大学物理电子教案第二篇热学

合集下载

大学物理(第三版)热学 第二章

大学物理(第三版)热学 第二章

一、 理想气体的微观图象
1. 质点 P nkT P 0
在 T 一定的情况下 n 值小 意味着分子间距大 2 .完全弹性碰撞
3. 除碰撞外 分子间无相互作用 f=0
范德瓦耳斯力(简称:范氏力)
f
斥力
合力
r0
O
s
10 -9m r
d
引力
分子力
气体之间的距离
r 8r0 引力可认为是零 可看做理想气体
第3步:dt时间内所有分子对dA的冲量
dI dIi ix 0
1 2
i
dIi
nimi2xdtdA
i
dIi
2ni mi2xdtdA
第4步:由压强的定义得出结果
P

dF dA

dI dtdA

i
ni
m
2 ix
i dA
ixdt
P

dF dA

dI dtdA
2. 气体分子的自由度
单原子分子 双原子分子 多原子分子
i3 i5 i6
二、 能量按自由度均分原理 条件:在温度为T 的平衡态下 1.每一平动自由度具有相同的平均动能
1 2
kT

1 3

3 2
kT

1 2
m
1
3
2

1 2
m
2 x

1 2
m
2 y

1 2
m
2 z
每一平动自由度的平均动能为 1 kT
2
2.平衡态 各自由度地位相等
每一转动自由度 每一振动自由度也具有 与平动自由度相同的平均动能 其值也为 1 kT

大学物理热学讲课教案模板

大学物理热学讲课教案模板

课时安排:2课时教学目标:1. 理解热学的基本概念,包括温度、热量、比热容等。

2. 掌握热力学第一定律和热力学第二定律的基本原理。

3. 能够运用热学公式解决实际问题。

教学重点:1. 热力学第一定律的应用。

2. 热力学第二定律的表述及理解。

3. 热学公式的推导与应用。

教学难点:1. 热力学第一定律与能量守恒的关系。

2. 热力学第二定律的微观意义。

教学准备:1. 多媒体课件。

2. 教学辅助工具:温度计、量筒、压力计等。

3. 实验演示:比热容实验、热力学第一定律实验等。

教学过程:第一课时一、导入1. 回顾上一节课的内容,引出本节课主题——热学。

2. 提出问题:什么是温度?热量?比热容?二、讲授新课1. 温度:介绍温度的定义、单位及测量方法。

2. 热量:解释热量的概念,介绍热传递的方式(传导、对流、辐射)。

3. 比热容:讲解比热容的定义、单位及计算方法。

三、课堂练习1. 计算不同物质的比热容。

2. 根据热量公式,计算物体温度变化。

四、总结1. 总结本节课所学内容,强调重点知识。

2. 布置课后作业。

第二课时一、复习1. 回顾上一节课所学内容,检查学生对知识的掌握情况。

二、讲授新课1. 热力学第一定律:介绍能量守恒定律,阐述热力学第一定律的表述。

2. 热力学第一定律的应用:通过实例分析,讲解热力学第一定律在实际问题中的应用。

3. 热力学第二定律:介绍热力学第二定律的表述,讲解其微观意义。

三、课堂练习1. 根据热力学第一定律,计算物体的内能变化。

2. 根据热力学第二定律,判断热机的工作效率。

四、实验演示1. 比热容实验:演示不同物质的比热容,让学生观察实验现象。

2. 热力学第一定律实验:演示能量守恒定律,让学生验证热力学第一定律。

五、总结1. 总结本节课所学内容,强调重点知识。

2. 布置课后作业。

教学反思:1. 教师在授课过程中,要注意引导学生积极参与课堂讨论,提高学生的学习兴趣。

2. 通过实验演示,帮助学生理解抽象的热学概念,提高学生的实际操作能力。

电子行业《热学》电子教案

电子行业《热学》电子教案

电子行业《热学》电子教案一、导言热学是电子行业中的一个重要概念,它涉及了电子元件的热稳定性、散热设计以及热管理等方面。

本教案旨在介绍电子行业中的热学知识,并提供一些实际案例和应用示例,帮助学员更好地理解这一概念。

二、基本概念1. 热量热量是热学的基本概念之一。

它指的是物体在温度差的作用下,由高温物体向低温物体传递的能量。

电子设备在工作过程中会产生热量,如果不能及时处理,就会导致设备过热、性能下降甚至损坏。

2. 热传导热传导是热量在物体内部传递的过程。

在电子行业中,热传导是指电子元器件内部的热量传递过程,主要通过导热材料进行。

合理选择导热材料并设计良好的散热结构,可以提高元器件的热传导效率。

3. 热阻热阻是指物体抵抗热传导的能力。

在电子行业中,热阻是指电子器件与外界环境之间的热传导阻力。

降低热阻可以有效地改善电子器件的散热性能。

三、热学在电子行业中的应用1. 散热设计在电子设备中,一些元器件在工作过程中会产生大量的热量,如果不能及时散热,就会导致设备过热。

因此,合理的散热设计是电子行业中十分重要的一环。

通过选择合适的散热材料、设计散热结构以及增加散热风扇等方式,可以有效地提高电子设备的散热能力。

2. 热稳定性设计电子器件的性能会随着温度的变化而变化。

在设计电子器件时,需要考虑到温度对性能的影响,并进行合理的热稳定性设计。

通过选择适当的材料、合理的设计电路,可以提高电子器件在高温环境下的稳定性。

3. 环境温度控制电子设备的工作环境温度对其性能和寿命都有很大的影响。

在电子行业中,需要对设备的工作环境进行温度控制,以确保其正常工作。

通过合理的散热设计、空调设备等手段,可以控制设备的环境温度。

四、实际案例1. 智能手机散热设计智能手机在使用过程中,由于各种功能的开启和高性能处理器的运行,会产生大量的热量。

如果不能及时散热,就会导致手机过热,影响使用体验。

因此,智能手机的散热设计非常重要。

智能手机的散热设计一般包括以下几个方面:选择合适的散热材料,增加散热结构,如散热片、散热孔等,以增加散热面积和导热能力;设计合理的散热通道,使热量能够有效地从内部传递到外部;增加散热风扇等。

大学物理热学讲课教案设计

大学物理热学讲课教案设计

一、教学目标1. 知识目标:(1)掌握热学的基本概念和基本规律;(2)理解热力学第一定律和热力学第二定律;(3)熟悉热传递的基本方式,如传导、对流和辐射;(4)了解气体动理论和热力学基础。

2. 能力目标:(1)培养学生运用热学知识解决实际问题的能力;(2)提高学生的实验操作技能和数据分析能力;(3)培养学生的科学探究精神和团队合作能力。

3. 情感目标:(1)激发学生对热学的兴趣,培养学生热爱科学的情感;(2)培养学生的社会责任感和创新意识。

二、教学内容1. 热学基本概念:温度、热量、比热、热能等;2. 热力学第一定律:内能、做功、热传递;3. 热力学第二定律:熵、热力学第二定律的表述;4. 热传递:传导、对流、辐射;5. 气体动理论:理想气体状态方程、压强、温度、体积之间的关系;6. 热力学基础:热力学系统、热力学过程、热力学平衡。

三、教学方法1. 讲授法:系统讲解热学基本概念、基本规律和热力学定律;2. 案例分析法:通过具体案例,引导学生分析问题、解决问题;3. 实验法:通过实验,验证理论知识,提高学生的实验操作技能和数据分析能力;4. 讨论法:组织学生进行课堂讨论,培养学生的科学探究精神和团队合作能力。

四、教学过程1. 导入新课:通过生活中的实例,引导学生关注热现象,激发学习兴趣。

2. 讲解基本概念:讲解温度、热量、比热、热能等基本概念,让学生理解热学的基本规律。

3. 讲解热力学第一定律:通过实例分析,让学生理解内能、做功、热传递之间的关系。

4. 讲解热力学第二定律:讲解熵的概念,分析热力学第二定律的表述,让学生理解热力学第二定律的意义。

5. 讲解热传递:通过实验演示,让学生了解传导、对流、辐射三种热传递方式的特点。

6. 讲解气体动理论:讲解理想气体状态方程,分析压强、温度、体积之间的关系。

7. 讲解热力学基础:讲解热力学系统、热力学过程、热力学平衡等基本概念。

8. 案例分析:通过具体案例,引导学生运用所学知识解决实际问题。

《大学物理实验》-热学

《大学物理实验》-热学

孝感学院《大学物理实验-热学》实验报告日期: 2011 年 月 日 天气:__________ 实 验 室:___________姓名:__________________ 学号:__________ 院系专业:___________ 指导教师:________【实验题目】实验12 金属线胀系数的测定【实验目的】1. 学习用__________或_______________测量_______________。

2. 测量_____________________________________________。

【实验仪器及型号】_______________________________________________________________________【实验原理及预习】 1. 线胀系数实验表明:在一定的温度范围内,原长为L 的物体,受热后其伸长量δ与其温度的增加量t ∆近似成__________,与原长L 亦成__________,即____________________ (式中的比例系数α称为固体的线胀系数) 大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,请查表给出下列材料线胀系数的数量级。

几种材料的线胀系数2. 线胀系数的测量固体的长度随温度的升高而增加,设L 0为物体在温度t =0℃时的长度,则在常温下,物体在t℃时的长度为____________________设物体在温度t 1℃时的长度为L ,温度升高为t 2℃时,其长度增加了δL =____________________ L +δ=____________________由上两式消去L 0,整理后得α=____________________________而在实验条件下,______________所以α可近似写成α=____________________________3. 试估计本实验中金属杆的伸长量,并据此选择合适的测量器具。

大学物理热力学基础教案

大学物理热力学基础教案

大学物理热力学基础教案一、引言1.1 热力学的概念解释热力学是研究物质系统在温度、压力等条件变化时,其宏观性质如何变化的科学。

强调热力学在工程、物理等领域的应用重要性。

1.2 热力学的研究方法描述热力学通过实验和理论分析来研究物质系统的宏观性质。

介绍热力学的基本定律和理论模型。

二、热力学第一定律2.1 能量守恒定律解释能量守恒定律的内容,即在一个封闭系统中,能量不会凭空产生或消失,只能从一种形式转化为另一种形式。

通过示例或实验现象展示能量守恒定律的应用。

2.2 内能定义内能的概念,即系统内部所有分子和原子的动能和势能之和。

解释内能与系统温度、体积等参数的关系。

三、热力学第二定律3.1 熵的概念介绍熵的概念,即系统混乱程度的度量,熵值越大,系统越混乱。

解释熵与系统温度、分子运动等的关系。

3.2 热力学第二定律的表述表述热力学第二定律的不同形式,如熵增原理、卡诺定理等。

通过实际例子或图示展示熵增原理的应用。

四、热力学第三定律4.1 绝对零度的概念解释绝对零度是理论上最低可能的温度,即物质的熵为零的状态。

介绍开尔文温标与摄氏温标的关系。

4.2 熵与绝对零度解释熵与绝对零度之间的关系,即随着温度的降低,熵逐渐减小并趋近于零。

强调熵与绝对零度在热力学研究中的重要性。

五、热力学应用5.1 热机介绍热机的概念,即利用热能转换为机械能的装置。

解释热机的效率和热力学第二定律的关系。

5.2 热传递描述热传递的基本方式,包括导热、对流和辐射。

解释热传递的规律,如傅里叶定律、牛顿热传递定律等。

六、热力学状态方程6.1 理想气体状态方程推导理想气体状态方程PV=nRT,其中P 为压强,V 为体积,n 为物质的量,R 为理想气体常数,T 为温度。

解释理想气体状态方程在一定条件下的适用性。

6.2 物态方程介绍物态方程的概念,它是描述在不同温度和压力下,物质的状态(如固体、液体、气体)如何变化的方程。

举例说明物态方程在实际应用中的重要性。

2024年大学物理热力学基础教案

2024年大学物理热力学基础教案

大学物理热力学基础教案教案大学物理热力学基础一、教学目标1.让学生了解热力学的基本概念、原理和定律,理解热力学系统的性质和变化规律。

2.培养学生运用热力学知识分析和解决实际问题的能力。

3.培养学生的科学思维和创新意识,提高学生的科学素养。

二、教学内容1.热力学第一定律:能量守恒定律在热力学系统中的体现,理解内能、热量和功的概念,掌握热力学第一定律的表达式和运用。

2.热力学第二定律:理解热力学第二定律的两种表述,掌握熵的概念和性质,了解可逆过程和不可逆过程的特点。

3.热力学第三定律:了解热力学第三定律的内容,理解绝对零度的概念。

4.热力学势:掌握内能、焓、自由能和吉布斯自由能的概念和运用,了解热力学势在分析热力学系统变化中的应用。

5.相变和相平衡:理解相变的概念,掌握相平衡条件和相图的分析方法。

6.热力学统计物理基础:了解热力学与统计物理的关系,理解微观态和宏观态的概念,掌握统计物理的基本方法。

三、教学安排1.热力学第一定律:2学时2.热力学第二定律:2学时3.热力学第三定律:1学时4.热力学势:2学时5.相变和相平衡:2学时6.热力学统计物理基础:2学时四、教学方法1.讲授法:讲解热力学的基本概念、原理和定律,阐述热力学系统的性质和变化规律。

2.案例分析法:通过分析实际案例,让学生了解热力学知识在实际问题中的应用。

3.讨论法:针对热力学中的重点和难点问题,组织学生进行课堂讨论,培养学生的科学思维和创新意识。

4.实验法:结合实验课程,让学生亲自动手进行热力学实验,加深对热力学知识的理解和运用。

五、教学评价1.课堂表现:考察学生在课堂上的参与程度、提问和回答问题的积极性。

2.课后作业:布置适量的课后作业,检查学生对课堂知识的掌握程度。

3.期中考试:检验学生对热力学知识的理解和运用能力。

4.期末考试:全面评估学生对热力学知识的掌握程度,以及分析问题和解决问题的能力。

六、教学资源1.教材:《热力学与统计物理》(高等教育出版社)2.参考文献:《大学物理》、《物理学报》等相关期刊和书籍。

大学物理(热学篇)

大学物理(热学篇)
• vx
v1
v´1
x
A1 y °
z
1秒钟A1受到分子的总冲量
2mv x
vx 2x
mv
2 x
x
第三步 N个分子在1秒内对A1的碰撞
A1在1秒内受到的冲量——平均作用力F
F 2mv1x
v1 x 2x
2mv2x
v2x 2x
2mv Nx
vNx 2x
m x
(v12x
v22x
vN2 x )
m x
N
即在平衡态,一个自由度,代表一种独立的 运动和一份能量
如某种分子有t个平动自由度,r个转动自由度v振动 自由度,则分子具有:
平均平动动能 平均转动动能 平均振动动能
为什么均分到各自由度所对应的运动能量都 是二分之一KT呢? 主要是分子不断碰撞以达到平衡态的结果。
注意
1、 一般温度下(T <10 3 K)振
(1)每个分子作用于气壁的冲量I
解(1)每个分子作用于气壁的冲量等于气体 分子动量增量的负值
I 2mv 1.21024kgm/ s
(2)每秒钟碰在器壁单位面积上的分子数n0
解(2)器壁ΔA面积上在Δt时间内碰撞的分子数
N A vt n
z
6
n0
N At
nv 6
n0
1 6
nv
0.31028
/
m3
物体运动形式:平动、转动、振动
自由度数目 i t r v
平转振 动动动
例1 自由运动的质点 (三维空间) 3 个 平动自由度 记作 t = 3
若受到限制,自由度降低 平面上 : t=2 直线上 :t=1
例2 自由运动刚体 (如手榴弹)自由度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p • 平衡态1
平衡过程
• 平衡态2
v
6.2.4 理想气体的状态方程
一、气体的状态方程:
反映平衡态下P、V、T间的关系。
大学物理电子教案第二篇热学
7
二、理想气体: 绝对遵循克拉伯珑方程的气体。
PV m RT 理想气体的状态方程 M
摩尔气体常数:R
PV 00
T
8.31J(mol K)
0
理想气体的状态方程的另一种表达式
孤立系统:系统与外界既没能量传递,又没质量传递。
封闭系统:系统与大学外物理界电子只教案有第二能篇热量学 传递,没有质量传5 递。
6.2.2 系统状态的描述
一、宏观量(状态参量) 压强(P)、体积(V)、温度(T)(可直接测量)
二、微观量 分子的位置、速度、… (不可直接测量)
统计方法
宏观量
微观量
6.2.3 平衡态和平衡过程
空气分子在常温下 v =500m/s.分子不停地碰撞,标准状态
下约 5109次/s。 反映了气体分子热运动的特征:小、多、快、乱。
*统计观点:大量分子运动的综合作用决定体系的宏观性质
反映了分子热运动大学和物理体电子系教案宏第二观篇热性学 质的联系。
3
二、统计规律性:
某一小球落入其中那格是 一个偶然事件。
热运动服从统计规律。
研究对象数量的增加必然引起物理规律的变化。
这就是哲学上的从量变到质变.
大学物理电子教案第二篇热学
4
6.2 平衡态 理想气体状态方程
6.2.1 热力学系统 一、热力学系统(简称系统)
由大量微观粒子所组成的宏观客体。 二、系统的外界(简称外界)
能够与所研究的热力学系统发生相互作用的其它物体。 开放系统:系统与外界既有能量传递,又有质量传递。
伽尔顿板实验
大量小球在空间的分布服从 统计规律。
人们把这种支配大量粒子 综合性质和集体行为的规律性 称为统计规律性。
.......................................................................................................................................
vx vy vz
除需特别考虑外不计分子的重力; 弹性碰撞(能量守恒、动量守恒);
分子运动服从牛顿力学。
理想气体分子像一个个极小的彼此间无相互作用的
遵守牛顿力学规律大的学物弹理电性子教质案第点二篇热学
13
* 统计假设:
若忽略重力影响,达到平衡态时分子按位置的分 布是均匀的, 即分子数密度到处一样.
平衡态时,分子速度沿各方向分量的各种平均值 相等。
依据,分析研究物态变化中有关热功转换的关系和条件。
大学物理电子教案第二篇热学
2
6 气体动理论
6.1 分子热运动与统计规律性
一、气体分子运动理论的基本观点
* 分子观点:宏观物体是由大量不连续微粒—分子(或
原子)组成的。标准状态1mol气体有6.02 1023个分子。
*分子运动观点:气体分子处于永不停息的无规则运动中,
一、平衡态:孤立的热学系统经过很长时间后宏观量
(压强、温度、分子数密度)达到不随时间改变的稳定状
态(热动平衡状态)。
平衡态在PV 图上大用学物一理电点子教来案第表二篇示热学。
6
二、平衡过程:系统从一个平衡态变化到另一平衡态,所 经历的一系列中间状态都无限接近平衡态的过程。
平衡过程在 pV 图上用一条曲线表示。
1托=1mmHg=1.33102 Pa
解:N(n2n1)V
P1 n1kT1 n1
P1 kT1
N(P2 P1)V 1.891018(个)
T Tk
2
1
P PnkTn 2
2
2
2
kT 2 大学物理电子教案第二篇热学
10
2
【例题6-3】 试求(1)气体分子间的平均距离l与压强P、温度T的关系。 (2)求压强为1atm,温度为0o C的情况下气体分子间
P m RT N RT N ( R )T nkT
M V N V V N
0
0
分 子 数n密 N度 : V
玻尔兹大曼 学k物理电常 R 子教N案数 第二1篇.热3: 学 81023JK 0
8
【例题6-1】容积V=30L的高压钢瓶内装有P=130atm的 气,做实验每天需用P1=1atm和V1=400L的氧气,规定氧 压强不能降到P2=10atm以下,以免开启阀门时混进空气。 试计算这瓶氧气使用几天后就需要重新充气。
*个别分子运动(微观量)——无序 大量分子运动(宏观量)——有序(统计规律)
统计方法
宏观量
微观量
大学物理电子教案第二篇热学
12
6.3 压强和温度的微观解释
6.3.1 理想气体压强公式
一、基本假设
* 理想气体分子微观模型假设: 分子当作质点,不占体积; 除碰撞外不计分子之间,分子和器壁之间的相互作用
解:设瓶内原装氧气的质量为m,重新充气时瓶内 剩余氧气的质量为m2,每天用氧的质量为m1,则按理想
气体的状态方程有:
可用天m 数: m2 (PP2)V 9(天)
m1
P1V1
m P RV , TM m 2 P R 2 V,T M m 1 P 1 R V 1 M ,T
大学物理电子教案第二篇热学
THERMOTICS
大学物理电子教案第二篇热学
1
第二篇 热 学
力学:研究物体机械运动。 研究方法:牛顿力学的确定论。
热 学 :研究物体热运动。 研究方法: 分子动理论:研究热现象的微观理论,从物质的微观结构 出发,运用统计平均的方法揭示热现象的微观本质。
热力学:研究热现象的宏观理论,以观察和实验事实为
9
【例题6-2】
容积为11.2 103 m3的真空系统在t1 27oC时P1 1.0 105托, 为提高真空度,将系统放在t2 300oC的烘箱内烘烤,使吸 附在器壁上的分子释放出来,若烘烤后压强增为
P2 1.0102 托. 问:升温后释放出多少个分子。
1大气压(atm) 760mmHg 1.013105 Pa
的平均距离l。
解:(1) PnkTnN1V3l
V nN
1
l kT 3 P
(2) l kT P
1
3
1
1.38 1023
273
3
1.013105
3.34 109 m (约为分子直径的10倍)
大学物理电子教案第二篇热学
11
*气体分子热运动的特征:小、多、快、乱。
相关文档
最新文档