变频器的基本结构和工作原理

合集下载

变频器课件

变频器课件
根据冷却水温度自动调节冷却塔风机的转速,维持恒定的冷却效果 。
提升机类负载应用
电梯控制
01
采用变频器对电梯进行速度控制,实现平稳启动、加速、减速
和停止,提高乘坐舒适度。
矿井提升机
02
通过变频器对矿井提升机进行调速控制,确保提升过程的安全
性和稳定性。
自动扶梯
03
利用变频器控制自动扶梯的启动、运行和停止,实现节能运行
直接转矩控制技术
直接转矩控制原理
直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要 将交流电动机等效为直流电动机,从而省去了矢量旋转变换等复杂的变换与计算。
高性能实现
通过先进的控制策略和算法,如空间矢量脉宽调制(SVPWM)技术等,提高直接转矩 控制的性能,实现快速响应和精确控制。
常见故障现象及原因分析
过流故障
可能是电机负载过重、电机故障、变频器参 数设置不当等原因导致。
过压故障
可能是电源电压过高、减速时间过短、制动 单元故障等原因造成。
欠压故障
可能是电源电压过低、电源缺相、主回路接 触不良等原因引起。
过热故障
可能是环境温度过高、散热不良、风扇故障 等原因导致。
故障排除步骤和技巧
欠压故障
检查电源电压是否过低或存在缺相情况, 调整变频器参数或采取相应措施以提高电 压。
04
变频器在工业生产中应 用实例
风机水泵类负载应用
风机调速
通过变频器调整风机的转速,实现风量的连续调节,满足生产工 艺需求。
水泵调速
利用变频器控制水泵的转速,达到恒压供水或按需供水的目的,节 能效果显著。
冷却塔风机控制
应用领域
智能化和网络化技术应用在工业自动化、智能制造等领域,推动工业 生产的数字化、网络化和智能化发展。

变频器结构和工作原理

变频器结构和工作原理

三、变频器的结构原理
1、变频器的分类:
交~交型:将频率固定的交流电源直接变换成频率连续可调的交流电 源,其主要优点是没有中间环节,变换率高。但其连续可调的频率 范围较窄。主要用于容量较大的低速拖动系统中。又称直接式变频 器。 交~直~交型:先将频率固定的交流电整流后变成直流,在经过逆变 电路,把直流电逆变成频率连续可调的三相交流电。由于把直流电 逆变成交流电较易控制,因此在频率的调节范围上就有明显优势。 又称为间接性变频器。
二、变频的控制方式
在各种薄膜或线材的收卷或放卷过程 中,要求被卷物的张力F必须保持恒 定即F=C,为此: 1)被卷物的线速度v也必须保持恒定即 v =C,所以卷绕功率是恒定的; 2)负载的阻转矩随被卷物卷径的增大而 增大:但为了保持线速度恒定,负载 的转速必须随卷径的增大而减小: (b) 用转矩控制模式实现 恒张力运行 令 变频器在转矩 控制模式下运行,将 给 定信号设定在某一值下不变。则 电动机的电磁转矩TM也将不变,如 图 (b)中之曲线①所示: TM=C 而动态转矩TJ则随着卷径D 的增大而变为负值,如图(b)中之曲 线③所示。拖动系统将处于减速状态, 满足图(c)所示的转速变化规律。 改 变给定转矩的大小,可以改变卷绕的 松紧程度
2、变频器的组成(交~直~交型)
如下图:
三、变频器的结构原理
a、主电路结构 该电路是现在通用的低压变频器主电路图。不管什么品牌的 变频器,其主电路结构基本如此。因为:整流电路和逆变电 路是两个标准模块,没有变化的空间。
三、变频器的结构原理
b、变频器控制电路 任何品牌的变频器,其 内部功能框图是一样的, 因为变频器要保证正常 工作,必须要有相应的 功能。变频器主要包括: 主电路、电流保护电路、 电压保护电路、过热保 护电路、驱动电路、稳 压电源、控制端子、接 口电路、操作面板、 CPU等。

变频器基本原理

变频器基本原理

变频器基本原理变频器,也称为频率调节器,是一种能够调节电机转速和输出频率的电气设备。

它在工业生产中广泛应用,为电机提供了更加灵活和精确的控制方式。

本文将介绍变频器的基本原理及其工作原理。

一、变频器的定义和作用变频器是一种电子设备,它能够将固定频率的交流电源转换为可调节频率的交流电源,并通过控制输出频率来控制电机的转速。

它通过改变电源电压的频率和幅值,从而改变电机的运行状态,实现对电机的精确控制。

变频器在工业生产中起到了至关重要的作用。

它能够使电机在不同的工况下运行,适应不同的负载要求。

通过调节电源频率,可以实现电机的变速运行,并在启动过程中减小电机的启动电流。

同时,变频器还能够提高电机的工作效率,减少能源的消耗。

二、变频器的结构和工作原理1. 变频器的结构典型的变频器结构包括整流器、滤波器、逆变器和控制单元等组成。

整流器将输入的交流电源转换为直流电源,供给逆变器使用。

滤波器用于滤除直流电源中的杂散成分,保持逆变器输入的电压信号稳定。

逆变器则将直流电源转换为可调频率的交流电源,用于驱动电机。

控制单元是变频器的核心部分,通过接收命令信号和输入信号,对逆变器的输出频率进行调节,实现对电机的精确控制。

2. 变频器的工作原理变频器的工作原理基于电力电子技术和控制理论。

在启动过程中,控制单元给逆变器发送启动指令。

逆变器将直流电源转换为低频交流电源,通过变压器升压并输出给电机。

此时,电机根据输入的频率和电压信号运行。

通过控制单元的调节,可以改变输出频率和电压信号,从而实现对电机的精确控制。

三、变频器的优势和应用领域1. 变频器的优势变频器具有以下几个显著的优势:- 变速范围广:变频器可以实现电机的连续调速,速度范围广,适应不同的工况要求。

- 节能环保:变频器通过控制电机的转速和输出频率,实现了电机的高效运行,减少了能源的消耗,降低了环境污染。

- 提高生产效率:变频器能够精确控制电机的转速,提高生产效率,减少人工干预,提高产品质量。

变频器培训课件ppt课件

变频器培训课件ppt课件

行业定制化
针对不同行业和应用场景, 开发定制化的变频器产品, 以满足特定需求并优化性能 。
感谢您的观看
THANKS
实施效果
03
通过变频器控制,实现了空调系统的智能调节,提高了室内环
境的舒适度和空调系统的能效比。
电梯控制系统应用案例
案例背景
某高层住宅电梯控制系统,需保证电梯运行平稳、快速响 应乘客需求。
解决方案
采用变频器控制电梯曳引机电机,根据电梯运行状态和乘 客需求实时调整电机转速和制动力矩,保证电梯运行平稳 、快速响应。
程序编写方法及技巧
编程语言基础
编程技巧与规范
简要介绍变频器编程所涉及的编程语 言基础,如变量、数据类型、控制结 构等。
分享一些实用的编程技巧和规范,如 代码优化、错误处理、注释规范等, 提高学员的编程效率和代码质量。
程序结构与设计
讲解变频器程序的结构和设计方法, 包括主程序、子程序、中断程序等的 设计思路和实现方法。
欠压故障
变频器输出电压过低,可能是电源电 压过低、电源缺相等原因导致。
过热故障
变频器内部温度过高,可能是散热系 统不良、环境温度过高等原因导致。
故障排除方法和步骤
识别故障现象
根据变频器的故障指示或报警信息,识别 出具体的故障现象。
排除故障
根据故障原因,采取相应的措施进行故障 排除,如更换损坏的部件、调整参数设置
实施效果
通过变频器控制,实现了电梯控制系统的精确控制,提高 了电梯的运行效率和乘客的舒适度。同时,变频器还具有 节能效果,降低了电梯的能耗和运行成本。
05
变频器维护保养与故障排 除
日常维护保养项目
清洁变频器表面
定期清除变频器表面的 灰尘、油污等杂物,保

变频器的工作原理

变频器的工作原理

变频器的工作原理变频器是指一种能够改变交流电源频率并控制电动机转速的装置,也被称为变频调速器、交流调速器等。

它广泛应用于工业生产领域,能够帮助提高生产效率、降低耗能、减少机器损耗等。

那么,变频器的工作原理是怎样的呢?下面我们就来一起探讨一下。

一、变频器的基本结构变频器是由多个部件组合而成的。

其中包括整流单元、滤波单元、逆变单元、控制单元等。

下面我们分别对这几个部件进行介绍:1.整流单元变频器通过直流电源来驱动交流电动机。

因此,首先需要将供电网提供的交流电,变成直流电,这就需要整流单元来完成。

整流单元的主要作用是将交流电信号通过电子元件的作用,转变成等幅值、纯直流的电压波形,这样才能被下一级电路处理。

2.滤波单元整流单元输出的直流电有很大的脉动。

这种脉动会给电动机带来很大的损害,因此,需要滤波单元来消除这些脉动。

滤波单元通过电容、电感等元件,将直流电转化为稳定的电压,进而为后续的逆变单元提供稳定的幅值和频率。

3.逆变单元逆变单元是变频器最为核心的部件之一。

它的作用是将直流化的电源转化成高频交流电,以便输送到电机。

逆变单元一般采用多种晶体管、开关管等元件来控制电源,实现直流与交流之间的转换。

4.控制单元控制单元是变频器的大脑,其控制信号的稳定性和精度直接决定了变频器的工作性能。

控制单元的作用是对逆变单元的输出电压、电流进行调整,并根据电机转速的反馈信号,调整输出频率及电压,从而实现对电机的调速。

二、变频器的工作原理变频器的工作原理主要分为两部分,即电源电路和控制电路。

1.电源电路在变频器的电源电路中,整流单元、滤波单元、逆变单元等三个部件按照顺序连接起来,最终的输出为三相交流电机的电源。

其中,整流单元将供电网提供的交流电转换成直流电,然后再由滤波单元将直流电平稳化。

接下来,逆变单元将直流电转变成高频交流电,并将其输送至电机。

其中,变频器控制单元根据电机转速的反馈信号,调整逆变单元的输出频率和电压,从而实现对电机的调速。

变频器工作原理与结构图文详解—变频器的功能作用分析

变频器工作原理与结构图文详解—变频器的功能作用分析

变频器工作原理与结构图文详解—变频器的功能作用分析变频器变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。

变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。

随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

变频器基本组成变频器通常分为4部分:整流单元、高容量电容、逆变器和控制器。

整流单元:将工作频率固定的交流电转换为直流电。

高容量电容:存储转换后的电能。

逆变器:由大功率开关晶体管阵列组成电子开关,将直流电转化成不同频率、宽度、幅度的方波。

控制器:按设定的程序工作,控制输出方波的幅度与脉宽,使叠加为近似正弦波的交流电,驱动交流电动机。

变频器的结构与原理图解变频器的发展也同样要经历一个徐徐渐进的过程,最初的变频器并不是采用这种交直交:交流变直流而后再变交流这种拓扑,而是直接交交,无中间直流环节。

这种变频器叫交交变频器,目前这种变频器在超大功率、低速调速有应用。

其输出频率范围为:0-17(1/2-1/3 输入电压频率),所以不能满足许多应用的要求,而且当时没有IGBT,只有SCR,所以应用范围有限。

变频器其工作原理是将三相工频电源经过几组相控开关控制直接产生所需要变压变频电源,其优点是效率高,能量可以方便返回电网,其最大的缺点输出的最高频率必须小于输入电源频率1/3或1/2,否则输出波形太差,电机产生抖动,不能工作。

故交交变频器至今局限低转速调速场合,因而大大限制了它的使用范围。

变频器电路结构框架图矩阵式变频器是一种交交直接变频器,由9个直接接于三相输入和输出之间的开关阵组成。

变频器的工作原理是什么

变频器的工作原理是什么

变频器的工作原理是什么变频器(也称为变频驱动器或变频调速器)是一种能够改变交流电驱动电机转速的电力调速设备。

它通过调整输入电源的频率和电压来控制电机的运行速度。

变频器的工作原理涉及到电力电子技术、控制系统和电机原理等多个领域。

一、基本组成结构一个典型的变频器通常由整流器、滤波器、逆变器和控制模块等几个主要组成部分组成。

1.整流器:将交流电源(通常是三相交流电)转换为直流电源。

2.滤波器:用于滤除整流器输出的脉动直流电,得到更平滑的直流电源。

3.逆变器:将直流电源转换为可变频率的交流电源。

4.控制模块:通过逻辑电路和微处理器等控制元件,接收输入的控制信号,经过处理后控制逆变器输出的频率和电压。

二、工作原理1.输入电源整流:在变频器电路的开始,交流电源首先通过整流器,将交流电转换为直流电。

2.滤波:经过整流的交流电含有一定的脉动,通过滤波器可以将这些脉动尽可能地除去,得到平滑的直流电源,以提供给逆变器使用。

3.逆变:逆变器将直流电源转换为可变频率和可变幅值的交流电源。

逆变器通常采用PWM(脉冲宽度调制)技术,通过控制开关管的导通时间和间隔,按照一定的频率和占空比产生脉冲信号,实现变频,然后经过滤波器进行平滑处理,得到不同频率和幅值的交流电。

4.控制模块:在逆变器的输出端接入控制模块,用于调节逆变器的输出频率和电压。

通常,控制模块是由逻辑电路和微处理器等元件组成,可以根据输入的控制信号(如电压或电流反馈信号、速度设定值等)进行计算和处理,在控制电路中生成相应的PWM信号,从而控制逆变器输出的频率和电压,以实现对电机转速的控制。

5.输出:控制模块经过处理后,通过逆变器的输出口可以提供一个可变频率和可变幅值的交流电源给电机,根据输出频率的不同,可以实现电机的不同转速控制。

三、应用领域变频器广泛应用于工业和家用领域。

在工业领域中,变频器广泛用于电机驱动系统,如风机、水泵、压缩机、传送带、机床等,通过改变电机的转速,达到节能、调速和控制的目的。

变频器的基本结构和工作原理

变频器的基本结构和工作原理

变频器的基本结构和工作原理变频器是一种将电源频率变换为所需频率的电子设备。

它可将固定频率(如50Hz或60Hz)的交流电源转换为可调节频率的交流电源,以驱动各种不同频率的电动机。

变频器主要由整流器、滤波器、逆变器和控制电路组成。

1.整流器:变频器的整流器将输入的交流电源转换为直流电源。

它通常采用晶闸管整流电路或采用了桥式整流器电路。

整流器主要目的是将交流电源转换为直流电源,以便后续电路的工作。

2.滤波器:滤波器用于去除整流器输出的脉动直流电源中的高频噪音和杂散波,使其变得更加平稳。

常见的滤波器包括电感滤波器和电容滤波器,它们通常结合使用以达到更好的滤波效果。

3.逆变器:逆变器是变频器的核心部分,它将直流电源转换为可调节频率的交流电源。

逆变器通常包括大量的功率开关管(如IGBT或MOSFET)和驱动电路。

通过对功率开关管的控制,逆变器能够精确地控制输出电压和频率。

4.控制电路:控制电路是变频器的智能部分,它负责监测输入的信号和驱动逆变器的工作。

控制电路通常由微处理器和其他数字和模拟电路组成。

它可以根据用户设定的参数和反馈信号,调整逆变器的输出频率和电压,以实现对电动机的精确控制。

变频器的工作原理如下:1.输入电源经过整流器转换为直流电源。

2.直流电源通过滤波器去除脉动和杂散波。

3.控制电路接收用户设定的参数和反馈信号,计算出逆变器的控制信号。

4.逆变器根据控制信号控制功率开关管的通断,将直流电源转换为可调节频率的交流电源。

5.输出的交流电源经过滤波器去除脉动和杂散波,供电给电动机驱动。

变频器可以实现对电动机的速度和转矩进行精确调节,从而使得电动机在不同的负载和工况下工作更加高效和稳定。

它在工业自动化中广泛应用于各种设备和系统,如风机、水泵、压缩机等。

变频器的应用能够降低能源消耗,提高生产效率,并减少电动机的磨损和噪音。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(b)结构
包括6个整流二极管 VD1、VD3、 VD5阴极 连在一起,称共阴极组;
VD2、VD4、 VD6阳极 连在一起,称共阳极组
该三相变压器接法 可消除高次谐波
8
§3.2交-直-交变频器
3、不可控整流电路
(2)三相桥式整流电路 (c)电压波形
二、整流电路
9
§3.2交-直-交变频器
二、整流电路
L1 L2
VD1、VD4承受正向压降导通,
VD2、VD3承受反向压降而截止,
电流id流通路径如图之①所示, 电流从A+→VD1→R→VD4→B-,
由于VD1、VD4导通时管压降很小,
可忽略不计,故可以看做电源电压
全部施加于负载电阻R上,
6 即输出电压ud=uAB=u2
二、整流电路
VD1 VD2
A ②
B
VD3 VD4
id Ud R
§3.2交-直-交变频器
3、不可控整流电路
(1)单相桥式整流电路

(b)工作原理过程:
π ~2π区间:
~220V
B点电位高于A点电位, VD2、VD3承受正向压降导通,L1
U2
L2
VD1、VD4承受反向压降而截止,
电流id流通路径如图之②所示, 电流从B+→VD2→R→VD3→A-,
2
§3.2 交-直-交变频器
一、概述
1、交-直-交变频器是现在最常使用的变频器,按直流环节的 储能方式分为电压型变频器、电流型变频器,按输出电压的 调制方式分为PWM控制方式、PAM控制方式,目前广泛采用 PWM方式变频器 2、交-直-交变频器电路结构如图,其中主电路包括整流电路 、中间电路、逆变电路
§3.2交-直-交变频器
二、整流电路
2、分类
(2)按交流电源相数:单相整流、三相整流
(3)按电路结构:
(a)零式电路:指带零点或中性点的电路,又称半波电路
(b)桥式电路:是由两个半波电路串联而成,又称全波电路
(4)按控制方式:
(a)相控式电路:通过控制开关器件触发脉冲的相位来控制
直流输出电压大小的方式称为相位控制方式,简称相控方式
二、整流电路
12
§3.2交-直-交变频器
3、不可控整流电路
(1)三相桥式整流电路
(e)工作过程 t2~t3期间: 刚过t2,则uU>uV>uW,U点电位最高, W点电位最低,VD6与VD2换相, VD6截止,VD2导通,VD1仍旧导通, 即该期间VD1、VD2导通,其余截止, 电流从U→VD1→R→VD2→ W, 负载电阻R上电压ud=uUW
10 过程称为换相或换流)
§3.2交-直-交变频器
3、不可控整流电路
(2)三相桥式整流电路 (e)工作过程 0~t1期间: uW>uU>uV,W点电位最高,V点电位 最低,VD5、VD6优先导通,电流从 W→VD5→R→VD6→ V,忽略二极管 正向压降,负载电阻R上电压ud=uWV, VD5导通后使VD1、VD3阴极电位为uW 而承受反向电压截止。 同理VD6导通使VD4、VD2截止
3
§3.2交-直-交变频器二、整流电路Fra bibliotek1、概述
整流电路(Rectifying Circuit)是一种将交流电能转换为 直流电能的电路
2、分类
(1)按组成器件及控制能力: (a)不可控整流电路:整流器件由不可控功率二极管组成, 其直流整流电压和交流电源电压值之比固定不变 (b)半控整流电路:整流器件由可控开关器件和二极管混合 组成,负载电源极性不能改变,但电压平均值可以调节 (c)全控整流电路:所有整流器件采用可控开关器件(SCR 、GTR、GTO、IGBT等),其输出直流电压平均值及极性 可以通过控制元件的导通状况调节,功率既可以由电源向负 4 载传送,也可以由负载反馈给电源
由于VD2、VD3导通时管压降很小,
可忽略不计,故可以看做电源电压
全部施加于负载电阻R上, 即输出电压ud=uBA=-u2
7
二、整流电路
VD1 VD2
A ②
B
VD3 VD4
id Ud R
§3.2交-直-交变频器
二、整流电路
3、不可控整流电路
(2)三相桥式整流电路
(a)概述
常用于三相交流电源供电的电力电子设备如变频器等 可将三相交流电压转换成直流电压
11
二、整流电路
§3.2交-直-交变频器
3、不可控整流电路
(2)三相桥式整流电路
(e)工作过程 t1~t2期间: 刚过t1,则uU>uW>uV,U点电位最高, V点电位最低,VD5与VD1换相, VD5截止,VD1导通,VD6仍旧导通, 即该期间VD1、VD6导通,其余截止, 电流从U→VD1→R→VD6→ V, 负载电阻R上电压ud=uUV
3、不可控整流电路
(2)三相桥式整流电路
(d)工作原理 三相对称交流电源接入U、V、W后,在同一时刻共阴极组 阳极电位最高的那个二极管优先导通,共阳极组阴极电位最 低的那个二极管优先导通,且只有以上两个二极管同时导通 构成回路,其余4个二极管承受反向电压而截止 若把三相交流电压一个周期6等分,每份所占相位角为60° ,在任意一个60°相位角内始终有共阴极组和共阳极组各一 个二极管同时处于导通状态,且任意一个二极管导通角都是 120° 同一相上下桥臂的共阴极组和共阳极组二极管不能同时导通 在三相交流电压自然换相点(即任意两相电压波形交叉点) 同组二极管之间换相导通(流过某VD的电流迅速转移到其它VD流通,此
第三章 变频器的基本结构和工作原理 §3.1 概述 §3.2 交-直-交变频器 §3.3 SPWM控制技术 §3.4 交-交变频器
1
§3.1概述
1、变频器是一种典型的采用了变频技术的电动机驱动控制用 电气设备 2、变频器电路由主电路和控制电路组成,其中主电路采用各 种电力电子电路构成 3、所谓电力电子电路是指利用电力电子器件对工业电能进行 变换和控制的大功率电子电路。由于电力电子电路主要用来 处理高电压大电流的电能,为了减少电路对电能的损耗,电 力电子器件通常工作于开关状态,因此电力电子电路实质上 是一种大功率开关电路 4、电力电子电路是变频技术的具体实现,包括整流电路( AC-DC转换电路)、斩波电路(DC-DC转换电路)、逆变电 路(DC-AC转换电路)、交-交变频电路(AC-AC转换电路
(b)斩波式电路:利用开关器件来实现通断控制,将直流电
源电压断续加到负载上,通过通、断的时间变化来改变负载
电压平均值,称为斩波控制方式
5
§3.2交-直-交变频器
3、不可控整流电路
(1)单相桥式整流电路
(a)结构:4个二极管按桥式方式连接 ①
(b)工作原理过程:
0~π区间:
~220V
U2
A点电位高于B点电位,
相关文档
最新文档