教科版 高中物理教案 机械振动与机械波
高三物理第13讲 机械振动和机械波(教案)

第13讲 机械振动和机械波适用学科 物理 适用年级高三适用区域 全国 课时时长(分钟) 120知识点1:机械振动 2:波的周期性 3:波的特性教学目标1:了解振动和波的考查特点 2:掌握基本知识和解题方法。
3:学会利用波的特性解题教学重点1:机械振动 2:波的周期性教学难点1:波的周期性 3:波的特性【重点知识精讲和知识拓展】1. 简谐运动的回复力满足:F=-kx 。
2.简谐运动的运动方程及速度、加速度的瞬时表达式振动方程:x =A cos(ωt +φ). 速度表达式: v =-ωA sin(ωt +φ). 加速度表达式:a =-ω2A cos(ωt +φ).3. 简谐运动的周期和能量振动的周期:T =2πkm . 振动的能量:E =21mv 2+21kx 2=21kA 2.弹簧振子和单摆,振幅越大,系统能量越大。
在振动过程中,动能和势能相互转化,机械能守恒。
4.物体做简谐运动其位移、回复力、加速度、速度、动量随时间做周期性变化,变化周期为简谐运动周期T。
动能和势能也随时间做周期性变化,变化周期为T/2.5.单摆振动周期公式单摆做简谐运动时,周期公式为T=2πLg,此公式不仅适用于基本单摆装置,也适用于其他较为复杂情况下的简谐运动,此时"L"应为等效摆长,"g"为等效重力加速度。
灵活运用等效摆长和等效重力加速度,能给我们处理问题带来很多方便。
6.摆钟问题。
利用单摆运动的等时性可制成摆钟计时。
计算摆钟类问题方法是:在一定时间内,摆钟走过的格子数n(n可以是分钟数,也可以是秒数)与频率f成正比。
即n∝f∝1L。
7.机械波传播机械波的传播是“前带后,后跟前,运动状态向后传”。
前带后是各个质点相继起振的内因,后跟前,使各个质点的起振方向和运动形式和波源完全相同,只是后一质点在时间上滞后前一质点。
沿波动传播方向上各个介质都做受迫振动,起振方向由波源决定,其振动频率等于波源的振动频率。
机械波传播的是波源的振动形式和波源提供的能量、信息,质点不随波迁移,质点只在平衡位置附近做简谐运动。
2024-2025学年高中物理第二章机械波1机械波的形成和传播教案1教科版选修3-4

小组讨论:让学生分组讨论机械波的未来发展或改进方向,并提出创新性的想法或建议。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与机械波相关的主题进行深入讨论。
小组内讨论该主题的现状、挑战以及可能的解决方案。
3.学生可能遇到的困难和挑战:在理解机械波的形成和传播过程中,学生可能会遇到以下困难:首先,对波动现象背后的微观机制理解不够深入,难以将振动与波动联系起来;其次,对于波的传播方向的误解,可能会混淆波的传播与振动的方向;此外,学生在进行实验探究时,可能对实验数据的处理和分析感到困惑,需要教师的指导和支持。
二、新课内容(25分钟)
1.讲解机械波的定义和分类,结合课本图示进行演示。
2.分析机械波的形成原理,引导学生通过实验探究。
3.讲解机械波的传播条件和特性,结合实例进行说明。
4.分析机械波的能量传递和振动方向,进行课堂讨论。
三、课堂练习(10分钟)
1.根据新课内容,设计相关习题,让学生巩固所学知识。
2.对学生进行个别指导,解答疑惑。
2.讨论法:将学生分成小组,针对机械波的形成和传播原理进行讨论。教师提出问题,引导学生展开思考,鼓励他们发表自己的观点。最后,组织各小组分享讨论成果,进行总结和评价。
3.实验法:组织学生进行分组实验,指导他们设计实验方案、操作实验设备、记录实验数据等。实验过程中,教师巡回指导,解答学生疑问。实验结束后,组织学生进行实验报告撰写和汇报。
7.机械波的反射和折射
当机械波遇到介质的边界时,会发生反射和折射现象。
-反射:波从介质边界反弹回来,遵循反射定律。
机械振动和机械波·机械波·教案

机械振动和机械波·机械波·教案一、教学目标1.在物理知识方面的要求:(1)明确机械波的产生条件;(2)掌握机械波的形成过程及波动传播过程的特征;(3)了解机械波的种类极其传播特征;(4)掌握描述机械波的物理量(包括波长、频率、波速)。
2.要重视观察演示实验,对波的产生条件及形成过程有全面的理解,同时要求学生仔细分析课本的插图。
3.在教学过程中教与学双方要重视引导和自觉培养正确的思想方法。
二、重点、难点分析1.重点是机械波的形成过程及描述;2.难点是机械波的形成过程及描述。
三、教具1.演示绳波的形成的长绳;2.横波、纵波演示仪;3.描述波的形成过程的挂图。
四、主要教学过程(一)引入新课我们学习过的机械振动是描述单个质点的运动形式,这一节课我们来学习由大量质点构成的弹性媒质的整体的一种运动形式——机械波。
(二)教学过程设计1.机械波的产生条件例子——水波:向平静的水面投一小石子或用小树枝不断地点水,会看到水面上一圈圈起伏不平的波纹逐渐向四周传播出去,形成水波。
演示——绳波:用手握住绳子的一端上下抖动,就会看到凸凹相间的波向绳的另一端传播出去,形成绳波。
以上两种波都可以叫做机械波。
(1)机械波的概念:机械振动在介质中的传播就形成机械波(2)机械波的产生条件:振源和介质。
振源——产生机械振动的物质,如在绳波中的手的不停抖动就是振源。
介质——传播振动的媒质,如绳子、水。
2.机械波的形成过程(1)介质模型:把介质看成由无数个质点弹性连接而成,可以想象为(图1所示)(2)机械波的形成过程:由于相邻质点的力的作用,当介质中某一质点发生振动时,就会带动周围的质点振动起来,从而使振动向远处传播。
例如:图2表示绳上一列波的形成过程。
图中1到18各小点代表绳上的一排质点,质点间有弹力联系着。
图中的第一行表示在开始时刻(t=0)各质点的位置,这时所有质点都处在平衡位置。
其中第一个质点受到外力作用将开始在垂直方向上做简谐运动,设振动周期为T,则第二行表示经过T/4时各质点的位置,这时质点1已达到最大位移,正开始向下运动;质点2的振动较质点1落后一些,仍向上运动;质点3更落后一些,此时振动刚传到了质点4。
《主题二 第四节 机械振动和机械波》教学设计教学反思

《机械振动和机械波》教学设计方案(第一课时)一、教学目标1. 理解机械振动和机械波的基本概念和原理。
2. 掌握简谐振动的基本特征和计算方法。
3. 了解波的传播规律,包括波的干涉和衍射现象。
4. 学会利用波动原理解决实际问题。
二、教学重难点1. 教学重点:简谐振动和波的传播原理。
2. 教学难点:波的干涉和衍射现象的理解和应用。
三、教学准备1. 准备教学PPT,包含图片、动画和视频等多媒体素材。
2. 准备实验器材,如弹簧振子、示波器、水波模型等。
3. 准备习题集和案例分析材料,供学生练习。
4. 安排实验室或教室,进行现场教学。
四、教学过程:(一)引入1. 复习提问:请学生回顾初中物理中学习的机械振动和机械波的概念。
2. 教师介绍:高中物理中,我们将从更深入的角度来研究机械振动和机械波。
(二)新课教学1. 机械振动的定义和分类:(1)教师讲解:振动物体在平衡位置附近往复运动的特性。
(2)举例:弹簧振子、单摆等常见机械振动。
2. 简谐运动:(1)教师介绍简谐运动的定义和特点。
(2)教师引导学生理解简谐运动的能量转化过程。
3. 机械波的描述:(1)教师讲解波的传播过程,包括波源、介质和波速等概念。
(2)教师介绍如何用数学模型描述波的传播。
4. 波的叠加和干涉:(1)教师讲解波的叠加原理,并演示波的叠加实验。
(2)教师介绍波的干涉现象及其产生条件。
5. 多普勒效应:(1)教师介绍多普勒效应的基本概念。
(2)教师通过实验演示,帮助学生理解这一现象的产生原理。
6. 机械振动和机械波在实际生活中的应用:(1)教师举例说明机械振动和机械波在生产生活中的应用,如振动筛、声波测距等。
(2)鼓励学生举出更多相关应用实例。
(三)课堂练习:布置一些与本节课内容相关的练习题,帮助学生巩固所学知识。
(四)小结:教师对本节课的内容进行总结,强调重点和难点。
(五)作业布置:给学生布置一些与机械振动和机械波相关的思考题,以进一步加深学生对知识的理解和掌握。
高中物理教案2024年

高中物理教案2024年
教学目标:
1. 了解机械振动的基本概念和特点;
2. 掌握机械振动的表征方法和参数;
3. 了解机械振动的应用和意义。
教学重点和难点:
重点:机械振动的基本概念和表征方法;
难点:机械振动的应用和意义。
教学准备:
1. 教材:高中物理教材《物理世界与人》;
2. 教具:示波器、振动实验仪、示例振动器等。
教学过程:
一、导入(5分钟)
老师通过展示一个振动器的实验现象,引出机械振动的概念,并与学生讨论振动在日常生活中的应用。
二、讲授(15分钟)
1. 机械振动的基本概念:振动的定义、周期、频率、振幅等;
2. 机械振动的表征方法和参数:简谐振动、振动的叠加等;
3. 机械振动的应用和意义:振动在工程、科学研究等领域的应用。
三、实验(20分钟)
学生分组进行振动实验,通过观察示波器显示的波形图,掌握振动的特点和规律。
四、讨论(10分钟)
学生就振动的应用和意义展开讨论,分享自己的观点和经验。
五、总结(5分钟)
老师总结本节课的内容,强调机械振动在生活中的重要性,鼓励学生进一步探索振动的应用。
六、作业布置(5分钟)
布置作业:阅读相关资料,了解更多机械振动的应用领域,并写下自己的感想和见解。
教学反思:
本节课通过实验、讨论等方式,引导学生深入了解机械振动的基本概念和应用,提高了学生对物理知识的理解和应用能力。
在未来的教学中,可以通过更多实验和案例引导学生深入探讨振动的规律和应用。
机械振动和机械波教案

机械振动和机械波第一部分机械振动1机械振动定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F=-kx,是判断一个振动是不是简谐运动的充分必要条件。
注(1)简谐运动的位移必须是指偏离平衡位置的位移。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
(2)回复力是一种效果力,是振动物体在沿振动方向上所受的合力。
(3)“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态。
)(4)做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。
(1)F x,方向与位移方向相反。
(2)a F,方向与F方向相同。
(3)a x,方向与位移方向相反。
(4):当v、a同向时v一定增大;当v、a反向时,v一定减小。
2.表达式,其中A是振幅,是t=0时的相位,即初相位或初相。
3.简谐运动的图象表示振动物体的位移随时间变化的规律。
(1)从平衡位置开始计时,函数表达式为,图象如图1。
(2)从最大位移处开始计时,函数表达式,图象如图2。
简谐运动的过程特点1.变化特点:抓住两条线第一,从中间到两边(平衡位置到最大位移):,,,动能,势能,机械能E不变。
第二,从两边到中间(最大位移到平衡位置):,动能,势能,机械能E不变。
.从图象中可以知道(1)任一个时刻质点的位移(2)振幅A (3)周期T (4)速度方向(5)加速度:注:(1)简谐运动的图象不是振动质点的轨迹。
(2)简谐运动的周期性体现在振动图象上是曲线的重复性。
简谐运动的图象任一时刻图线上过该点切线的斜率数值代表该时刻振子的速度大小,正负表示速度的方向,斜率为正时表示速度沿x正向,斜率为负时表示速度沿x负向。
1:一质点做简谐振动,其位移x与时间t的关系曲线如图所示,由可知() A.质点振动频率是4Hz B.t=2s时,质点的加速度最大C.质点的振幅为2cm D.t=3s时,质点所受合外力最大答案:BC2、一质点简谐运动的振动图象如图所示。
高一物理教案(精选7篇)

高一物理教案(精选7篇)高一物理教案全册篇一一,教材分析(1) 教材的地位与作用机械波是高中物理教材一册(必修)的第五章机械振动和机械波的第七节内容。
机械波是机械运动中比较复杂的运动形式。
它作为周期性变化的运动,广泛地涉及物理学的各个领域。
上好这节课不仅可以巩固以前学过的有关运动学和动力学的知识,还可为今后学习电磁振荡,电磁波和光的本性打下良好的基础。
通过本节课的教学,学生初步认识到学习波动知识时重要的是要会确定波的总的运动情况,即由波长,频率和波速等物理量来表征运动情况,而不是确定单个质点在某一时刻的位置,速度和加速度。
对培养学生科学的思维,研究方法,发展学生智力有着特殊的意义。
(2) 教学目标根据学生的认知基础,心理特征及本节课教材大纲要求,拟定下列教学目标。
知识目标明确机械波的产生条件;掌握机械波的形成过程及波动传播过程的特征;了解机械波的种类及其传播特征;初步了解描述机械波的物理量。
能力目标培养学生观察分析,逻辑思维及归纳总结的自主学习能力;培养学生的时空观念。
3,德育目标培养学生用辨证的观点探究物理过程及其规律,对学生进行唯物世界观和科学方法论的教育。
(2) 重点,难点分析机械波的形成过程及描述是本节课的重点和难点。
因为波动过程的细节不容易体现出来,教学过程通过课件模拟物理过程的方法进行重点难点的突破,使学生获得较直观的信息,充分调动学生的主观能动作用,以激发学生研究物理问题的浓厚兴趣。
二,教法与学法现代教育理论认为,科学教学须让学生们参与以探究为目标的研究活动,使他们同老师和学生一起在相互启发相互促进。
对从学生们所亲历的事物中产生的一些实际问题进行探究,是科学教学所要采取的主要做法。
基于这种理念,本节课主要采用指导——自主学习法,通过课件和实验演示,引导学生进行问题探究和讨论,以期达到教学目标。
有着丰富生活体会的学生往往对波动形成的物理过程有着浓厚的兴趣。
为了使学生能认识机械波这一特殊的运动形式,教学中可以渗透指导——自主学习的教改思想,鼓励学生积极参与,突出学法指导,思维启发,和师生的情感交流。
机械振动机械波教案

机械振动机械波教案一、教学目标1.了解机械振动的基本概念和特点;2.了解机械波的基本概念和特点;3.能够描述机械振动的特征参数和振动方程;4.能够描述机械波的传播特点和波动方程;5.能够解决与机械振动和机械波相关的问题。
二、教学重点1.机械振动的特征参数和振动方程;2.机械波的传播特点和波动方程。
三、教学难点1.机械波的传播特点和波动方程。
四、教学过程1.导入(10分钟)通过激发学生的好奇心,引导他们思考什么是机械振动和机械波,并以日常生活中机械振动和机械波的例子来引入。
2.机械振动(20分钟)2.1机械振动的基本概念和特点通过展示一些具有振动特征的物体(如钟摆、弹簧等),引导学生了解机械振动的基本概念和特点。
2.2机械振动的特征参数和振动方程介绍机械振动的特征参数,如周期、频率、角频率、振幅等。
并通过示例讲解机械振动的振动方程。
3.机械波(20分钟)3.1机械波的基本概念和特点通过展示一些具有波动特征的物质(如水波、声波等),引导学生了解机械波的基本概念和特点。
3.2机械波的传播特点和波动方程介绍机械波的传播特点,如波速、频率、波长等。
并通过示例讲解机械波的波动方程。
4.练习与巩固(20分钟)通过小组讨论和个人思考,解决一些与机械振动和机械波相关的问题,巩固所学知识。
5.拓展与应用(20分钟)引导学生思考机械振动和机械波在日常生活和科学技术中的应用,并请学生在小组内进行讨论和展示。
6.总结与展望(10分钟)对本节课所学内容进行总结,并展望下一节课的学习内容。
五、教学资源1.PPT课件;2.实验设备:钟摆、弹簧、水槽等;3.小组讨论资料。
六、教学评价通过学生的课堂参与、小组讨论和个人解答问题等方式来评价学生的学习情况。
并根据学生的表现情况,对相关知识进行巩固和拓展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 机械振动和机械波知识网络:第1单元 机械振动一、基本概念1、机械振动——物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力:振动物体所受的总是指向平衡位置的合外力,使物体返回平衡位置的力注意:①恢复力不一定是物体所受的合力,例单摆 ③回复力的意义是指向平衡位置方向上的合力 ④恢复力是根据效果命名的3.平衡位置:恢复力为零的位置,并非合外力为零的位置。
例如单摆。
4.位移:是离开平衡位置的位移5.简谐运动——物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F = -kxF=-kx 是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
6.振幅:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱,无正负之分。
7.周期和频率:表示振动快慢的物理量。
完成一次全振动所用的时间叫周期,单位时间内完成全振动次数叫频率,大小由系统本身的性质决定,所以叫固有周期和频率。
任何简谐运动都有共同的周期公式:km T π2=(其中m 是振动物体的质量,k 是回复力系数,即简谐运动的判定式F = -kx 中的比例系数,对于弹簧振子k 就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。
二、典型的简谐运动 1.弹簧振子(1) 说明回复力、加速度、速度、动能和势能的变化规律(周期性和对称性)①回复力指向平衡位置。
②位移从平衡位置开始。
(2)周期km T π2=,与振幅无关,只由振子质量和弹簧的劲度决定。
(3)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是km T π2=。
周期:gL T π2=机械简谐物理量:振幅、周期、运动简谐运动阻尼振动 无阻尼受力回复力:F= -弹簧振子:F= - 单摆:x L mgF -= 受迫共在介质中的传播机 形成和传播类横波描述方波的图象 波的公式:vT =λx=vt 特声波,超声波及其应波的叠加 干涉 衍射多普勒效应实这个结论可以直接使用。
(4)在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。
证明:如图所示,设振子的平衡位置为O ,向下方向为正方向,此时弹簧的形变为0x ,根据胡克定律及平衡条件有00mg kx -= ①当振子向下偏离平衡位置为x 时,回复力(即合外力)为0()F mg k x x =-+回 ②将①代人②得:F kx =-回,可见,重物振动时受力符合简谐运动的条件.【例1】 如图所示,质量为m 的小球放在劲度为k 的轻弹簧上,使小球上下振动而又始终未脱离弹簧。
(1)最大振幅A 是多大?(2)在这个振幅下弹簧对小球的最大弹力F m 是多大?解析:该振动的回复力是弹簧弹力和重力的合力。
在平衡位置弹力和重力等大反向,合力为零;在平衡位置以下,弹力大于重力,F - mg =ma ,越往下弹力越大;在平衡位置以上,弹力小于重力,mg-F=ma ,越往上弹力越小。
平衡位置和振动的振幅大小无关。
因此振幅越大,在最高点处小球所受的弹力越小。
极端情况是在最高点处小球刚好未离开弹簧,弹力为零,合力就是重力。
这时弹簧恰好为原长。
(1)最大振幅应满足kA=mg , A =kmg(2)小球在最高点和最低点所受回复力大小相同,所以有:F m -mg=mg ,F m =2mg 【例2】弹簧振子以O 点为平衡位置在B 、C 两点之间做简谐运动.B 、C 相距20 cm .某时刻振子处于B 点.经过0.5 s ,振子首次到达C 点.求:(1)振动的周期和频率; (f =1Hz ) (2)振子在5 s 内通过的路程及位移大小;(10cm .)(3)振子在B 点的加速度大小跟它距O 点4 cm 处P 点的加速度大小的比值(5:2) 【例3】一弹簧振子做简谐运动.周期为T ( D )A .若t 时刻和(t +△t )时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T /2的整数倍D .若t 时刻和(t+△t )时刻振子运动位移的大小相等、方向相同,则△t 一定等于T 的整数倍C .若△t =T /2,则在t 时刻和(t -△t )时刻弹簧的长度一定相等D .若△t =T ,则在t 时刻和(t -△t )时刻振子运动的加速度一定相同2.单摆。
在一不可伸长、忽略质量的细线下端拴一质点,上端固定,构成的装置叫单摆。
⑴单摆的特点:○1单摆是实际摆的理想化,是一个理想模型; ○2单摆振动可看作简谐运动的条件:α<10℃。
○3单摆的等时性(伽利略),在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ④单摆的回复力由重力沿圆弧方向的分力提供⑵ 周期公式:glT π2= (惠更斯) 半径方向:rv m mg T 2cos =-θ向心力改变速度方向 切线方向:回复力=m g sin θ 改变速度大小若θ角很小,则有 sin θ = tan θ = x / L,而且回复力指向平衡位置,与位移方向相反,所以对于回复力F ,有kx x Lmg L x mgF === k 是常数 ⑶单摆周期公式的应用x1、 测量当地的重力加速度测定重力加速度g,g=224TLπ (l 为等效摆长,是悬点到球心的距离。
)2、 摆钟(振动周期是2秒的单摆叫秒摆)3、惠更斯在1656年利用等时性发明了带摆的计时器(4)摆钟问题。
单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。
在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n 与频率f 成正比(n 可以是分钟数,也可以是秒数、小时数…),再由频率公式可以得到:ll g f n 121∝=∝π(5)另:意大利的伽利略首先发现等时性,即在角度很小时,单摆的周期与振幅无关。
荷兰的惠更斯确立了单摆的周期公式,周期跟摆长的二次方根成正比,跟重力加速度的二次方根成反比,跟振幅和摆球的质量无关例4:三根长度相等都为L 的细线一端系于C 点,另两端固定于天花板上相距为L 的A 、B 两点,剩下的一端系一小球。
当小球垂直于纸面振动时,其周期为 ;当小球左右摆动时,其周期为 ; 答案:gL g Lππ2)231(2;+例5:如图,长为l 的轻绳一端系于固定点O ,另一端系质量为m 的小球,将小球从O 点正下方l/4处以一定的初速度水平向右抛出,经一定的时间,绳被拉直。
以后小球将以O 为圆心在竖直平面内摆动,已知绳刚被拉直时,绳与竖直线成600角。
求:⑴小球水平抛出的初速度V 0⑵小球摆到最低点时,拉力T (答案:23gl;2mg ) 【例6】 将一个力电传感器接到计算机上,可以测量快速变化的力。
用这种方法测得的某单摆摆动过程中悬线上拉力大小随时间变化的曲线如右图所示。
由此图线提供的信息做出下列判断:①t =0.2s 时刻摆球正经过最低点;②t =1.1s 时摆球正处于最高点;③摆球摆动过程中机械能时而增大时而减小;④摆球摆动的周期约是T =0.6s 。
上述判断中正确的是A .①③B .②④C .①②D .③④解析:注意这是悬线上的拉力图象,而不是振动图象。
当摆球到达最高点时,悬线上的拉力最小;当摆球到达最低点时,悬线上的拉力最大。
因此①②正确。
从图象中看出摆球到达最低点时的拉力一次比一次小,说明速率一次比一次小,反映出振动过程摆球一定受到阻力作用,因此机械能应该一直减小。
在一个周期内,摆球应该经过两次最高点,两次最低点,因此周期应该约是T =1.2s 。
因此答案③④错误。
本题应选C 。
三、简谐运动的图象 ⑴图象的描绘2.12.01.9 1.80 0.4 0.8 1.21.6 F/N t /sB A Cx t1、 描点2 实验模拟法⑵振动图象的研究方法——把实际振动和图象对应起来 可以从图像中得到以下信息: ①直接读出振幅(注意单位) ②直接读出周期③确定某一时刻物体的位移④判定任一时刻运动物体的速度方向(最大位移处无方向)和加速度方向 ⑤判定某一段时间内运动物体的速度、加速度、动能及势能大小的变化情况 ⑥计算一段时间内的路程:A TtS 4⋅=⑶振动图象的应用任何复杂的振动都可以看成是若干个简谐振动的合成【例7】 劲度系数为20N /cm 的弹簧振子,它的振动图象如图所示,在图中A 点对应的时刻(B .)A . 振子所受的弹力大小为0.5N ,方向指向x 轴的负方向B .振子的速度方向指向x 轴的正方向C . 在0~4s 内振子作了1.75次全振动D 。
在0~4s 内振子通过的路程为0.35cm ,位移为0【例8】 摆长为L 的单摆做简谐振动,若从某时刻开始计时,(取作t =0),当振动至 gLt 23π=时,摆球具有负向最大速度,则单摆的振动图象是图中的( D )例9.如图所示,一块质量为2 kg 、涂有碳黑的玻璃板,在拉力F 的作用下竖直向上做匀变速直线运动.一个频率为5 Hz 的振动方向为水平且固定的振针,在玻璃板上画出了如图所示的图线,量得OA =1 cm ,OB =4cm ,OC =9 cm .求拉力F 的大小. (不计一切摩擦阻力,取g =10 m/s 2)解:OA =1 cm AB =3 cm BC =5 cm因为:T OA =T AB =T BC =T /2=0.1 s 根据:Δs =aT 2a =22TAB BC T s -=∆=2 m/s 2F -mg =ma 得:F =mg +ma =24 N四、受迫振动与共振 (1)振动能量 = 动能 + 势能 = 最大位移的势能 = 平衡位置的动能由振幅决定,与周期和频率无关 (2)阻尼振动和无阻尼振动1、阻尼振动 存在阻力做负功,能量减小,振幅减小(减幅振动)2. 无阻尼振动(等幅振动)在振动中,为保持振幅不变(能量不变),应及时地补充能量,使A 不变 (3)受迫振动1.得到持续的,等幅振动的最简单的办法是用周期性的外力(驱动力)作用于物体,物体在驱动力作用下的振动,叫受迫振动.2.物体做受迫振动的频率由驱动力决定,等于驱动力频率,而与固有频率无关(奴隶,奴隶主)如:钟摆 , 秋千(4)共振——在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大B(5)、共振的防止和应用(1)利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……(2)防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……偏心轮共振筛【例10】把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。
不开电动机让这个筛子自由振动时,完成20次全振动用15s;在某电压下,电动偏心轮的转速是88r/min。