平均法等方法来分析。
4. 回归分析:通过建立回归模型,对时间序列数据进行拟合,以预测未来的数据。
5. 滑动平均模型(SMA):这是一种常用的时间序列分析方法,可以平滑短期波动,反映价格或指数的长期变化趋势。
6. 指数平滑:这是一种基于时间序列数据的平滑方法,可以处理时间序列数据的非平稳性问题。
它有多种形式,如一次指数平滑、二次指数平滑等。
7. ARIMA模型:这是一种常用于时间序列分析的模型,可以自动处理时间序列数据的平稳性和季节性变化。
8. 时间序列预测的神经网络方法:这种方法利用神经网络对时间序列数据进行训练,以预测未来的数据。
这些方法各有优缺点,具体使用哪种方法取决于数据的特征和需求。
在应用这些方法时,需要注意数据的清洗和预处理,以及对结果的解读和分析。
另外,随着数据科学技术的不断发展,可能还会出现新的方法和工具来应对时间序列分析中的问题。
此外,要注意这些方法只是帮助我们理解和预测时间序列数据的一种手段,它们不能替代我们对于数据背后问题的深入思考和探讨。
在应用这些方法时,我们需要结合实际问题和背景知识,进行合理的分析和解释。
同时,也需要不断地学习和探索,以应对不断变化的数据和分析需求。
时间序列分析教程(四)AR与MA模型详细分析(公式推导慎入)

时间序列分析教程(四)AR与MA模型详细分析(公式推导慎入)时间序列分析中,AR模型(Autoregressive Model)和MA模型(Moving Average Model)是两种常用的模型类型。
本教程将详细介绍AR和MA模型的公式推导,让读者更好地理解其原理和应用。
首先,我们先来解释AR和MA模型的概念。
AR模型是一种基于时间序列过去的值来预测未来值的模型。
AR模型的基本思想是当前值与过去若干个时间点的值相关,即当前值是过去值的加权和。
AR模型的表示形式为AR(p),其中p表示过去时间点的数量。
MA模型是一种基于时间序列过去的误差项来预测未来值的模型。
MA 模型的基本思想是当前值与过去若干个时间点的误差项相关,即当前值是过去误差的加权和。
MA模型的表示形式为MA(q),其中q表示过去误差的数量。
下面我们将对AR和MA模型的公式进行推导。
一、AR模型的公式推导假设我们有一个时间序列{Y_t},其中Y_t表示时间点t的值。
AR(p)模型的一般形式为:Y_t=c+ϕ₁Y_(t-1)+ϕ₂Y_(t-2)+...+ϕ_pY_(t-p)+ε_t其中c是常数项,ϕ₁、ϕ₂、..、ϕ_p是过去时间点的权重系数,ε_t 是一个白噪声误差项。
为了方便推导,我们将AR(p)模型简化为AR(1)模型,即只考虑过去一个时间点的值。
即:Y_t=c+ϕY_(t-1)+ε_t我们首先假设时间序列{Y_t}是平稳的,即均值和方差不随时间变化。
然后,我们将AR(1)模型代入Y_(t-1)的表达式中,得到:Y_t=c+ϕ(c+ϕY_(t-2)+ε_(t-1))+ε_t展开后整理得:Y_t=c(1+ϕ)+ϕ²Y_(t-2)+ϕε_(t-1)+ε_t再次代入Y_(t-2)的表达式中,得到:Y_t=c(1+ϕ+ϕ²)+ϕ³Y_(t-3)+ϕ²ε_(t-2)+ϕε_(t-1)+ε_t以此类推,我们可以得到AR(1)模型的一般表达式:Y_t=c(1+ϕ+ϕ²+...+ϕ^p-1)+ϕ^pY_(t-p)+ϕ^(p-1)ε_(t-p+1)+...+ϕ²ε_(t-2)+ϕε_(t-1)+ε_t其中,c(1+ϕ+ϕ²+...+ϕ^p-1)是常数项,ϕ^pY_(t-p)是过去p个时间点的加权和,ϕ^(p-1)ε_(t-p+1)、..、ϕ²ε_(t-2)、ϕε_(t-1)和ε_t是误差项。
时间序列分析教材(PPT 113页)

9-29
发展速度(续)
二者关系:
定基发展速度=相应时期的环比发展速度之积。 相邻两定基发展速度之商=相应的环比发展速度。
yt y1 y2 ... yt
y0 y0 y1
yt 1
yt yt1 yt y0 y0 yt1
为了消除季节变动因素的影响,可计算:
根据表9-1中各年年末人口数,计算2001~2010年这 10年间的平均人口数。
解:
由不连续时点序列计算平均发展水平的计算公式是有假 定条件的。实际中,计算结果通常只是近似值。
一般认为,间隔越短,计算结果就越准确。
例如,由一年中各月底数计算的全年平均数,就比只用年初和年末两 项数据计算的结果更准确。
8
8
9-28
二、时间序列分析的速度指标
(一)发展速度=报告期水平/基期水平
说明现象在观察期内发展变化的相对程度; 有环比发展速度与定基发展速度之分
环比发展速度=报告期水平/上期水平 yi / yi1
反映现象逐期发展变动的程度,也可称为逐期发展速度。
定基发展速度=报告期水平/固定基期水平 yt / y0
居民消费 水平(元)
——
2236 2641 2834 2972 3138 3397 3609 3818 4089
9-11
三、时间序列的编制原则
保证时间序列中各项数据的可比性,是 编制时间序列的基本原则。
(一) 时间一致 (二) 总体范围一致 (三) 经济内容、计算口径和计算方法一致
9-12
18
35%
16
30%
14
12
25%
10
20%
时间序列分析教材(PPT 171页)

fn
ai fi
i 1 n
fi
i 1
9 - 25
统计学
STA[T例IST]I某CS厂成品仓库库存变动时登记如下
日期
1
6
10
库存量(台) 38(a1) 42(a2) 39(a3)
25 37(a4)
试求该仓库该月的平均库存量
31 41(a5)
x xf a af
f
f
a 38 5 42 4 39 15 37 6 411 5 4 15 6 1
统月计初 学
一
二
三
四
S库TA存TI量ST(IC台S ) 38(a1) 42(a2) 39(a3) 37(a4)
五 41(a5)
38 42 1 42 39 1 39 37 1
a 2
2
2
111
x xf f
(a1 a2 ) (a2 a3 ) (a3 a4 )
2
2
2
3
x
f
时间 库存量 a 间隔 f
1/1—31/1 38—42 1
1 2
a1
a2
a3
1 2
a4
39.5(台)
4 1
1/2—28/2 42—39 1
1/3—31/3 39—37 1
——
3
a
912-a218
a2
a3
1 2
an
n 1
首尾折半法 n指标值个数 n1时间长度
统计学
STA(TIS4TI)CS间隔不等的间断时点资料
一季
二季
统计学
STA3TI、STI作CS用
(1)描述现象的历史状况; (2)揭示现象的发展变化规律;
(3)外推预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。
它是系统中某一变量受其它各种因素影响的总结果。
(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。
它不研究事物之间相互依存的因果关系。
(3)假设基础:惯性原则。
即在一定条件下,被预测事物的过去变化趋势会延续到未来。
暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。
近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。
(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。
时间序列的预测和评估技术相对完善,其预测情景相对明确。
尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。
2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。
(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。
(3)随机性:个别为随机变动,整体呈统计规律。
(4)综合性:实际变化情况一般是几种变动的叠加或组合。
预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。
3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。
(1)随机性:均匀分布、无规则分布,可能符合某统计分布。
(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。
)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。
样本序列的自相关函数只是时间间隔的函数,与时间起点无关。
其具有对称性,能反映平稳序列的周期性变化。
特征识别利用自相关函数ACF:ρk =γk/γ其中γk 是y t的k阶自协方差,且ρ=1、-1<ρk<1。
平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋近于0,前者测度当前序列与先前序列之间简单和常规的相关程度,后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。
实际上,预测模型大都难以满足这些条件,现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。
4.预测类型(1)点预测:确定唯一的最好预测数值,其给出了时间序列未来发展趋势的一个简单、直接的结果。
但常产生一个非零的预测误差,其不确定程度为点预测值的置信区间。
(2)区间预测:未来预测值的一个区间,即期望序列的实际值以某一概率落入该区间范围内。
区间的长度传递了预测不确定性的程度,区间的中点为点预测值。
(3)密度预测:序列未来预测值的一个完整的概率分布。
根据密度预测,可建立任意置信水平的区间预测,但需要额外的假设和涉及复杂的计算方法。
5.基本步骤(1)分析数据序列的变化特征。
(2)选择模型形式和参数检验。
(3)利用模型进行趋势预测。
(4)评估预测结果并修正模型。
3.3.2随机时间序列系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。
(自变量不直接含有时间变量,但隐含时间因素)1.自回归AR(p)模型(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)yt =φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt 不同时刻互不相关,εt与yt历史序列不相关。
式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;y t 当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;y t-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达y t依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。
(2)识别条件当k>p时,有φk =0或φk服从渐近正态分布N(0,1/n)且(|φk |>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。
实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。
(3)平稳条件一阶:|φ1|<1。
二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。
φ越大,自回归过程的波动影响越持久。
(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。
2.移动平均MA(q)模型(1)模型形式yt =εt-θ1εt-1-θ2εt-2-……-θpεt-p(2)模型含义用过去各个时期的随机干扰或预测误差的线性组合来表达当前预测值。
AR(p)的假设条件不满足时可以考虑用此形式。
总满足平稳条件,因其中参数θ取值对时间序列的影响没有AR模型中参数p的影响强烈,即这里较大的随机变化不会改变时间序列的方向。
(3)识别条件当k>q时,有自相关系数rk =0或自相关系数rk服从N(0,1/n(1+2∑r2i )1/2)且(|rk|>2/n1/2(1+2∑r2i)1/2)的个数≤4.5%,即平稳时间序列的自相关系数rk 为q步截尾,偏相关系数φk逐步衰减而不截尾,则序列是MA(q)模型。
实际中,一般MA过程的PACF函数呈单边递减或阻尼振荡,所以用ACF函数判别(从q阶开始的所有自相关系数均为0)。
(4)可逆条件一阶:|θ1|<1。
二阶:|θ2|<1、θ1+θ2<1。
当满足可逆条件时,MA(q)模型可以转换为AR(p)模型3.自回归移动平均ARMA(p,q)模型(1) 模型形式yt =φ1yt-1+φ2yt-2+……+φpyt-p+εt-θ1εt-1-θ2εt-2-……-θpεt-p式中符号: p和q是模型的自回归阶数和移动平均阶数;φ和θ是不为零的待定系数;εt独立的误差项;yt是平稳、正态、零均值的时间序列。
(2) 模型含义使用两个多项式的比率近似一个较长的AR多项式,即其中p+q 个数比AR(p)模型中阶数p小。
前二种模型分别是该种模型的特例。
一个ARMA过程可能是AR与MA过程、几个AR过程、AR与ARMA 过程的迭加,也可能是测度误差较大的AR过程。
(3) 识别条件平稳时间序列的偏相关系数φk 和自相关系数rk均不截尾,但较快收敛到0,则该时间序列可能是ARMA(p,q)模型。
实际问题中,多数要用此模型。
因此建模解模的主要工作是求解p、q和φ、θ的值,检验εt 和yt的值。
(4) 模型阶数AIC准则:最小信息准则,同时给出ARMA模型阶数和参数的最佳估计,适用于样本数据较少的问题。
目的是判断预测目标的发展过程与哪一随机过程最为接近。
因为只有当样本量足够大时,样本的自相关函数才非常接近母体的自相关函数。
具体运用时,在规定范围内使模型阶数从低到高,分别计算AIC值,最后确定使其值最小的阶数是模型的合适阶数。
模型参数最大似然估计时AIC=(n-d)logσ2+2(p+q+2)模型参数最小二乘估计时AIC=nlogσ2+(p+q+1)logn式中:n为样本数,σ2为拟合残差平方和,d、p、q为参数。
其中:p、q范围上线是n较小时取n的比例,n较大时取logn的倍数。
实际应用中p、q一般不超过2。
4.自回归综合移动平均ARIMA(p,d,q)模型(1)模型识别平稳时间序列的偏相关系数φk 和自相关系数rk均不截尾,且缓慢衰减收敛,则该时间序列可能是ARIMA(p,d,q)模型。
(2)模型含义模型形式类似ARMA(p,q)模型,但数据必须经过特殊处理。
特别当线性时间序列非平稳时,不能直接利用ARMA(p,q)模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中d一般不超过2。
若时间序列存在周期性波动,则可按时间周期进行差分,目的是将随机误差有长久影响的时间序列变成仅有暂时影响的时间序列。
即差分处理后新序列符合ARMA(p,q)模型,原序列符合ARIMA(p,d,q)模型。
3.3.3建模解模过程1.数据检验检验时间序列样本的平稳性、正态性、周期性、零均值,进行必要的数据处理变换。
(1)作直方图:检验正态性、零均值。
按图形Graphs—直方图Histogram的顺序打开如图3.15所示的对话框。
图3.15将样本数据送入变量Variable框,选中显示正态曲线Display normal curve项,点击OK 运行,输出带正态曲线的直方图,如图3.16所示。
图3.16从图中看出:标准差不为1、均值近似为0,可能需要进行数据变换。
(2)作相关图:检验平稳性、周期性。
按图形Graphs —时间序列Time Series —自相关Autocorrelations 的顺序打开如图3.17所示的对话框。
图3.17将样本数据送入变量Variable 框,选中自相关Autocorrelations 和偏自相关Partial Autocorrelations 项,暂不选数据转换Transform 项,点击设置项Options ,出现如图3.18所示对话框。
图3.18因为一般要求时间序列样本数据n>50,滞后周期k<n/4,所以此处控制最大滞后数值Maximum Number of Lags 设定为12。
点击继续Continue 返回自相关主对话框后,点击OK 运行系统,输出自相关图如图3.19所示。
图3.19从图中看出;样本序列数据的自相关系数在某一固定水平线附近摆动,且按周期性逐渐衰减,所以该时间序列基本是平稳的。
(3)数据变换:若时间序列的正态性或平稳性不够好,则需进行数据变换。
常用有差分变换(利用transform —Create Time Series)和对数变换(利用Transform —Compute)进行。
一般需反复变换、比较,直到数据序列的正态性、平稳性等达到相对最佳。
2. 模型识别分析时间序列样本,判别模型的形式类型,确定p 、d 、q 的阶数。