生物质气化合成气与煤混合燃烧发电技术
燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析一、技术原理燃煤与生物质气化耦合发电技术是将燃煤气化和生物质气化技术结合起来,通过在气化反应器中对燃煤和生物质进行气化反应,产生合成气,再利用合成气进行发电。
燃煤气化和生物质气化是两种不同的气化技术,燃煤气化主要产生一氧化碳和氢气,而生物质气化主要产生一氧化碳、氢气、甲烷和二氧化碳。
将这两种气化技术结合起来,能够充分利用燃煤和生物质的资源,提高能源利用效率,减少对大气环境的污染。
二、技术优势1. 资源充足:燃煤是目前世界上使用最为广泛的化石能源之一,储量丰富。
生物质是可再生资源,具有广泛的来源,如木材、秸秆、农作物废弃物等,资源充沛。
2. 清洁高效:通过燃煤与生物质气化耦合发电技术,可以将煤炭转化为清洁的合成气,大大降低了煤炭燃烧产生的污染物排放。
生物质气化产生的气体也比燃煤气化更为清洁,减少了对环境的负面影响。
3. 降低成本:生物质气化技术相对成熟,且生物质气化设备相对燃煤气化设备成本更低,通过耦合发电技术,可以降低发电成本。
4. 提高能源利用效率:通过耦合燃煤与生物质气化技术,可以充分利用两种资源,提高能源利用效率,同时减少对资源的消耗。
三、技术挑战1. 气化反应器设计:燃煤气化和生物质气化的气化反应器设计具有一定的复杂性,需要充分考虑燃煤和生物质气化特性的差异,以及两者之间的相互影响。
2. 气化气清洁:合成气中的污染物含量较高,需要通过一系列的气体净化工艺进行清洁处理,以满足发电机组的要求。
3. 运行稳定性:燃煤与生物质气化耦合发电技术需要保持良好的运行稳定性,确保长期稳定的发电产能。
四、技术应用燃煤与生物质气化耦合发电技术已经在一些实际工程中有所应用,尤其在一些燃煤发电厂进行生物质混燃或者替代部分煤炭,以减少煤炭的使用和环境污染。
在一些生物质能源发电项目中,也可以考虑采用燃煤与生物质气化耦合发电技术,以提高能源利用效率和降低成本。
五、技术展望燃煤与生物质气化耦合发电技术具有明显的优势和发展潜力,但在实际应用中仍面临一些挑战。
燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析1、技术原理燃煤与生物质气化耦合发电技术,是将煤和生物质材料进行气化处理,使其转化为可燃气体,进而利用发电机组将气体发电的一种技术。
该技术主要分为两个部分:燃煤气化和生物质气化。
燃煤气化主要是采用上下式固定床气化技术,即将煤料放置在气化炉内,经过高温的热解和反应,使之分解成可燃气体,主要包括氫氣、一氧化碳、甲烷等。
生物质气化主要采用流化床气化技术,将生物质材料以流化床的形式进行气化,经过气化反应后,同样会产生可燃气体。
燃煤气化和生物质气化之后,两种可燃气体混合,经过净化和改性之后,进入燃气轮机,在转动燃气轮机的同时,也驱动发电机组发电。
2、技术优点(1)环境友好:由于燃煤与生物质气化结合后,产生的废气中二氧化碳和氮氧化物等有害物质的排放量明显减少,对环境的污染程度大大下降。
(2)资源利用率高:燃煤与生物质气化耦合技术可以最大限度地利用煤炭和生物质等资源,减少资源浪费,并降低生产成本。
(3)电能效率高:该技术方案采用发电机组直接获取可燃性气体发电,而门型燃气轮机效率高,输出功率大,因此该技术的电能效率相对较高。
(4)适应面宽:该技术方案可以利用煤炭、秸秆、木材等生物质资源,适用范围广。
3、技术发展现状目前,燃煤与生物质气化耦合发电技术尚处于发展初期。
虽然已有部分国家和地区开展了相关研究和应用工作,但整个技术链条还没有实现规模化应用。
我国正在加快相关技术研发和应用,力求在技术上实现突破,并在实践中检验技术的可行性和可靠性。
4、技术方案分析考虑到技术的可行性、可靠性、经济性以及绿色环保等方面,建议在技术实践中优先采用生物质的气化进行研究和实验。
在烝优秸秆、木材等生物质中选择材料,采用流化床气化技术提取可燃气体并净化后直接驱动燃气轮机,其余过程与统一燃气轮机技术相同。
在技术研究的同时,还应考虑到技术的可行性和经济性,以期将燃煤和生物质气化技术尽快转化为实用技术。
燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析燃煤与生物质气化耦合发电技术是一种将燃煤热能与生物质气化燃气进行耦合利用的发电技术。
通过将燃煤热能和生物质气化燃气进行混合燃烧,可以提高发电效率,降低污染物排放,实现清洁高效发电,有效解决燃煤发电技术在环境污染和资源浪费方面存在的问题。
燃煤与生物质气化耦合发电技术的核心是将煤与生物质气化产生的燃气进行混合燃烧,形成高效利用煤和生物质能源的能量转化系统。
具体的技术方案包括以下几个方面:1. 煤和生物质气化技术:煤和生物质气化是将固体煤和生物质转化为燃气的关键环节。
煤气化技术主要包括固定床气化、流化床气化和喷射式气化等方法,而生物质气化技术则包括固定床和流化床两种主要方式。
通过不同的气化反应器和气化剂,可以获得高质量的煤气和生物质气。
2. 煤气和生物质气的净化技术:由于气化生成的煤气和生物质气中含有大量的灰分、硫分和氮分等杂质,需要通过净化技术进行处理。
净化技术主要包括除尘、脱硫和脱氮等环节,通过使用除尘设备、脱硫设备和脱氮设备,可以将煤气和生物质气中的有害物质去除,减少对发电设备的损害和对环境的污染。
3. 燃煤与生物质混合燃烧技术:煤和生物质气化产生的煤气和生物质气为燃料,需要与燃煤进行混合燃烧。
燃煤与生物质混合燃烧技术可以通过合理的燃料配比和燃烧控制,实现煤和生物质的协同燃烧,提高发电效率和燃烧稳定性。
4. 热能回收技术:在燃煤与生物质气化耦合发电过程中,煤燃烧和生物质气化产生的高温烟气可以通过余热锅炉进行热能回收。
余热锅炉可以将烟气中的热能转化为蒸汽或热水,用于供热或发电。
1. 提高发电效率:燃煤与生物质气化耦合发电技术可以将煤和生物质的热值充分利用,提高发电效率。
生物质气化产生的燃气可以替代部分煤炭,减少煤炭的使用量,提高燃烧效率。
2. 降低污染物排放:燃煤与生物质气化耦合发电技术可以有效降低污染物的排放。
生物质气化产生的燃气中含有低硫和低氮的特点,可以减少燃煤过程中产生的二氧化硫和氮氧化物排放。
燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析1. 引言1.1 背景介绍燃煤与生物质气化耦合发电技术方案分析引言在当前全球气候变化日益严重的背景下,燃煤与生物质气化耦合发电技术的研究与应用具有重要的现实意义。
通过对技术的深入研究和优化,可以为我国能源结构调整和环境保护作出积极贡献。
对燃煤与生物质气化耦合发电技术方案的分析和研究具有重要意义。
问题提出随着煤炭资源的日益枯竭和环境污染问题的日益突出,燃煤发电技术逐渐受到质疑,而生物质气化发电技术虽然具有很好的环保性能,但也存在着成本较高和技术难度大的问题。
如何将燃煤和生物质气化技术有效结合起来,充分利用两种资源的优势,实现碳排放减少、能源清洁化等目标,是当前亟需解决的问题。
研究意义1.2 问题提出在这种情况下,燃煤与生物质气化耦合发电技术方案备受瞩目。
这种技术方案可以实现煤炭和生物质的联合利用,充分发挥两者的优势,提高发电效率,减少污染排放。
如何实现燃煤与生物质气化的有效耦合,如何解决技术和经济上的挑战,成为当前研究的重点和难点。
本文将重点对燃煤与生物质气化耦合发电技术方案进行分析,探讨其原理、优势和挑战,并展望未来发展前景。
希望通过本文的研究,为推动清洁能源的发展和环境保护做出贡献。
1.3 研究意义燃煤与生物质气化耦合发电技术的研究意义主要体现在以下几个方面:这项技术可以有效实现能源资源的综合利用,将煤炭和生物质作为能源输入,通过气化转化为合成气,再经过发电机组发电,实现能源的高效利用。
这对于解决煤炭资源日益紧缺和生物质能源利用率不高的问题具有重要意义。
燃煤与生物质气化耦合发电技术的引入可以提高能源利用效率,减少二氧化碳等温室气体的排放,有利于减缓气候变化,保护环境。
这符合现代社会对清洁能源和低碳发展的要求,具有明显的环保意义。
这项技术还可以促进新能源技术的研发和产业化,推动能源结构转型升级,推动我国能源领域的可持续发展。
通过不断完善和推广燃煤与生物质气化耦合发电技术,可以为我国能源安全和经济发展做出重要贡献。
燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析【摘要】燃煤与生物质气化耦合发电技术是一种新型的发电方式,结合了燃煤气化技术和生物质气化技术的优势。
本文首先介绍了燃煤气化技术和生物质气化技术的概况,然后深入分析了燃煤与生物质气化耦合发电技术的原理和优势。
接着,通过实际应用案例展示了这种技术的有效性和可行性。
结尾部分讨论了该技术的未来发展方向、对环境和资源的影响以及可持续性评价。
燃煤与生物质气化耦合发电技术的出现为解决能源与环境问题提供了新思路和新方法,对于推动清洁能源发展具有重要意义。
【关键词】关键词:燃煤气化、生物质气化、耦合发电技术、原理分析、优势、应用案例、未来发展、环境影响、可持续性评价。
1. 引言1.1 背景介绍燃煤和生物质是目前主要的能源资源之一,然而它们的利用过程中也存在着一些问题,比如燃煤燃烧会产生大量的二氧化碳等温室气体,对环境造成污染;生物质资源的利用效率不高,无法满足能源需求。
为了解决这些问题,燃煤与生物质气化耦合发电技术应运而生。
通过将燃煤和生物质进行气化反应,生成合成气,再通过气体发电机发电,实现能源高效利用和减少排放的目的。
这种技术方案不仅可以提高能源利用率,减少污染排放,还有利于资源综合利用,具有广阔的应用前景和经济社会效益。
研究燃煤与生物质气化耦合发电技术具有重要的意义和价值,有助于推动能源转型和环境保护。
1.2 研究目的研究目的是为了深入探讨燃煤与生物质气化耦合发电技术在能源领域的应用前景,分析其优势和特点,并提出未来发展方向。
通过对燃煤气化技术和生物质气化技术的概述,探讨两者的差异和联系,为实现燃煤与生物质气化耦合发电技术提供理论基础和技术支持。
通过对燃煤与生物质气化耦合发电技术的原理、优势和应用案例进行分析,总结其在提高能源利用效率、减少环境污染和实现可持续发展方面的重要作用。
本研究旨在为促进清洁能源技术的发展提供参考和借鉴,推动我国能源生产方式转型升级,实现经济社会可持续发展的目标。
燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析燃煤与生物质气化耦合发电技术是指利用煤炭和生物质进行气化反应,生成合成气,然后通过合成气发电的一种发电方式。
与传统的燃煤发电相比,这种技术方案具有以下几大优势。
燃煤与生物质气化耦合发电技术可以有效降低发电过程中的排放物和污染物。
传统燃煤发电过程中会产生大量的二氧化碳、二氧化硫、氮氧化物等有害气体和颗粒物排放,对环境和人体健康造成严重影响。
而通过气化技术,煤炭和生物质的气化反应生成的合成气燃烧后只会产生少量的气体和颗粒物排放,大大减少了对环境的污染。
燃煤与生物质气化耦合发电技术可以促进能源结构的多样化发展。
通过引入生物质资源,可以减少煤炭对能源供应的依赖程度,推动能源结构向低碳、环保的方向发展,有利于促进能源结构的升级和优化。
虽然燃煤与生物质气化耦合发电技术具有以上诸多优势,但在实际应用中仍然存在一些技术和经济上的难点。
燃煤与生物质气化耦合发电技术的气化设备技术相对成熟,但在气化反应的控制和运行稳定性方面仍有待提高。
燃煤和生物质的气化反应受到原料质量、操作参数、气化剂选择等多方面影响,对气化设备的性能和操作水平有着较高的要求。
燃煤与生物质气化耦合发电技术的合成气净化和能源利用方面还需要进一步完善。
合成气中含有一定量的固体颗粒和硫化合物等有害物质,需要进行净化处理,提高合成气的质量。
对合成气的燃烧和发电设备也需要相应的技术改进和调整,以适应合成气的特性。
生物质资源的获取和利用成本较高,也是制约燃煤与生物质气化耦合发电技术发展的主要因素之一。
生物质资源的获取、成型和运输需要一定的成本投入,而且生物质资源的价格受到市场供需、政策支持等多方面因素制约。
燃煤与生物质气化耦合发电技术的投资成本相对较高,是制约其发展和推广的主要因素之一。
气化设备、净化设备、发电设备等都需要大量资金投入,而且气化技术本身复杂度较高,对操作技术和管理水平要求较高。
燃煤与生物质气化耦合发电技术具有较高的技术前景和发展潜力,但在实际应用中仍然存在着一些技术和经济上的难点。
燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析随着环保意识的不断提高,燃煤发电已经成为了世界各国所面临的一个共同难题。
为了减少燃煤发电对环境的影响,燃煤与生物质气化耦合发电技术方案被逐渐提出。
其基本思路是利用燃煤与生物质的气化产物,结合适当的能量转化和回收技术,利用气体发动机或燃气轮机进行发电,达到更加环保的目的。
燃煤与生物质气化耦合发电技术的核心是气化过程。
通常情况下,燃煤气化与生物质气化采用不同的气化方法。
燃煤气化一般采用热解气化法,即在高温下将煤炭分解成气体,生成的气体主要包括CO、H2、CO2、CH4等。
而生物质气化,则更多地采用气相化学反应,包括氧化、裂解、脱氧等过程。
生物质气化产物主要包括CO、H2、CO2、CH4等,但其中还含有一定的固体物质,如焦油等。
燃煤与生物质气化的产物经过适当的处理和除尘,即可被用来带动发电机。
鉴于气化的产物是气态的,因此需要采用合适的转化技术将其转换为电力。
当前,气体发动机和燃气轮机是最为常见的发电方式,在产能和环保方面同样具有优势。
燃煤与生物质气化耦合发电技术的优势在于其强大的灵活性。
对于普通的燃煤发电厂,过高的生物质气化比例很容易引起气体发动机压力的不稳定,产生严重的负载波动,进而影响电网的运行稳定性。
而燃煤与生物质气化耦合发电技术,通过优化气化过程和负载控制,可以适应不同的气化比例,以适应电网对于电力储备的需求。
然而,燃煤与生物质气化耦合发电技术也存在一些挑战。
一个主要的问题就是如何减少气化副产物对环境的影响。
燃煤气化会生成大量的二氧化碳和氨气等有害物质,如果无法得到适当处理,将会对环境造成不好的影响。
另外,燃煤气化还存在着产物中铁、铝等金属元素的含量较高,这将影响气体发动机的效率和寿命。
解决这些问题需要在气化工艺和气体处理技术上加以优化。
总的来说,燃煤与生物质气化耦合发电技术具有潜力,可以为环保型发电厂的建设提供一个选择。
尽管它存在一些挑战,但通过优化技术与生产流程,可以进一步提升它的性能,使其更加符合未来能源供需关系的要求。
燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析1. 引言1.1 燃煤与生物质气化耦合发电技术方案分析的意义燃煤与生物质气化耦合发电技术方案的意义在于将传统的煤炭发电和生物质能源利用结合起来,实现资源的综合利用和能源的多元化。
首先,这种技术可以有效减少传统燃煤发电所产生的大量二氧化碳等温室气体的排放,有利于减缓全球气候变化和改善空气质量。
其次,生物质气化可以有效解决生物质资源利用的难题,提升生物质能源的利用效率。
同时,燃煤与生物质气化耦合发电技术可以实现跨界合作,打破传统能源行业领域的壁垒,促进能源产业的协同发展。
此外,该技术还可以为我国能源结构调整和可持续发展提供重要支持,推动清洁能源产业的发展,促进经济转型升级。
综上所述,燃煤与生物质气化耦合发电技术方案的意义重大,具有重要的经济、环境和社会效益。
1.2 研究背景燃煤与生物质气化耦合发电技术方案分析的研究背景主要包括以下几个方面:二、环境污染问题:传统的燃煤发电存在着严重的污染问题,如二氧化硫、氮氧化物等排放量过大,导致大气污染严重。
而燃煤与生物质气化耦合发电技术能够减少污染物排放,保护环境,减少对大气的污染。
研究燃煤与生物质气化耦合发电技术方案分析的背景意义重大,不仅有利于推动能源转型,减少环境污染,还能促进能源可持续发展,具有重要的现实意义和发展前景。
1.3 研究目的本研究的目的在于对燃煤与生物质气化耦合发电技术方案进行深入分析,探讨其在能源发电领域的应用前景。
通过研究燃煤与生物质气化耦合发电技术的原理、优势、关键技术、应用案例以及未来发展趋势,旨在为相关领域的科研工作者、企业决策者和政府部门提供参考和借鉴。
具体而言,本研究旨在:1.分析燃煤与生物质气化耦合发电技术的工作原理,揭示其能源转化过程和效益特点;2.探讨燃煤与生物质气化耦合发电技术的优势所在,比较其与传统发电技术的差异和优势;3.总结燃煤与生物质气化耦合发电技术的关键技术要点,分析其在实际应用中的挑战和解决方案;5.探讨燃煤与生物质气化耦合发电技术的未来发展趋势,分析其在新能源领域的发展空间和潜力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一生物质气化合成气与煤混合燃烧发电技术间接混合燃烧是先把生物质气化为清洁的可燃气体,然后与煤粉混燃。
在欧洲,生物质与煤间接混合燃烧技术目前已进入商业化运行,技术上被认为是相当成熟。
例如,位于奥地利Styria的Zeltweg电厂,采用循环流化床技术,以空气为气化剂气化木柴,产生可燃气体输入锅炉的燃烧室和烟煤一起燃烧,超过5000t 的生物质被气化和燃烧,目前系统运行效果良好。
此外,芬兰的Lahti电站与荷兰的Amer电站的9号机组,均是生物质与煤间接混燃技术成功运用的案例。
目前国内已建的生物质电厂主要以生物质直接燃烧发电和并联燃烧发电为主。
气化混燃电厂大多还处在示范工程研究阶段。
在气化混燃电厂中,从气化炉中产出的生物质气是由N2、CO、CO2、CH4、C2H2-6、H2 和H2O 组成的混合气体,其中N2 占到50%。
生物质气的热值决定于给料的水分含量。
与其它混燃技术相比,生物质间接混燃具有生物质燃料适用范围广的优点,同时基于气化的混燃能够避免直燃过程中燃料处理、燃料输送等带来的问题、还可缓解锅炉结渣等问题。
另外,采用这种方法,使得煤灰和生物质灰分开了,煤灰成分不受影响。
生物质与煤间接混燃技术可以应用于现有不同容量的电站燃煤锅炉,并且对现有锅炉的改动很小,运行灵活性较高。
目前,我国的生物质储量巨大,国内许多小型火电厂效率低、污染严重,可以通过增加生物质气化系统实现生物质气与煤混合燃烧,既可以大规模地处理富余的生物质资源,又可以与我国现有的小型燃煤电站的改造结合起来,非常符合我国的国情。
二国内外生物质整体气化联合循环发电2.1国外生物质整体气化联合循环发电示范项目介绍2.1.1 美国Battelle美国在利用生物质能发电方面处于世界领先地位。
美国建立的Battelle生物质气化发电示范工程代表生物质能利用的世界先进水平,生产一种中热值气体,不需要制氧装置,此工艺使用两个实际上分开的反应器:①气化反应器,在其中生物质转化成中热值气体和残炭;②燃烧反应器,燃烧残炭并为气化反应供热。
两个反应器之间的热交换载体由气化炉和燃烧室之间的循环沙粒完成。
表1 给出了Battelle示范电厂气化炉的产气组分和热值,图1的工艺流程图则表明了两个反应器以及它们在整个气化工艺中的配合情况。
这种Battelle/FERCO工艺与传统的气化工艺不同,它充分利用了生物质原料固有的高反应特性。
生物质的气化强度超过146000kg/ h·m2,而其他气化系统的气化强度通常小于1000 kg/h·m2。
Battelle 气化工艺的商业规模示范建在弗蒙特州的柏林顿McNeil电站,该项目的一期工程,用Battelle技术建造日产200吨燃料气的气化炉,在初始阶段生产的燃料气用于现有的McNeil电站锅炉。
二期工程,将安装一台燃气轮机来接受从气化炉来的高温燃气,组成联合循环。
该气化设备于1998年完成安装并投入运行。
表 1 Battelle示范电厂气化炉产气组分和热值气体组分(%)热值(MJ/m3) CO H2 CH4 CO2 C2H4 C2H644.4 22 15.6 12.2 5.1 0.7 17.3图1 Battelle/FERCO 工艺流程图2.1.2 瑞典 VARNAMO瑞典VARNAMO BIGCC 电厂是由Sydkraft AB 公司投建的,于1993年正式运行,是世界上首家以生物质为原料的整体气化联合循环发电厂,电厂装机容量为6MW ,供热容量为9MW ,整体电效率为32%(除自用电外)。
系统流程见图2。
生物质原料(主要是木屑和树皮)经过干燥粉碎后,在带有密闭阀门的上下料斗中加压后进入气化炉。
电厂采用Foster Wheeler 公司生产的增压CFB 气化炉,操作温度为950~1000℃,压力为1.8MPa ,采用空气作为气化剂,从燃气轮机的压缩机抽调10%左右的空气,经二次压缩后由流化床底部布风板通入。
产气经过旋风分离器分离后,进入烟气冷却器冷却至350~400℃,然后通过高温管式过滤器净化,净化后燃气组分和热值见表2。
净化燃气通过TYPHOON 燃气轮机(4.2MW )发电;燃气透平排气进入余热锅炉,连同烟气冷却器一起产生蒸汽(4MP ,455℃),蒸汽进入汽轮机发电(1.8MW ),同时供热(9MW )。
VARNAMO 电厂从1993年开始运行,系统整体运行时间达3600h/a ,验证了生物质增压气化和高温烟气净化系统的可行性,得到了一些宝贵的运行经验。
在运行中出现了冷却器的沉灰和结垢等现象,实验表明,使用MgO 作床料和采用底灰再循环方式可以有效解决这些问题。
系统采用陶瓷管式过滤器,在运行1200h 左右后发生机械应力破碎,在1998年改用金属管式过滤器,正常运行时间达2500h ,可以有效地过滤飞灰和重焦油。
通过对燃气轮机的燃烧室、燃烧器和空气压缩机进行改造,使低热值产气(3.4~4.2MJ/m3)能稳定燃烧,燃气轮机能在40%~100%的电厂负荷下稳定运行,但低负荷运行时CO 排放量较大(>0.02%)。
表 2 VARNAMO 电厂气化炉产气组分和热值气体组分热值(MJ/m 3) CO (%) H2(%) CH4(%) CO2(%) N2(%) 苯(mg/m 3) 轻焦油(mg/m 3) 16-199.5-125.8-7.514.4-17.548-525000-63001500-22005.0-6.3图2 瑞典VARNAMO BIGCC 电厂系统流程示意图2.1.3意大利TEF2002年6月,意大利TEF(THERMIE ENERGY FARM)BIGCC示范电厂在Cascina建成。
该电厂生物质消耗量为8230kg/h,发电容量为16MW,发电效率为31.7%(除自用电外)。
电厂投资4100万欧元(欧盟THERMIE出资34%),建设成本为2300欧元/kW。
该系统流程见图3。
电厂采用Lurgi制造的常压CFB气化炉和常温湿法烟气净化系统。
原料(短期轮作物和木屑)在微负压环境下,利用余热锅炉乏气进行干燥,空气经压缩和预热后由气化炉底部布风板进入。
产气通过空气预热器和烟气冷却器进行冷却,再通过二次旋风分离和布袋除尘,然后在水洗塔内彻底清除焦油和其它污染物(NH3,HCN,HCl等)。
除尘器捕集的飞灰与灰渣一起排放,水洗塔排水经处理后排放。
净化燃气经过冷却压缩后,其组分和热值如表3所示。
燃气与经过压缩比为15.4的多级空压机压缩的空气在燃烧室内混合燃烧。
燃气轮机采用Nuovo Pignone的pgt10机组,发电容量为11MW。
燃气轮机排气经余热锅炉回收热量,连同烟气冷却器一起产生蒸汽(5.5MPa,470℃),蒸汽进入汽轮机发电(5MW)。
表 3 TEF示范电厂气化炉产气组分和热值气体组分(%)热值(MJ/m3)CO H2 CH4 CnHm CO2 N2 H2O22 17 4 2 13 41 1 7.4图 3 意大利TEF示范电厂系统流程图2.1.4英国ARBRE英国ARBRE BIGCC电厂于1999年建成,发电容量为8MW,系统整体电效率为31%。
电厂所用原料来自电厂周围种植的柳树和白杨树,气化炉和催化裂解炉的灰渣及处理污水所得的污泥用作树木的有机肥料。
电厂采用2台TPS常压CFB炉,一台作为气化炉,操作温度为850~900℃,另一台加入催化剂作为催化裂解炉。
燃气通过冷却器换热后,经过布袋除尘和水洗,除去焦油和其它污染物。
净化后的燃气压缩至2MPa后进入燃气轮机(Alstom Power公司的TYPHOON 燃气轮机)发电。
整体系统与意大利TEF示范电厂大致相同。
2.2国外生物质气化项目概括大型生物质气化循环发电系统包括原料预处理、循环流化床气化、催化裂解净化、燃气轮机发电、蒸汽轮机发电等设备,适合于大规模处理农林废物。
表4给出了国外生物质气化项目的概括。
表4 国外生物质气化项目概括工程组织/项目名工程概况国家原料规模备注FOSTER WHEELER公司,原奥斯龙公司常压/压力CFB气化发电芬兰木片,树皮,泥煤2t/h-27t/h该公司的全尺寸CFB气化炉,以MSW为原料已在瑞典投入商业运行THERMIE能源农场项目Bioelettica S.P.A.速生能源林示范,Lurgi公司CFBIGCC技术意大利木片11.9MW1994年开始计划组织,常压鼓空气循环床气化Varnamo IGCC项目(Sydkraft)压力循环流化床IGCC,空气气化瑞典废木材6MW-9 MW第一座成功运行的生物质IGCC电厂BGF项目(Westinghouse,PICHTR/IGT,DOE)压力鼓泡流化床IGCC美国蔗渣,能源林100t/d在1997年8月到11月期间试运行BIOSYN项目氧气气化产品气合成甲醇加拿大木头已投运VERMONT工程BURLINGTON电力公司Battelle工艺的IGCC示范美国木片200t/dBattelle Columbus 双流化床工艺,燃气热值16-18MJ/Nm3IMTRAN VOIMA 水蒸气干燥,注蒸汽联合循环芬兰高水分木柴,泥煤,造纸废液鼓空气压力气化,注水蒸气联合循环JWP ENEPGY PRODUCTS 公司流化床气化美国木头,农业废弃物,RDF25 MW已有3台木柴流化床气化装置分别在Oregon,Califomia and MissouriLURGI UMWELTTECHNIKGMBH 循环流化床气化发电、水泥、石灰窑供热德国RDF,木头,树皮等14 MW50-100 MWPOWER SOURCES,不同的供热、发美国木片,稻最大达已有2台废木材气化器,INC.电、产蒸汽商用气化装置壳,造纸废液330t/d一台稻壳气化器投运THERMOCHEM公司(MTCI)脉动燃烧水蒸气流化床气化美国木片,稻壳,造纸废液20t/d-50t/d间接加热流化床气化,燃烧增加传热,典型燃气热值9-12MJ/Nm3PRODUCERS RICE MILLS ENEGY SYSTEMS 公司多区固定炉排气化器,产热、蒸汽和电能美国稻壳,秸秆,树皮,10-1000t/d在美国,澳大利亚,马来西亚和哥斯达黎加有18套系统投运SUR-LITE CORP.流化床气化,产煤气和蒸汽美国木片,秸秆,稻壳等120t/d已有4-5个商业运行装置TPS TERMISKA PROCESSOR AB(原STUDSVIK公司)流化床气化器(IGCC)瑞典木柴,树皮,泥煤,秸秆,RDF最大50 MW其技术已应用于许多大型气化系统Tampella power Inc. 流化床气化芬兰U-GAS气化工艺WELLMAN PROCESS ENGINEERING 上流式固定床气化装置英国木头,褐煤等最大直径3米提供气化器和净化系统定制设计的商业服务BRIGHTSTAR SYNFUELS CO.外热式水蒸气生物质重整中热值气化技术美国木屑,树皮,蔗渣,MSW中热值气化技术,典型热值12.5 MJ/Nm3BIG-GT工程(STATE BAHIA,BRAZIL,ELECTRO-BRAZ,SHELL,世界银行)生物质整体气化联合循环以验证BIG-GT的商业可行性巴西木头,桉树能源林采用TPS技术,预计系统效率可达47%ARBRE项目(TPS技术)8MW CFB IGCC和速生林工程英国8 MW热气净化系统也是示范内容,空气净化COMBUSTION CONSULTANTS LTD.)固定床气化燃烧整合系统,提供高温清洁的烟气新西兰木片,树皮等2-60Mbtu/hr投运装置超过600台FERCO (Future energy resources Co.)高效、大型气化系统发展商美国木片5MW2.3 国内生物质气化发电现状我国的生物质气化发电技术的研究起步比较早,早在上世纪60年代,我国就开始了生物质气化发电的研究,研制出了样机并进行了初步推广,还曾出口到发展中国家,后因经济条件限制和收益不高等原因停止了这方面地研究工作。