岩石可钻性

合集下载

解释岩石可钻性的概念

解释岩石可钻性的概念

解释岩石可钻性的概念岩石可钻性是指钻井作业过程中所遇到的岩层对钻头钻进的难易程度。

钻井是一种获取地下天然资源、地质勘探和地质工程调查的重要技术手段,而岩石可钻性是决定钻探技术是否顺利开展的关键因素之一。

岩石可钻性受多种因素的影响。

首先是岩石的物理性质,如岩石的硬度、密度、强度、压缩性和耐磨性等。

硬度是指岩石抵抗外力压力的能力,对于柔软的岩石来说,可钻性较高,相对易于钻入;而对于坚硬的岩石,则相对困难。

岩石的密度决定了钻井液的压力所需的能量大小,密度大的岩石需要更大的能量才能钻入。

岩石的强度是指抵抗外力破坏的能力,其取决于岩石的粘结结构和韧性。

强度大的岩石通常较难钻入,需要选用更强的钻具。

岩石的压缩性是指岩石在受到压力作用下发生体积变化的能力,而耐磨性则是指岩石表面抵抗磨损的能力。

这些物理性质对钻井作业过程中的摩擦、切削和磨损等有直接影响,进而影响钻头在岩层中的钻进难易程度。

其次,岩石的岩性和结构也会影响岩石的可钻性。

不同的岩石种类具有不同的物理性质,例如,片麻岩、花岗岩等较坚硬的岩石通常难以钻进,而砂岩、泥岩等相对柔软的岩石则较易钻进。

而岩石的结构特征,如层理、节理、破碎带等,也会对其可钻性产生重要影响。

岩石中的节理和破碎带可导致岩石断裂和塌方,从而降低了岩石的可钻性。

另外,岩石中的岩浆岩、粉砂岩等特殊类型的岩石也具有较低的可钻性。

第三,岩石与钻具的匹配度也会影响可钻性。

钻具的选择包括钻杆、钻头和钻井液等,在不同的岩石环境下需要选择不同的钻具。

正确选用合适的钻具可以减少钻具的磨损,提高钻进速度,从而改善岩石的可钻性。

此外,钻井液作为钻井过程中的重要流体介质,对岩石的可钻性也有直接影响。

钻井液的密度、黏度、清洁度、过滤性能等都会直接影响到岩石的可钻性。

合理选择和调配钻井液的性能参数,可以减小钻井液与岩石之间的摩擦,减少井壁塌方和堵塞等问题,提高钻进速度和可钻性。

最后,还有其他因素也会影响岩石的可钻性,如地温、压力、地层流体等。

岩石可钻性的测定

岩石可钻性的测定

岩石可钻性的测定一、实验目的1.了解岩石的可钻性;2.掌握岩石可钻性的测量方法。

二、实验原理1.实验设备实验中使用岩石可钻性测试仪来测量岩石的可钻性,如下图 1 所示。

设备的具体技术指标参见《岩石可钻性测定及分级方法-SY/T 5426-2000》。

图1 岩石可钻性测试仪2.测量原理使用特制微钻头(牙轮钻头或PDC 钻头),以一定的钻压(牙轮钻头为890N ±20NPDC 钻头为500N ±10N )和转速(55r/min ±1r/min )在岩样上钻三个特定深度的孔(牙轮钻头为2.4mm ,PDC 钻头为3mm ),取三个孔钻进时间的平均值为岩样的钻时(t d ),对t d 取以2 为底的对数值作为该岩样的可钻性级值K d 计算公式如下所示:K d =log 2 t求得可钻性级值后,再查岩石可钻性分级标准对照表(如下表1 所示)进行定级。

表1 岩石可钻性分级对照表三、实验步骤1. 试样用石油钻井所取井下岩心或地面采的岩石,岩样制备成圆柱体(直径40-100mm,高度30-80mm)或长方体(长宽各100mm,高度20-100mm),端面平行度公差值≤0.2mm,试验前将试样放在温度设定为105-110℃的干燥箱内烘烤24 小时;2. 将手轮上移至最上端,取下岩心支架、钻头和接屑盘并清扫干净;3. 装上接屑盘,将所选的微型钻头安装在花键轴上端(注意:钻头上键槽应对准花键轴上端的键!),安装好钻头后,将岩心支架回归原位;4. 关闭所有钻进模式(牙轮模式和PDC 模式),打开总电源,打开相应的钻进模式开关(牙轮模式或PDC 模式,开关如图2 所示),打开电机调速器上的电机开关,开动电机,调电机至规定转速55 转/分(注意:教师进行此项调速操作,学生请不要调电机转速,避免产生危险!),然后关闭电机开关;图2 钻进模式开关示意图5. 选择好相应的钻压砝码(牙轮钻头用两个砝码,PDC 钻头只用一个下部大砝码),放在砝码支架上;6. 将准备好的试样放在岩心支架上,手轮下移,稍用力夹紧岩样,如果钻头高出岩心支架,应在轻轻夹紧岩样的同时,逆时针转动小手摇泵手轮,卸掉液压系统压力(注意:要确保岩样的钻进面一定为平面!)。

岩石的可钻性的概念及影响的因素

岩石的可钻性的概念及影响的因素

岩石的可钻性的概念及影响的因素
可钻性是指在岩石钻探过程中,岩石能够形成稳定的钻眼并且黏附在钻探工具上的程度。

岩石的可钻性受到许多影响因素,以下是其中的一些。

1. 岩石的物理特性
岩石的硬度、密度、结构和断口等物理特性是影响可钻性的关键因素。

通常来说,硬度越高的岩石越难以钻探,因为钻探工具需要更多的能量才能穿过岩石表面。

而岩石的密度和结构则指向它的稳定性,也就是在钻探过程中岩石是否会坍塌。

这些特性还会影响岩层中孔隙的大小和数量,因此,不同的岩石类型会有不同的可钻性。

2. 地下水和水压力
地下水是指岩石中的水分分布。

地下水的存在会增加钻探的难度和成本,因为钻掘物需要对水压进行相应的处理,同时,水分也会对岩石的强度产生影响。

3. 粘结力和摩擦力
在钻探过程中,钻头需要用力拉伸钢杆并在岩石表面打压而引起粘结力和摩擦力。

这些力量决定了岩石是否能够黏附在钻头上并进行钻探。

如果钻探工具和岩石之间的摩擦力较大,则可能导致钻掘工具损坏或卡住。

4. 钻杆的使用情况
钻杆是钻探的基本工具,影响钻探的深度和方向。

钻杆的质量以及上下移动的速度和角度,直接影响可钻性。

如果钻杆的角度和深度不当,则可能导致钻掘物断裂或钻掘工具卡住。

可钻性是岩石钻掘的一个关键因素,许多因素都会影响它。

理解这些因素对于决定钻掘计划和预测钻掘效果至关重要。

岩石可钻性分级研究进展

岩石可钻性分级研究进展

岩石可钻性分级研究进展摘要:文内综述介绍了近三十年来的国际岩石可钻性研究概况。

对一些典型的分级方法做了介绍,对于深人开展我国创造性的岩石可钻性研究应当有所裨益。

关键词:岩石;可钻性;分级1 石可钻性及可钻性分级研究概况岩石可钻性是在某种规定的指标和技术下,以一定量度来表示岩石破碎的难易程度,也即是岩石对钻头破碎岩石的一种阻抗程度。

岩石可钻性不仅取决于岩石自身的物理力学性质,还与钻进的工艺技术措施有关,所以它是岩石在钻进过程中显示出来的综合性指标。

根据岩石本身固有抗钻能力的大小,结合不同碎岩方式,可对岩石可钻性做出定量划分。

可钻性级值是指导地质分层及钻头选型工作的重要参数,也是提高机械钻速、降低钻井成本的重要途径,岩石的可钻性是决定钻进效率的基本因素。

2 现有的岩石可钻性分级方法现有的岩石可钻性分级方法种类繁多,较有代表性的有下述几种。

2.1 传统法2.1.1压入硬度法压入硬度法是利用压入硬度计测出岩石的压入硬度值作为岩石的可钻性指标。

压入硬度法是测定岩石的某点或有限点抵抗外力入侵的能力,而岩石是由大大小小不规则的矿物颗粒组成的。

矿物颗粒在空间的排列是任意的,颗粒间存在很多空洞和缝隙,岩石结构上的这种特殊性决定了岩石各点的压入硬度值有很大的差异,整块岩石的可钻性不应该也不可能由某点或某几点的压入硬度值来确定。

2.1.2点载法点载法是由点载仪测得的,用点载强度系数作为衡量岩石的可钻性指标。

点载强度系数由岩石样品在三向应力状态下产生破坏时的点载决定。

点载法不能从可钻性上把岩石分开。

这是因为岩石在三向应力状态下,产生张性破坏,而各种岩石都存在许多缝隙,岩石破坏是由于在缝隙处产生应力集中。

这样点载法的测定结果实际上是岩石裂隙发育程度的反映。

2.1.3 微钻头钻进法微钻头钻进法是在室内运用可钻性测定仪确定岩石的可钻性,利用穿孔速度和牙轮磨损情况,压痕试验中确定的压痕器指数,以及抗压强度试验结果,对岩石的可钻性进行综合评定。

岩石可钻性名词解释

岩石可钻性名词解释

岩石可钻性名词解释岩石的可钻性是指岩石的属性及其受敲击后,可以用钻头、钻头或其他螺丝钻等手段施加推力,切割出钻孔的能力。

岩石有一些不同的状态,它们可以根据矿物组成特征和结构特征来判断其可钻性。

岩石可钻性是指以钻头或其他钻头将岩石分割开来,并制成不同类型和形状的矿物粉末或砂粒的能力。

岩石可钻性与岩石结构有密切关系。

对于任何一种岩石,其可钻性取决于其矿物组成和结构特征。

通常情况下,岩石的结构决定岩石的可钻性。

例如,普通的岩石,其晶粒体态单质或结晶体态细小时,其可钻性就较高;而岩石的孔隙率、细粒含量、粘土矿物含量及其结构所具有的破裂性都会影响其可钻性。

岩石可钻性的大致分类是根据其矿物结构特征及其受敲击后所表现出的可钻性程度来做出的,按照结构特征和可钻性程度,常见的岩石可钻性分为大家常见的四种:破碎性可钻性、粉碎性可钻性、坚硬可钻性和软可钻性。

破碎性可钻性指岩石具有较强的破坏性,当施加推力时,会轻易地产生碎片,但由于其碎片受到擦切原理的影响,钻头的钻深会受到限制,孔壁也会被撞击而形成比较不平整的表面。

破碎性可钻性的岩石主要有:碎屑岩、砂岩、粉砂岩、火山岩等。

粉碎性可钻性指岩石具有一定的韧性,当施加推力时,岩石会产生破碎性及屈服性的半粉状,因而可以更有效地将其吸入钻头内。

粉碎性可钻性的岩石主要有:页岩、砂岩、火山岩等带有一定韧性的岩石,以及特殊矿物的片岩和砂岩。

坚硬可钻性指岩石的矿物组成及破坏性较低,在施加推力的过程中产生破碎性很小,且能把大量钻头磨损所需要的矿物研磨成粉末,从而形成完整钻孔。

坚硬可钻性的岩石主要有:砂质岩、片岩、花岗岩等硬质岩类。

软可钻性指岩石具有很强的碎裂性,施加推力会将岩石破裂成粉末,但由于矿物结构太软、具有自润滑性、能抵抗磨损,使得钻头具有较高的耐用度。

软可钻性的岩石主要有:薄片岩、表面层状岩及其他自润滑性岩石类型。

可钻性是一个复杂的系统,其特征受到岩石矿物结构特征和组成特征的多方面影响,因而岩石的可钻性也因其构造、地下结构、地表构造及矿物结构特征等因素而异。

岩石的可钻性分级与技术参数

岩石的可钻性分级与技术参数

岩石的可钻性分级与技术参数岩石的可钻性,是指钻进时岩石抵抗压力和破碎的能力;也表示进尺效率的高低。

因此,岩石的可钻性是岩石各种特性的综合,是衡量岩石钻进难易程度的主要指标。

一般用单位时间的进尺数来表示可钻性的高低。

按照这个分级方法,常把岩石的可钻性,划分为十二个等级。

由于各种岩石具有不同的物理力学性质,对钻进速度有不同的影响。

在实际钻进过程中,在一定的技术条件下,测定出的各种岩石的钻进速度,通称为岩石的可钻性,也就是岩石被钻头破碎的难易程度。

岩心钻探时岩石的可钻性分级如下:一级:松散土、松软疏散的---代表性岩石为:次生黄土、次生红土、松软不含碎石及角砾的砂土、硅藻土、不含植物根的泥炭质腐殖层。

(可钻性:7.50 m/h,一次提钻长度:2.80 m/次)二级:较软松散岩、较松软疏散的---代表性岩石为:黄土层、红土层、松软的泥炭层、含10%-20%砾石、碎石的黏土质和砂土质、松软的高岭土类、含植物根的腐殖层。

(可钻性:4.00 m/h,一次提钻长度:2.40 m/次)三级:软岩、软的---代表性岩石为:强风化页岩、板岩、千枚岩和片岩,轻微胶结的砂层,含20%砾石、碎石的砂土,含20%礓结石的黄土层,石膏质土层,泥灰岩,滑石片岩、贝壳石灰岩、褐煤、烟煤。

(可钻性:2.45 m/h,一次提钻长度:2.00 m/次)四级:稍软岩、稍软的---代表性岩石为:页岩、砂质页岩、油页岩、炭质页岩、钙质页岩、砂页岩互层,较致密的泥灰岩、泥质砂岩。

块状石灰岩、白云岩、强风化的橄榄岩、纯橄榄岩、蛇纹岩和磷灰岩、中等硬度煤层、岩盐、结晶石膏、高岭土层、火山泥灰岩、冻结的含水砂层。

(可钻性:1.60 m/h,一次提钻长度:1.70 m/次)五级:稍硬岩、稍硬的---代表性岩石为:卵石、碎石及砾石层、崩级层、泥质板岩,绢云母绿泥石板岩、千枚岩和片岩、细粒结晶灰岩、大理石、较松软的砂岩、蛇纹岩、纯橄榄岩、风化的角闪石斑岩和粗面岩、硬烟煤、无烟煤、冻结的粗粒砂、砾层、冻土层。

岩石可钻性研究

岩石可钻性研究

岩石可钻性研究摘要:为满足优质高速钻井的要求,需要对岩石可钻性做出更加精确的观测。

本文对岩石力学参数和可钻性级值通过多元回归的方法得出了围压下岩石可钻性级值的相关模型,通过该模型,可以更准确的预测地层岩石可钻性。

关键词:钻井岩石可钻性级值岩石力学性质1 引言岩石可钻性的概念是在生产实践中形成,用以说明破碎岩石的工具与岩石之间的关系。

现代的岩石可钻性概念有以下几种提法[1]:(1)所谓岩石的可钻性,是指在一定技术条件下钻进岩石的难易程度;(2)可钻性可理解为钻井过程中岩石抗破碎强度的程度,它表征岩石破碎的难易程度;(3)岩石坚固性的钻孔方面的表现称为可钻性。

2 岩石可钻性及力学参数实验2.1 牙轮钻头与PDC岩石可钻性的关系对于岩石可钻性来讲,牙轮钻头的岩石可钻性同PDC钻头的岩石可钻性所反映的都是破岩工具破碎岩石的难易程度,所不同的只是使用的破岩工具不同而已,破岩方式及对不同地层的破岩速度也不同,但是牙轮钻头和PDC钻头的可钻性二者是紧密相连的,牙轮钻头可钻性级值高的地层,用PDC进行钻进可钻性级值同样高,根据实验结果对二者进行回归分析得到相关模型如下[2]:式中:KPDC为PDC钻头岩石可钻性级值;KD为牙轮钻头可钻性级值。

该式的相关系数为0.90。

从相关性模型中可以知道,二者的相关性很强,因此在后面的的研究中只研究牙轮钻头的可钻性,PDC钻头的可钻性与牙轮钻头相似。

2.2 岩石可钻性级值(微钻速/与岩石抗压强度的关系)(如表1)将表1中的岩石可钻性级值与抗压强度进行统计回归分析,可得到用抗压强度表示岩石可钻性级值,回归方程为:式中Kd为可钻性级值,бc为抗压强度(mPa),Vm为微钻速(m/H)式(1)的相关因数为:0.824,式(2)的相关系数为0.726(如图1图2)2.3 岩石可钻性级值与岩石力学参数的关系岩石可钻性级值与岩石物理性质的单元回归分析表明,可钻性和岩石抗压强度和硬度的关系较密切,而与朔性系数关系较差,即硬度和抗压强度是可钻性的综合反应,以下是把岩石的多种力学性质参数(其中包括岩石的抗压强度、硬度、泊松比、朔性系数、杨氏模量)通过多元逐步回归分析得到相关性模型[3、4、5]:式中Kd为牙轮钻头可钻性;бC为岩石抗压强度;Py为岩石硬度;E为杨氏模量;μ为泊松比;k为朔性系数。

岩石的性质与可钻性

岩石的性质与可钻性

第一章岩石的性质与可钻性钻探工作的对象是岩石。

钻探工作必须了解组成地壳的各种岩石矿物。

岩石的物理力学性质,因岩石成分和构造的不同而相差很大,对钻进的影响和反应也是各种各样的。

为了更好地进行钻探工作,提高钻进质量和效率,必须对岩石的物理力学性质进行全面的了解。

研究岩石的物理力学性质,主要是研究与破碎岩石有关的因素,从而掌握其破碎的规律性,以便创造更有利的破碎条件,更好地选择钻进方法、钻进规程和切削具、研磨材料及钻探设备类型等。

岩石是由各种晶质或非晶质的矿物组成。

由于岩石本身分子结构以及成因条件的不同,岩石的基本状态可以分为坚硬的、可塑性的和松散性的三类。

构成坚硬岩石的矿物颗粒间,存在着联结力和摩擦力,且联结力明显地大于摩擦力。

这类岩石破碎以后,无论是湿润、压缩或同时湿润并压缩,都不能恢复原状,如花岗岩、石灰岩。

和坚硬岩石一样,构成塑性岩石的矿物颗粒间也具有联结力和摩擦力,但是其联结力与湿润程度有关,在联结力受到破坏时,如果加以压缩和湿润,则其联结力可以部分地或全部地恢复,各种泥质类岩石都有这种塑性现象。

可以把松散性岩石看成颗粒间相互没有联结力,而只靠摩擦力相结合的岩石。

如疏松的岩石,在被水泡和或完全干燥的情况下,都没有联结力。

当含水达15%~20%时,这种岩石则具有一定的联结力,典型的是砂子和砾石。

岩石的上述三种状态并不是永恒的。

它们可以在外界条件的影响下互相变化,如坚硬岩石经过地质构造和变质作用,能变成塑性岩石;经过外应力的风化作用,也能变成松散性岩石。

而塑性岩石或松散性岩石,经过变质、沉积等作用,也会变成坚硬岩石。

组成地壳的各种岩石,按其成因特征可分为岩浆岩、沉积岩和变质岩。

如果把变质岩包括在岩浆岩中,则在地壳内,岩浆岩占95%,沉积岩占5%(其中泥质页岩占4%,砂岩占0.75%,碳酸盐类岩石占0.25%),上述三类岩石,钻探工作中几乎都会遇到,煤田钻探、石油天然气和地热井勘探,所遇到的岩石大都是沉积岩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六.实验成果及要求
钻头模式
1 钻时/s 2 3 平均钻时/s 岩石可钻性等级
牙d1 t d 2 t d3 3
td 2
K d log
地层可钻性分类表
4 8 16 32 64 128 256 512 测 定 <~ ~ ~ ~ ~ ~ ~ ~ > 值 4 8 16 32 64 128 256 512 1024 1024 s
级 1 2 3 别 类 别 软 4 5 6 中 7 8 9 硬 10
岩石可钻性的测定实验
实验报告封皮
课程名称:岩石力学 指导教师:尹博宁 开课学期:2013-2014学年第一学期
一、实验目的及要求
1.掌握可钻性的测定方法 2.学会如何根据岩石可钻性进行钻 头选型
二、实验条件及要求
岩石可钻性测定仪 钻头直径:32.75mm 钻压:890N(牙轮钻头)或500N(PDC模 式) 转速:55r/min 钻进深度:2.4mm(牙轮模式)或 4mm(PDC模式)
5:按下清零按钮,控制器及计时器归零后 再次按下清零开关。 6:开电机开关。 7:钻完后,电机自动停转,记录计时器显 示的钻时,并关闭电机开关。 8:手摇泵缓慢卸压,使压力表归零。 9:松开旋转手轮,卸下岩石。
五、实验注意事项
1:清零及电机开关按钮按两下复位。 2:手摇泵加压及卸压时不能过快,防止损 坏压力表。 3:仪器接有220V强电,实验过程中不要打 开机柜。
三、实验相关知识点(实验原理)
用微钻头在岩样上钻孔,通过实钻钻时确 定岩石的可钻性
四、实验步骤
1:打开电源总开关前关闭所有钻进模式开关, 打开总电源,根据钻头类型打开相应的钻进模 式。 2:将岩石放在岩心支架上,旋转手轮将岩石压 紧。 3:根据钻头选择两个砝码(PDC用一个大砝 码、牙轮用两个砝码)。 4:用手摇泵进行加压,使砝码升到最上端(小 于1MPa),回退手摇泵,牙轮0.8MPa、 PDC0.6MPa。
相关文档
最新文档