常见流量计分类及原理简介
十二种常见流量计的工作原理

十二种常见流量计的工作原理流量计是一种用于测量流体流量的仪器,广泛应用于各个行业中,包括化工、石油、水处理、食品等领域。
下面将介绍十二种常见流量计的工作原理。
1.常用的流量计之一是流体的涡街流量计。
它利用涡街发生器产生的涡街在流体中发生的频率与流量成正比的原理。
涡街流量计可以通过检测涡街的频率变化来确定流量大小。
2.电磁流量计是另一种常见的流量计类型。
它利用电磁感应原理,通过测量流体流动时感应电极的感应电动势来确定流量大小。
电磁流量计适用于导电流体的测量。
3.超声波流量计利用超声波在流体中传播时的速度变化来测量流速。
它通过发送超声波脉冲到流体中并测量脉冲传播的时间来计算速度,从而确定流量大小。
4.激光流量计是一种利用激光束通过流体流动时发生的散射或吸收来测量流速的流量计。
它可以通过测量激光束通过流体的时间和空间变化来确定流量大小。
5.风轮流量计是一种利用流体冲击风轮并测量风轮转速来计算流速的流量计。
它通常用于测量气体的流量。
6.角度式流量计利用改变流体流动方向时产生的压力差来测量流速。
角度式流量计多用于流速较低的气体测量。
7.差压式流量计利用测量流体流动时产生的压力差来计算流速。
差压式流量计有多种类型,包括孔板、喇叭口、流体节流装置等。
8.漩涡流量计也是一种基于压力差测量流速的流量计。
漩涡流量计通过测量流体通过放置在管道中的障碍物时产生的漩涡频率来确定流量大小。
9.涡轮流量计是一种利用流体通过涡轮时转动涡轮并测量转速来计算流速的流量计。
它通常用于测量液体的流量。
10.浮子流量计利用流体流动时使浮子上升或下降的原理来测量流速。
浮子流量计适用于液体流量的测量。
11.科里奥利流量计利用科里奥利力作用在导体中引起的电压测量流速。
科里奥利流量计通常用于液态和气体流量的测量。
12.光纤流量计是一种利用光纤传感器对流体流动引起的压力变化进行测量的流量计。
它可以测量气体和液体的流量。
以上是十二种常见流量计的工作原理的简要介绍。
流量计的种类原理及应用

流量计的种类、原理及应用1. 介绍流量计是一种用于测量流体流动速度的仪器,广泛应用于工业自动化控制、流量监测和仪表仪器等领域。
本文将介绍流量计的种类、工作原理以及常见的应用场景。
2. 流量计的种类2.1 水轮式流量计•水轮式流量计通过测量流体通过堵塞在管道中心的水轮运动的速度来测量流速。
•水轮式流量计可以分为机械式和电子式两种类型,机械式的工作原理需依靠水轮的旋转来测量流速,而电子式则利用传感器将旋转运动转换为电信号进行测量。
•水轮式流量计适用于液体和气体的流量测量,但对流体中含有颗粒或粘度较高的流体不适用。
2.2 涡街流量计•涡街流量计利用涡街传感器产生的旋涡频率与流速成正比的原理进行测量。
•涡街传感器由一个挡板和一个成对的涡街片组成,流体经过挡板时将形成旋涡,通过测量旋涡频率即可计算流速。
•涡街流量计适用于液体、气体以及蒸汽的流量测量,具有宽测量范围、高精度和抗压能力强等优点。
2.3 电磁流量计•电磁流量计利用法拉第电磁感应定律来测量导电性液体的流速。
•电磁流量计由测量电极和感应电极组成,液体通过时,通过外加电磁场的作用,在液体中产生感应电势,从而进行流速的测量。
•电磁流量计适用于导电性液体的流量测量,并具有广泛的测量范围和较高的精确度。
2.4 超声波流量计•超声波流量计利用超声波在流体中传播速度与流速成正比的原理进行测量。
•超声波流量计具有发送和接收两个超声波传感器,发送器发出超声波信号,经过流体后由接收器接收,通过测量超声波的传播时间来计算流速。
•超声波流量计适用于各种类型流体的流量测量,且对流体中的颗粒不敏感。
3. 流量计的原理流量计的原理主要包括机械原理、电磁原理和超声波原理等。
•机械原理:如水轮式流量计利用水轮的旋转速度来测量流速,涡街流量计利用涡街传感器产生的旋涡频率来测量流速。
•电磁原理:如电磁流量计通过测量法拉第电磁感应定律来测量导电性液体的流速。
•超声波原理:如超声波流量计通过测量超声波在流体中传播速度来测量流速。
各种流量计的种类和原理

各种流量计的种类和原理
各种流量计的种类和原理包括:
1. 流体质量流量计:根据流体通过传感器的质量变化来测量流体流量。
常见的原理包括热式流速计和冷式流速计。
2. 流体体积流量计:根据流体通过传感器的体积变化来测量流体流量。
常见的原理包括涡轮流量计、液体柱流量计和容积式流量计。
3. 流体速度流量计:根据流体通过传感器的速度变化来测量流体流量。
常见的原理包括孔板流量计、喷嘴流量计和剥离式流量计。
4. 流体压降流量计:根据流体通过流量计前后的压力差来测量流体流量。
常见的原理包括差压流量计和扩散式流量计。
5. 超声波流量计:利用超声波传感器测量流体中声波传播的时间差,进而计算出流体流速和流量。
6. 涡街流量计:通过涡街体在流体中产生的涡旋来测量流体流速和流量。
7. 磁性流量计:利用磁场感应原理,通过测量流体中产生的涡流电动势来计算流体流速和流量。
8. 转子流量计:通过测量流体通过转子的圈数或角度来计算流体流速和流量。
9. 视频图像流量计:通过视频图像分析流体表面的变化来测量流体流速和流量。
这些是常见的流量计种类和原理,不同类型的流量计适用于不同的流体和工业应用环境。
流量计种类及原理

流量计种类及原理流量计是一种根据流体的流速密度来测量瞬时流量的仪器,它是流体能力分析的重要标准仪器。
本文将介绍流量计种类和原理,以便能更深入地了解流量计。
流量计主要有量程式流量计、旋转式流量计、威布尔法流量计、热敏流量计、悬置式流量计、电磁流量计、直接读数变送器流量计、化学流量计、油气流量计、调节阀流量计等十种。
1. 量程式流量计:量程式流量计是量程小的流量计,它的工作原理是通过测量流体的流速变化来计算流量,它由一个精确的压力控制开关、一个连接在流量计上的流量变送器以及一个流量测量装置构成,它能够在水质不变的情况下对流速进行精确的测量,从而测量出流量值。
2. 旋转式流量计:旋转式流量计是以齿轮动力计量流体流量的仪器。
它的工作机理是,流体通过流量计的齿轮,齿轮旋转将机械能转换成电能,从而测量出流量。
旋转式流量计的测量范围可达183 m3/h,使用它可以有效节能。
3. 威布尔法流量计:威布尔法流量计是利用威布尔气动力原理测量流体流量的仪器。
它的工作原理是,当流体通过流量计时,将产生旋流,旋流叶格会产生涡街,这些涡流将会使威布尔法叶片转动,从而测量出流量。
4. 热敏流量计:热敏流量计是一种通过测量流体温度和密度变化来测量流量的仪器。
它的工作原理是在流量计的传感器部件上安装热检测器,热检测器可以检测流体的温度变化,和流体之间的热量转移,从而测量出流量。
5. 悬置式流量计:悬置式流量计是通过测量流体悬置物质而测量流量的仪器。
它的工作原理是流体流过流量计时会携带少量悬置物质,根据悬置物质携带速率的不一样,可以检测出流量。
6. 电磁流量计:电磁流量计是一种依靠表面电位差变化来测量瞬时流量的仪器。
它的工作原理是,当流体流过电磁流量计时,必将改变电子在电导体表面的密度,从而改变电位差,由电位差可以准确测量出流量。
7. 直接读数变送器流量计:直接读数变送器流量计是一种使用变送器来测量流量的仪器,它的工作原理是将变送器测量的压力和温度与标定时的压力和温度相比较,从而可以准确测量出流量,并外接仪表显示流量数值。
20种流量计工作原理及常见故障分析

20种流量计工作原理及常见故障分析本文将介绍20种常见的流量计工作原理及其可能的故障分析。
流量计是用于测量液体或气体流量的设备,广泛应用于工业和科学领域。
了解不同类型流量计的工作原理以及可能的故障情况,对于维护和故障排查都非常有帮助。
1. 机械流量计机械流量计通过测量流体通过一个旋转或移动的机械部件来计量流量。
常见机械流量计包括涡轮流量计、阀盘流量计和液体堰流量计等。
可能的故障分析包括机械部件磨损、堵塞或卡住。
2. 磁性流量计磁性流量计利用流体中导电性物质的运动来测量流量。
通过应用一个磁场,测量液体中的电信号可以确定流量。
故障分析包括电磁线圈损坏、导电性物质浓度变化和磁场干扰等。
3. 质量流量计质量流量计通过测量物质的质量来计量流量,而不是通过测量体积。
常见的质量流量计包括热式质量流量计和压差式质量流量计。
故障分析包括传感器损坏、温度变化和压力波动等。
4. 超声波流量计超声波流量计利用超声波在流体中的传播速度来测量流量。
通过发送和接收超声波脉冲,可以计算流体的流速和体积。
故障分析包括传感器故障、气泡或颗粒物的干扰和温度变化等。
5. 压差流量计压差流量计通过测量流体通过管道时产生的压差来计量流量。
常见的压差流量计包括孔板流量计、流量喇叭和节流装置等。
故障分析包括管道堵塞、压差计损坏和压力波动等。
6. 热式流量计热式流量计利用流体通过一个加热元件时,该加热元件附近的温度变化来测量流量。
故障分析包括传感器损坏、温度变化和流体成分变化等。
7. 压力式流量计压力式流量计通过测量流体通过管道时产生的压力来计量流量。
常见的压力式流量计包括涡街流量计、差压流量计和泊松式流量计等。
故障分析包括传感器故障、管道泄漏和压力波动等。
8. 温度式流量计温度式流量计利用热量传导的原理来测量流体的流量。
通过测量流体通过一个加热元件时的温度变化来计算流速。
故障分析包括加热元件损坏、温度传感器故障和流体性质变化等。
9. 激光式流量计激光式流量计利用激光束在流体中的传播速度来测量流量。
流量计类型及原理 流量计是如何工作的

流量计类型及原理流量计是如何工作的流量计类型及原理一、按测量原理分类(1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。
(2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。
(3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。
(4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。
(5)光学原理:激光式、光电式等是属于此类原理的仪表。
(6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表.(7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。
二、按流量计结构原理分类按当前流量计产品的实际情况,依据流量计的结构原理,大致上可归纳为以下几种类型:1.容积式流量计容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。
流量越大,度量的次数越多,输出的频率越高。
容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。
依据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮番量计、腰轮番量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等.2.叶轮式流量计叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。
典型的叶轮式流量计是水表和涡轮番量计,其结构可以是机械传动输出式或电脉冲输出式。
一般机械式传动输出的水表精准度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。
电脉冲信号输出的涡轮番量计的精准度较高,一般误差为±0.2%一0.5%。
3.差压式流量计(变压降式流量计)差压式流量计由一次装置和二次装置构成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。
液体流量计的原理和分类

液体流量计的原理和分类液体流量计是一种用于测量液体流动速率的仪器,广泛应用于工业、农业、环境监测等领域。
液体流量计的准确性和可靠性对于生产过程的控制和优化至关重要。
本文将介绍液体流量计的原理和分类。
一、原理液体流量计的工作原理基于流体的压力、速度、体积和其它参数之间的相互关系。
常见的液体流量计原理如下:1.电磁流量计电磁流量计通过液体流经导电管道时的涡流效应来测量流量。
当液体通过管道时,电磁流量计在管道的两端形成一对垂直的磁场,并在液体中引起涡流。
通过测量涡流的频率和振幅,可以确定液体流量。
2.超声波流量计超声波流量计利用超声波在液体中传播的速度变化来测量流量。
它通过发射和接收超声波信号,在液体中形成一个声波传感器。
当液体流经传感器时,声波传播速度的变化将导致传感器信号的频率变化,从而确定流量。
3.质量流量计质量流量计测量的是单位时间内通过管道的液体质量。
它通过在管道中安装一个质量传感器,测量液体流经管道时的质量变化。
通过计算质量变化与时间的比率,可以确定流体的质量流量。
二、分类液体流量计根据其工作原理和结构特点,可以分为多种类型。
下面将介绍几种常见的液体流量计分类:1.涡轮流量计涡轮流量计利用液体流经旋转的涡轮产生的力矩或旋转角速度来测量流量。
它适用于测量低流速和中小口径管道中的液体流量,广泛应用于液体计量。
2.涡街流量计涡街流量计通过涡街传感器感应流体中的涡旋,通过测量涡旋频率来测量流量。
它具有简单、结构紧凑、响应速度快等优点,并且适用于液体的计量和控制。
3.电磁流量计电磁流量计是利用液体中感应电磁力的原理来测量流量的。
它具有测量范围广、准确性高等特点,适用于各种液体的流量测量。
4.超声波流量计超声波流量计利用超声波在液体中传播的速度变化来测量流量。
它适用于各种液体,特别适用于高温、高压和腐蚀性液体的测量。
5.管式流量计管式流量计是通过测量流体通过具有已知几何形状的管道的压力差来测量流量。
它具有结构简单、易于维护、适用范围广等优点,适用于各种工况下的流量测量。
各种流量计工作原理

各种流量计工作原理1. 流量计是一种用于测量液体或气体流量的设备。
它基于流体力学原理,通过测量流体通过特定管道或通道的速度、压力或转速来确定流体的流量。
2. 其中一种常见的流量计是差压流量计。
它利用流体通过管道时所产生的差压来测量流量。
差压流量计中包括一个流量传感器和一个压力传感器。
流体通过测量管道中的压力差,从而确定流量值。
3. 另一种常见的流量计是涡轮流量计。
它利用流体通过涡轮叶片时产生的涡旋效应来测量流量。
涡轮流量计中包括一个涡轮和一个传感器。
流体通过转动的涡轮,从而改变传感器的输出信号,进而确定流量值。
4. 电磁流量计是基于电磁感应原理工作的一种流量计。
它利用流体通过导电管道时所产生的电磁感应来测量流量。
电磁流量计包括一个电磁场发生器和一个电极。
当流体通过导电管道时,会引起电磁感应,进而改变电极上的电压信号,最终确定流量值。
5. 超声波流量计则是利用超声波在流体中传播的特性来测量流量。
它通过发射和接收超声波的装置来测量流体通过管道时的传播时间和速度,从而确定流量值。
6. 核子流量计是利用核辐射的原理来测量流体流量的一种流量计。
它通过测量流体中的核辐射强度来间接确定流量值,其中包括伽马射线流量计和放射性同位素流量计等。
7. 质量流量计是基于测量流体质量流量而非体积流量的一种流量计。
它一般通过测量流体通过管道的质量变化来确定流量值,其中包括热式质量流量计、动态力平衡质量流量计等。
8. 涡街流量计是一种利用流体通过涡街传感器时产生涡街效应来测量流量的流量计。
它通过测量或计数流体中的涡旋数量来确定流量值。
需要注意的是,不同类型的流量计适用于不同的应用场景和流体介质,具体使用哪种流量计需要根据实际情况进行选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见流量计分类及原理简介测量流体流量的仪表统称为流量计或流量表.流量计是工业测量中重要的仪表之一.随着工业生产的发展,对流量测量的准确度和范围的要求越来越高,流量测量技术日新月异.为了适应各种用途,各种类型的流量计相继问世。
目前已投入使用的流量计已超过100种。
每种产品都有它特定的适用性,也都有它的局限性。
按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。
按流量计的结构原理进行分类:有容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计。
按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。
总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。
因此,以严格意义来分流量计和总量表已无实际意义。
?一、按测量原理分类1.力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。
??2.电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。
??3.声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。
??4.热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。
??5.光学原理:激光式、光电式等是属于此类原理的仪表。
6.原子物理原理:核磁共振式、核幅射式等是属于此类原理的仪表.??7.其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。
二、按流量计结构原理分类按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型:1.差压式流量计差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。
?差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。
通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等。
?二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。
它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等)。
?差压式流量计的检测件按其作用原理可分为:节流装置、水力阻力式、离心式、动压头式、动压头增益式及射流式几大类。
?检测件又可按其标准化程度分为二大类:标准的和非标准的。
?所谓标准检测件是只要按照标准文件设计、制造、安装和使用,无须经实流标定即可确定其流量值和估算测量误差。
?非标准检测件是成熟程度较差的,尚未列入国际标准中的检测件。
?差压式流量计是一类应用最广泛的流量计,在各类流量仪表中其使用量占居首位。
近年来,由于各种新型流量计的问世,它的使用量百分数逐渐下降,但目前仍是最重要的一类流量计。
优点:?(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;(2)应用范围广泛,至今尚无任何一类流量计可与之相比拟;?(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。
缺点:?(1)测量精度普遍偏低;(2)范围度窄,一般仅3:1~4:1;(3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。
应用概况:?差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作状态方面:常压、高压、真空、常温、高温、低温等;管径方面:从几mm到几m;流动条件方面:亚音速、音速、脉动流等。
它在各工业部门的用量约占流量计全部用量的1/4~1/3。
1.1孔板流量计优点:(1)标准节流件是全世界通用的,并得到了国际标准组织的认可,无需实流校准,即可投用,在流量计中亦是唯一的。
(2)结构易于复制,简单、牢固、性能稳定可靠、价格低廉;(3)应用范围广,包括全部单相流体(液、气、蒸汽)、部分混相流,一般生产过程的管径、工作状态(温度、压力)皆有产品。
(4)检测件和差压显示仪表可分开不同厂家生产,便与专业化规模生产;缺点:(1)测量的重复性、精确度在流量计中属于中等水平,由于众多因素的影响错综复杂,精确度难于提高。
(2)范围度窄,由于流量系数与雷诺数有关,一般范围度仅3∶1?~?4∶1。
(3)有较长的直管段长度要求,一般难于满足。
尤其对较大管径,问题更加突出;(4)压力损失大;通常为维持一台孔板流量计正常运行,水泵需要附加动力克服孔板的压力损失。
该附加耗电量可直接由压力损失和流量计算确定。
一年约需多耗电数万度,折合人民币数万元。
下表中列出了孔板在正常压力损失情况下的能耗计算结果。
其中运行天数按三百五十天计算,电价按0.35元/度计算。
由表中计算电耗数据可见,孔板的附加运行费用是极高的,而采用弯管流量计该运行费用为零!(5)孔板以内孔锐角线来保证精度,因此对腐蚀、磨损、结垢、脏污敏感,长期使用精度难以保证,需每年拆下强检一次。
(6)采用法兰连接,易产生跑、冒、滴、漏问题,大大增加了维护工作量。
2.浮子流量计?浮子流量计,又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力是由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。
?浮子流量计是仅次于差压式流量计应用范围最宽广的一类流量计,特别在小、微流量方面有举足轻重的作用。
?80年代中期,日本、西欧、美国的销售金额占流量仪表的15%~20%。
我国产量1990年估计在12~14万台,其中95%以上为玻璃锥管浮子流量计。
特点:?(1)玻璃锥管浮子流量计结构简单,使用方便,缺点是耐压力低,有玻璃管易碎的较大风险;(2)适用于小管径和低流速;(3)压力损失较低。
3.容积式流量计?容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类。
它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。
? 容积式流量计按其测量元件分类,可分为椭圆齿轮流量计、刮板流量计、双转子流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、液封转筒式流量计、湿式气量计及膜式气量计等。
优点:?(1)计量精度高;?(2)安装管道条件对计量精度没有影响;(3)可用于高粘度液体的测量;(4)范围度宽;?(5)直读式仪表无需外部能源可直接获得累计,总量,清晰明了,操作简便。
缺点:?(1)结果复杂,体积庞大;?(2)被测介质种类、口径、介质工作状态局限性较大;(3)不适用于高、低温场合;?(4)大部分仪表只适用于洁净单相流体;(5)产生噪声及振动。
应用概况:?容积式流量计与差压式流量计、浮子流量计并列为三类使用量最大的流量计,常应用于昂贵介质(油品、天然气等)的总量测量。
?工业发达国家近年PD流量计(不包括家用煤气表和家用水表)的销售金额占流量仪表的13%~23%;我国约占20%,1990年产量(不包括家用煤气表)估计为34万台,其中椭圆齿轮式和腰轮式分别约占70%和20%。
?4.涡轮流量计?涡轮流量计,是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。
?一般它由传感器和显示仪两部分组成,也可做成整体式。
?涡轮流量计和容积式流量计、科里奥利质量流量计称为流量计中三类重复性、精度最佳的产品,作为十大类型流量计之一,其产品已发展为多品种、多系列批量生产的规模。
优点:?(1)高精度,在所有流量计中,属于最精确的流量计;(2)重复性好;?(3)元零点漂移,抗干扰能力好;(4)范围度宽;(5)结构紧凑。
缺点:?(1)不能长期保持校准特性;?(2)流体物性对流量特性有较大影响。
应用概况:?涡轮流量计在以下一些测量对象获得广泛应用:石油、有机液体、无机液、液化气、天然气和低温流体统在欧洲和美国,涡轮流量计在用量上是仅次于孔板流量计的天然计量仪表,仅荷兰在天然气管线上就采用了2600多台各种尺寸,压力从0.8~6.5MPa的气体涡轮流量计,它们已成为优良的天然气计量仪表。
5.涡街流量计(USF)?涡街流量计是在流体中安放一根非流线型游涡发生体,流体在发生体两侧交替地分离释放出两串规则地交错排列的游涡的仪表。
当通流截面一定时,流速与导容积流量成正比。
因此,测量振荡频率即可测得流量.涡街流量计按频率检出方式可分为:应力式、应变式、电容式、热敏式、振动体式、光电式及超声式等。
?这种流量计是70年代开发和发展起来的.由于它兼有无转动部件和脉冲数字输出的优点,很有发展前途。
??优点(1)涡街流量计无可动部件,测量元件结构简单,性能可靠,使用寿命长。
??(2)涡街流量计测量范围宽。
量程比一般能达到1:10。
(3)涡街流量计的体积流量不受被测流体的温度、压力、密度或粘度等热工参数的影响。
一般不需单独标定。
它可以测量液体、气体或蒸汽的流量。
??(4)它造成的压力损失小。
(5)准确度较高,重复性为0.5%,且维护量小。
缺点(1)涡街流量计工作状态下的体积流量不受被测流体温度、压力、密度等热工参数的影响,但液体或蒸汽的最终测量结果应是质量流量,对于气体,最终测量结果应是标准体积流量。
质量流量或标准体积流量都必须通过流体密度进行换算,必须考虑流体工况变化引起的流体密度变化。
(2)造成流量测量误差的因素主要有:管道流速不均造成的测量误差;不能准确确定流体工况变化时的介质密度;将湿饱和蒸汽假设成干饱和蒸汽进行测量。
这些误差如果不加以限制或消除,涡街流量计的总测量误差会很大。
(3)抗振性能差。
外来振动会使涡街流量计产生测量误差,甚至不能正常工作。
通道流体高流速冲击会使涡街发生体的悬臂产生附加振动,使测量精度降低。
大管径影响更为明显。
(4)对测量脏污介质适应性差。
涡街流量计的发生体极易被介质脏污或被污物缠绕,改变几何体尺寸,对测量精度造成极大影响。
(5)直管段要求高。
专家指出,涡街流量计直管段一定要保证前40D后20D,才能满足测量要求。
?(6)耐温性能差。
涡街流量计一般只能测量300℃以下介质的流体流量。
6.电磁流量计?(EMF)?电磁流量计是根据法拉弟电磁感应定律制成的一种测量导电性液体的仪表。
?电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。
70、80年代电磁流量在技术上有重大突破,使它成为应用广泛的一类流量计,在流量仪表中其使用量百分数不断上升。