高考一轮复习 三角函数的图象与性质

合集下载

专题24 三角函数的图象与性质-2025年高考数学一轮复习讲义(知识梳理+真题)(新高考专用)解析版

专题24 三角函数的图象与性质-2025年高考数学一轮复习讲义(知识梳理+真题)(新高考专用)解析版

专题24三角函数的图象与性质(新高考专用)【知识梳理】 (2)【真题自测】 (3)【考点突破】 (10)【考点1】三角函数的定义域和值域 (10)【考点2】三角函数的周期性、奇偶性、对称性 (15)【考点3】三角函数的单调性 (22)【分层检测】 (27)【基础篇】 (27)【能力篇】 (34)【培优篇】 (38)考试要求:1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数、正切函数的性质.1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0)(π,0)(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.正切曲线相邻两对称中心之间的距离是半个周期.2.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,偶函数一般可化为y =A cos ωx +b 的形式.3.对于y =tan x 不能认为其在定义域上为增函数,π-π2,k πk ∈Z )内为增函数.一、单选题1.(2023·全国·高考真题)函数()y f x =的图象由函数πcos 26y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A .1B .2C .3D .42.(2023·全国·高考真题)已知函数()()()sin ,0f x x ωϕω=+>在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A .B .12-C .12D .23.(2022·全国·高考真题)设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦4.(2022·全国·高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .5.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A .1B .32C .52D .3二、多选题6.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则()A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线2y x =-是曲线()y f x =的切线三、填空题7.(2023·全国·高考真题)已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是.8.(2023·全国·高考真题)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =.9.(2022·全国·高考真题)记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =9x π=为()f x 的零点,则ω的最小值为.10.(2021·全国·高考真题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为.参考答案:1.C【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.2.D【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2T ω==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 123f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭故选:D.3.C【分析】由x 的取值范围得到3x ω+【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .4.A【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.5.A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A6.AD【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z ,即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A ,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫ ⎪⎝⎭上是单调递减;对B ,当π11π,1212x ⎛⎫∈- ⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点;对C ,当7π6x =时,2π23π3x +=,7π(06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭,解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点0,2⎛ ⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)y x -=--即2y x =-.故选:AD .7.[2,3)【分析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).8.【分析】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,依题可得,21π6x x -=,结合1sin 2x =的解可得,()212π3x x ω-=,从而得到ω的值,再根据2π03f ⎛⎫= ⎪⎝⎭以及()00f <,即可得2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,进而求得()πf .【详解】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由π6AB =可得21π6x x -=,由1sin 2x =可知,π2π6x k =+或5π2π6x k =+,Z k ∈,由图可知,()215π2ππ663x x ωϕωϕ+-+=-=,即()212π3x x ω-=,4ω∴=.因为28ππsin 033f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以8ππ3k ϕ+=,即8ππ3k ϕ=-+,Z k ∈.所以82()sin 4ππsin 4ππ33f x x k x k ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭,所以()2sin 4π3f x x ⎛⎫=- ⎪⎝⎭或()2sin 4π3f x x ⎛⎫=-- ⎪⎝⎭,又因为()00f <,所以2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,()2πsin 4ππ32f ⎛⎫∴=-=- ⎪⎝⎭.故答案为:【点睛】本题主要考查根据图象求出ω以及函数()f x 的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键.9.3【分析】首先表示出T ,根据()2f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解:因为()()cos f x x ωϕ=+,(0ω>,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos 2f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈,因为0ω>,所以当0k =时min 3ω=;故答案为:310.2【分析】先根据图象求出函数()f x 的解析式,再求出7((43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得.【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,(2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解ω,根据特殊点求解ϕ.【考点1】三角函数的定义域和值域一、单选题1.(23-24高一上·河北邢台·阶段练习)函数()f x =)A .()ππ2π,2π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()5ππ2π,2π66k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .()π2π2π,2π63k k k ⎡⎤++∈⎢⎥⎣⎦Z D .()π7π2π,2π66k k k ⎡⎤++∈⎢⎥⎣⎦Z 2.(23-24高一上·北京朝阳·期末)函数()|sin |cos f x x x =+是()A .奇函数,且最小值为BC .偶函数,且最小值为D二、多选题3.(23-24高三下·江苏南通·开学考试)已知函数()cos 22sin f x x x =+,则()A .()f x 的最小正周期为2πB .()f x 关于直线π2x =对称C .()f x 关于点π,02⎛⎫⎪⎝⎭中心对称D .()f x 的最小值为3-4.(2024·贵州贵阳·二模)函数()tan()(0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .2π3ωϕ⋅=B .()f x在π0,3⎡⎤⎢⎥⎣⎦上的值域为(,)∞∞-⋃+C .函数|()|y f x =的图象关于直线5π3x =对称D .若函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[1,1]-三、填空题5.(2024·辽宁·二模)如图,在矩形ABCD 中,4,2AB BC ==,点,E F 分别在线段,BC CD 上,且π4EAF ∠=,则AE AF ⋅的最小值为.6.(2021·河南郑州·二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是.参考答案:1.A【分析】首先求出定义域,再根据复合函数单调性即可得到单调增区间.【详解】令sin 03x π⎛⎫+≥ ⎪⎝⎭,可得22,3k x k k ππππ≤+≤+∈Z .当22,232k x k k πππππ-≤+≤+∈Z 时,函数sin 3y x π⎛⎫=+ ⎪⎝⎭单调递增.所以当22,32k x k k ππππ≤+≤+∈Z 时,()f x 单调递增.故()f x 在()2,236k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 上单调递增.故选:A.2.D【分析】根据题意,结合函数的奇偶性,判定A 、B 不正确;再结合三角函数的图象与性质,求得函数()f x 的最大值和最小值,即可求解.【详解】由函数()|sin |cos f x x x =+,可得其定义域x ∈R ,关于原点对称,且()|sin()|cos()|sin |cos ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,因为()()()()2πsin 2πcos 2πsin cos f x x x x x f x +=+++=+=,所以2π为()y f x =的一个周期,不妨设[0,2π]x ∈,若[0,π]x ∈时,可得π()sin cos )4f x x x x =++,因为[0,π]x ∈,可得ππ5π[,444x +∈,当ππ42x +=时,即π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得min ()1f x =-;若[]π,2πx ∈,可得π()sin cos )4f x x x x =-+=+,因为[π,2π]x ∈,可得π5π9π[,]444x +∈,当π2π4x +=时,即7π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得()min 1f x =-,综上可得,函数()f x ,最小值为1-.故选:D.3.ABD【分析】将函数()cos 22sin f x x x =+可变形为213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,结合函数性质逐项分析计算即可得.【详解】2213()cos 22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,由sin y x =的最小正周期为2π,故()f x 的最小正周期为2π,故A 正确;()()221313(π)2sin π2sin 2222f x x x f x ⎡⎤⎛⎫-=---+=--+= ⎪⎢⎥⎣⎦⎝⎭,且()(π)f x f x -≠-,故()f x 关于直线π2x =,不关于点π,02⎛⎫ ⎪⎝⎭对称,故B 正确,C 错误;由213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,且[]sin 1,1x ∈-,故2min13()21322f x ⎛⎫=-⨯--+=- ⎪⎝⎭,故D 正确.故选:ABD.4.CD【分析】根据正切型三角函数的图象性质确定其最小正周期,从而得ω的值,再根据函数特殊点求得,A ϕ的值,从而可得解析式,再由正切型三角函数的性质逐项判断即可.【详解】函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()tan()f x A x ϕ=+,由函数的图象可知:πππ623ϕϕ+=⇒=,即π()tan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:π(0)tan23f A A ===,所以π3ωϕ⋅=,因此A 不正确;关于πB,()2tan 3f x x ⎛⎫=+ ⎪⎝⎭,当π6x =时,ππ32x +=,故()f x 在π6x =处无定义,故B 错误.因为55ππ5π5ππ2tan 2tan ,2tan 2tan 333333f x x x f x x x π⎛⎫⎛⎫⎛⎫⎛⎫-=-+=+=++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5533f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,所以函数|()|y f x =的图象关于直线5π3x =对称,C 正确;ππ()()2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭,当ππ,36x ⎛⎫∈- ⎪⎝⎭时,|()|()y f x f x λ=+=ππππ2tan 2tan 2tan 2tan (22)tan 33333x x x x x πλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当5,63x ππ⎛⎤∈-- ⎥⎝⎦时,()()2tan 2tan 2tan 333y f x f x x x x πππλλ⎛⎫⎛⎫⎛⎫=+=+++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππ2tan (22)tan 33x x λλ⎛⎫⎛⎫++=-++ ⎪ ⎪⎝⎭⎝⎭,当函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有(22)(22)011λλλ+-+≤⇒-≤≤,故D 正确.故选:CD .5.)161【分析】根据锐角三角函数可得,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,即可由数量积的定义求解,结合和差角公式以及三角函数的性质即可求解最值.【详解】设π02BAE θθ⎛⎫∠=<< ⎪⎝⎭,则π4DAF θ∠=-,故,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,故π42cos π42cos cos 4AE AF AE AF θθ=⎛⎫- ⎪⋅⋅⎝⎭ππcos cos 44θθθθ=⎡⎤⎡⎤⎛⎫⎛⎫+-+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎝⎭当π2π,Z 4k k θ-=∈时,πcos 214θ⎛⎫-= ⎪⎝⎭,即π8θ=时,此时AE AF ⋅)1612=-.故答案为:)161.【点睛】关键点点睛:本题解决的关键是将所求转化为关于θ的表达式,从而得解,6.2⎛ ⎝【分析】由正弦定理可得sinB sin b cC=b c λ+sin()B θ=+且tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,可知b c λ+存在最大值即2B πθ+=,进而可求λ的范围.【详解】∵1a =,34A π=,由正弦定理得:sinB sin 2b c C =∴)sin sin sin sin cos sin 422b c B C B B B B B πλλ⎫⎛⎫+=+=-=-⎪ ⎪⎪⎝⎭⎭1)sin cos sin()B B B θ=-+⋅+,其中tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,∴b c λ+存在最大值,即2B πθ+=有解,即,42ππθ⎛⎫∈ ⎪⎝⎭,10->,解得2λ>1>,解得λ<,故λ的范围是2⎛ ⎝.故答案为:2⎛ ⎝.【点睛】关键点点睛:应用正弦定理边角关系、辅助角公式,结合三角形内角和、三角函数的性质列不等式组求参数范围.反思提升:1.求三角函数的定义域通常要解三角不等式(组),解三角不等式(组)常借助三角函数的图象.2.求解三角函数的值域(最值)常见的几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【考点2】三角函数的周期性、奇偶性、对称性一、单选题1.(2024·重庆·模拟预测)将函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,所得图象关于坐标原点对称,则ϕ的值可以为()A .2π3B .π3C .π6D .π42.(2024·湖北武汉·模拟预测)若函数()()ππ3cos 022f x x ωϕωϕ⎛⎫=+<-<< ⎪⎝⎭,的最小正周期为π,在区间ππ,66⎛⎫- ⎪⎝⎭上单调递减,且在区间π0,6⎛⎫ ⎪⎝⎭上存在零点,则ϕ的取值范围是()A .ππ,62⎛⎫ ⎪⎝⎭B .3π,2π⎛⎤-- ⎥⎝⎦C .ππ,32⎡⎫⎪⎢⎣⎭D .π0,3⎛⎤⎥⎝⎦3.(2024·北京西城·二模)将函数()tan f x x =的图象向右平移1个单位长度,所得图象再关于y 轴对称,得到函数()g x 的图象,则()g x =()A .1tan -xB .1tan --xC .tan (1)--x D .tan (1)-+x 二、多选题4.(2024·河南洛阳·模拟预测)已知函数3ππsin ,2π2π44()()π5πcos ,2π2π44x k x k f x k x k x k ⎧-≤≤+⎪⎪=∈⎨⎪+<<+⎪⎩Z ,则()A .()f x 的对称轴为()ππ,Z 4x k k =+∈B .()f x 的最小正周期为4πC .()f x 的最大值为1,最小值为2-D .()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增5.(2024·辽宁·二模)已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭满足πππ(),263f x f x f f ⎛⎫⎛⎫⎛⎫-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0,且在π5π,1212⎛⎫⎪⎝⎭上单调递减,则()A .函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称B .ϕ可以等于π4-C .ω可以等于5D .ω可以等于36.(23-24高三上·山西运城·期末)已知函数()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭,则()A .()f x 的一个周期为2B .()f x 的定义域是1,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭C .()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称D .()f x 在区间[]1,2上单调递增三、填空题7.(2024·全国·模拟预测)已知函数()()21cos cos 02f x x x x ωωωω=->,若()f x 的图象在[]0,π上有且仅有两条对称轴,则ω的取值范围是.8.(2024·四川雅安·三模)已知函数()e cos2e x x a f x x ⎛⎫=- ⎪⎝⎭是偶函数,则实数=a .9.(2023·四川达州·一模)函数()2lntan 32x f x m x x -=+++,且()6f t =,则()f t -的值为.参考答案:1.B【分析】由三角函数的平移变化结合奇函数的性质可得π2π3k k ϕ+=∈Z ,,解方程即可得出答案.【详解】因为()f x 向右平移ϕ个单位后解析式为π=sin 223y x ϕ⎛⎫-- ⎪⎝⎭,又图象关于原点对称,πππ2π,01362k k k k k ϕϕϕ∴+=∈∴=-+∈>∴=Z Z ,,,,时,π3ϕ=,故选:B.2.B【分析】根据给定周期求得2ω=-,再结合余弦函数的单调区间、单调性及零点所在区间列出不等式组,然后结合已知求出范围.【详解】由函数()f x 的最小正周期为π,得2ππ||ω=,而0ω<,解得2ω=-,则()3cos(2)3cos(2)f x x x ϕϕ=-+=-,由2π22ππ,Z k x k k ϕ≤-≤+∈,得2π+22ππ,Z k x k k ϕϕ≤≤++∈,又()f x 在ππ(,)66-上单调递减,因此π2π+3k ϕ≤-,且π2ππ,Z 3k k ϕ≤++∈,解得2ππ2π2π,Z 33k k k ϕ--≤≤--∈①,由余弦函数的零点,得π2π,Z 2x n n ϕ-=+∈,即π2π,Z 2x n n ϕ=++∈,而()f x 在(0,)6π上存在零点,则ππ0π,Z 23n n ϕ<++<∈,于是ππππ,Z 26n n n ϕ--<<--∈②,又ππ22ϕ-<<,联立①②解得ππ23ϕ-<≤-,所以ϕ的取值范围是ππ(,]23--.故选:B 3.D【分析】根据正切函数图象的平移变换、对称变换即可得变换后的函数()g x 的解析式.【详解】将函数()tan f x x =的图象向右平移1个单位长度,所得函数为()(1)tan 1f x x -=-,则函数()(1)tan 1f x x -=-的图象再关于y 轴对称得函数()()()()1tan 1tan 1g x f x x x =--=--=-+.故选:D.4.AD【分析】作出函数()f x 的图象,对于A ,验算()π2π2f k x f x ⎛⎫+-= ⎪⎝⎭是否成立即可;对于B ,由(),(2π)x f x f x ∈+=R 即可判断;对于CD ,借助函数单调性,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值验算即可判断CD.【详解】作出函数()f x 的图象如图中实线所示.对于A ,由图可知,函数()f x 的图象关于直线3ππ5π,,444x x x =-==对称,对任意的k ∈Z ,π1ππ1ππ2πsin 2πcos 2πsin 2πcos 2π2222222f k x k x k x k x k x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-=+-++--+--+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111(cos sin )cos sin |(sin cos )|sin cos |()2222x x x x x x x x f x =+--=+--=,所以函数()f x 的对称轴为()ππ,Z 4x k k =+∈,A 正确;对于B ,对任意的11,(2π)[sin(2π)cos(2π)]sin(2π)cos(2π)22x f x x x x x ∈+=+++-+-+R 11(sin cos )|sin cos |()22x x x x f x =+--=,结合图象可知,函数()f x 为周期函数,且最小正周期为2π,故B 错误;对于C ,由A 选项可知,函数()f x 的对称轴为()ππ,Z 4x k k =+∈,且该函数的最小正周期为2π,要求函数()f x 的最大值和最小值,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值,因为函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,所以当π5π,44x ⎡⎤∈⎢⎥⎣⎦时,min ()(π)cos πf x f ==1=-,因为ππ5π5ππsin sin sin 4424442f f ⎛⎫⎛⎫====-=- ⎪ ⎪⎝⎭⎝⎭,所以max π()42f x f ⎛⎫== ⎪⎝⎭,因此()f x ,最小值为-1,故C 错误;对于D ,由C 选项可知,函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,D 正确,故选:AD .【点睛】关键点点睛:判断C 选项的关键是求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值即可,由此即可顺利得解.5.ABD【分析】根据题意,可得函数()y f x =的图象关于π4x =-对称,关于点π,04⎛⎫ ⎪⎝⎭对称,由三角函数的对称性性质可得π4ϕ=±,从而判断选项A 、B ;再根据函数的单调性,可求出ω的值,从而判定选项C 、D.【详解】由π()2f x f x ⎛⎫-=- ⎪⎝⎭,则ππππ(4424f x f x f x ⎛⎫⎛⎫-=+-=-- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于π4x =-对称,又πππ5π126312<<<,且ππ063f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则1πππ02634f f ⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,故A 正确;根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,可得,()()2121ππ,1242k k k k ϕω-=+=+-,由于π||2ϕ<,所以π4ϕ=±,故B 正确;当π4ϕ=时,由π5π1212x <<,得πππ5ππ1244124x ωωω+<+<+,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧+≥⎪⎪⎨⎪+≤+⎪⎩,即92424355k ω-≤≤+,又0ω>,所以90,05k ω=<<,又()2112k k ω=+-,所以1ω=,当π4ϕ=-时,由π5π1212x <<,得πππ5ππ1244124x ωωω-<-<-,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧-≥⎪⎪⎨⎪-≤+⎪⎩,即2424335k k ω+≤≤+,又0ω>,所以0,3k ω==,故C 错误,D 正确.故选:ABD【点睛】关键点点睛:根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫ ⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,从而()()2121ππ,1242k k k k ϕω-=+=+-.6.ACD 【分析】利用正切函数的图象与性质一一判定选项即可.【详解】对于A ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知其最小正周期π2π2T ==,故A 正确;对于B ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知πππ1π2,Z 2422x k x k k +≠+⇒≠+∈,故B 错误;对于C ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知1πππ2242x x =⇒+=,此时()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称,故C 正确;对于D ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知[]ππ3π5π1,2,2444x x ⎡⎤∈⇒+⎢⎥⎣⎦,又tan y x =在π3π,22⎡⎤⎢⎥⎣⎦上递增,显然3π5π,44⎡⎤⊂⎢⎥⎣⎦π3π,22⎡⎤⎢⎥⎣⎦,故D 正确.故选:ACD 7.54,63⎡⎫⎪⎢⎣⎭【分析】运用正余弦二倍角公式及辅助角公式化简()f x ,由已知条件结合正弦函数性质可得结果.【详解】因为()211πcos cos sin2cos2sin 22226f x x x x x x x ωωωωωω⎛⎫=-=-=- ⎪⎝⎭,因为()f x 的图象在[]0,π上有且仅有两条对称轴,所以3ππ5π2π262ω≤-<,解得5463ω≤<,所以ω的取值范围是54,63⎡⎫⎪⎢⎣⎭.故答案为:54,63⎡⎫⎪⎢⎣⎭.8.1-【分析】根据偶函数的定义,即可列关系式求解.【详解】()f x 定义域为R ,()()()1e cos 2e cos2e cos2e e e x xx xx xa af x x a x f x x --⎛⎫⎛⎫⎛⎫-=--=-+==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()1111e e e e 1e 0e e e e e xxx xx x x x xx a a a a ⎛⎫⎛⎫-+=-⇒-=-⇒+-= ⎪ ⎪⎝⎭⎝⎭,故1a =-,故答案为:1-9.0【分析】构造()()3g x f x =-,得到()g x 为奇函数,从而根据()6f t =得到()3g t =,由()3g t -=-求出()f t -.【详解】令()()23lntan 2x g x f x m x x -=-=++,定义域为{|2x x <-或2x >且ππ,Z}2x k k ≠+∈,关于原点对称,则()()()222lntan ln tan ln tan 222x x x g x m x m x m x g x x x x --+--=+-=-=--=--+-+,故()g x 为奇函数,又()()3633g t t f =-=-=,故()()33t g t f -=--=-,解得()0f t -=.故答案为:0反思提升:(1)三角函数周期的一般求法①公式法;②不能用公式求周期的函数时,可考虑用图象法或定义法求周期.(2)对于可化为f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z )(或令ωx +φ=k π(k ∈Z )),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ωx +φ=π2+k π(k ∈Z x 即可.(3)对于可化为f (x )=A tan(ωx +φ)形式的函数,如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π2(k ∈Z ),求x 即可.(4)三角函数型奇偶性的判断除可以借助定义外,还可以借助其图象与性质,在y =A sin(ωx +φ)中代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).【考点3】三角函数的单调性一、单选题1.(2024·云南·模拟预测)已知函数()f x 为R 上的偶函数,且当()1212,,0,x x x x ∞∈-≠时,()()12120f x f x x x ->-,若12log 3a f ⎛⎫= ⎪⎝⎭,()()0.20.5,sin1b f c f ==,则下列选项正确的是()A .c b a <<B .b<c<aC .a b c<<D .c<a<b2.(2024·陕西榆林·三模)已知()0,2πα∈,若当[]0,1x ∈时,关于x 的不等式()()2sin cos 12sin 1sin 0x x αααα++-++>恒成立,则α的取值范围为()A .π5π,1212⎛⎫⎪⎝⎭B .π5π,66⎛⎫ ⎪⎝⎭C .ππ,63⎛⎫ ⎪⎝⎭D .π5π,36⎛⎫ ⎪⎝⎭二、多选题3.(2022·湖北武汉·三模)已知函数()2cos f x x x =-的零点为0x ,则()A .012x <B .013>xC .0tan 2x >D .001<sin 4x x -4.(2024·湖南长沙·一模)已知函数()()tan (0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .π6A ωϕ⋅⋅=B .()f x 的图象过点11π6⎛ ⎝⎭C .函数()y f x =的图象关于直线5π3x =对称D .若函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[]1,1-三、填空题5.(2023·陕西西安·模拟预测)已知函数()()cos f x A x b ωϕ=++,(0A >,0ω>,π2ϕ<)的大致图象如图所示,将函数()f x 的图象上点的横坐标拉伸为原来的3倍后,再向左平移π2个单位长度,得到函数()g x 的图象,则函数()g x 的一个单调递增区间为.6.(2022·上海闵行·模拟预测)已知[0,π]∈,若sin cos 0αα->,则α的取值范围是.参考答案:1.C【分析】根据条件判断函数的单调性,结合函数奇偶性和单调性的关系进行转化求解即可.【详解】当()12,,0x x ∞∈-时,()()12120f x f x x x ->-,所以()f x 在(),0∞-上单调递增;又有()f x 为R 上的偶函数,所以()f x 在()0,∞+上单调递减.由于我们有()11100.2555522πlog 3log 210.50.50.50.4984210.870.87sin sin 1023>==>=>==>=>>,即0.22sin10log 30.5>>>,故()()()0.22log 30.5sin1f f f <<.而()()1222log 3log 3log 3a f f f ⎛⎫==-= ⎪⎝⎭,()0.20.5b f =,()sin1c f =,故a b c <<.故选:C.2.A【分析】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,易得()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=∈++,则()()00101sin 20sin cos 1f f f ααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪+ ⎪⎪> ⎪⎪++ ⎪⎪⎝⎭⎩,进而可得出答案.【详解】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,由题意可得()()0010f f ⎧>⎪⎨>⎪⎩,则sin 0cos 0αα>⎧⎨>⎩,又因为()0,2πα∈,所以π0,2α⎛⎫∈ ⎪⎝⎭,函数()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=++,则()()2sin 0cos 011sin sin 22sin cos 12sin 1sin 0sin cos 1sin cos 1αααααααααααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪++ ⎪⎪++-+⋅+> ⎪⎪++++ ⎪⎪⎝⎭⎩,即()2sin 0cos 0(2sin 1)4sin sin cos 10αααααα⎧>⎪>⎨⎪+-++<⎩,即sin 0cos 01sin22ααα⎧⎪>⎪>⎨⎪⎪>⎩,结合π0,2α⎛⎫∈ ⎪⎝⎭,解得π5π1212α<<.故选:A.3.ABD【分析】对AB ,求导分析可得()f x 为增函数,再根据零点存在性定理可判断;对C ,根据AB 得出的01132x <<结合正切函数的单调性可判断;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,再根据零点存在性定理,放缩判断()g x 的正负判断即可【详解】对AB ,由题()2sin 0f x x '=+>,故()f x 为增函数.又111cos 022f ⎛⎫=-> ⎪⎝⎭,12122cos cos 03333632f π⎛⎫=-<-=-< ⎪⎝⎭,故01132x <<,故AB 正确;对C ,因为01132x <<,所以01tan tan 2t n 14a x π<=<1>,故C 错误;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,则()1cos 0g x x '=->,故()g x 为增函数.故()111111sin sin sin2424124344g x g πππ⎛⎫⎛⎫<=-<-=--= ⎪ ⎪⎝⎭⎝⎭,因为(2130-=<,故1<,故104<,即()0g x <,故111sin 0,,432x x x ⎛⎫--<∈ ⎪⎝⎭,故001<sin 4x x -,D 正确;故选:ABD【点睛】本题主要考查了利用导数分析函数零点的问题,一般需要用零点存在性定理判断零点所在的区间,同时在判断区间端点正负时,需要适当放缩,根据能够确定取值大小的三角函数值进行判断,属于难题4.BCD【分析】根据函数图象所经过的点,结合正切型函数的对称性、单调性逐一判断即可.【详解】对于A :设该函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()()tan f x A x ϕ=+,由函数的图象可知:πππππ623k k ϕϕ+=+⇒=++,又0πϕ<<,所以π3ϕ=,即()πtan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:()π0tan 23f A A ===,所以2π3A ωϕ⋅⋅=,因此A 不正确;对于B :11π11ππ13ππ2tan 2tan 2tan 26636633f ⎛⎫⎛⎫=+===⨯= ⎪⎪⎝⎭⎝⎭,所以B 正确;对于C :因为5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫+=++= ⎪ ⎪⎝⎭⎝⎭,所以5π5π33f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于直线5π3x =对称,因此C 正确;对于D :()()ππ2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭当ππ,36x ⎛⎫∈- ⎪⎝⎭时,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=++ ⎪⎝⎭,当5ππ,63x ⎛⎤∈-- ⎥⎝⎦,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=-++ ⎪⎝⎭,当函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有()()2222011λλλ+-+≤⇒-≤≤,D 正确.故选:BCD【点睛】关键点睛:运用函数对称性、函数单调性的性质是解题的关键.5.7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)【分析】先根据()f x 的部分图象得到函数的周期、振幅、初相,进而求出()f x 的解析式,再根据函数图象的伸缩变换和平移变换得到()g x 的解析式,后可求()g x 的单调递增区间.【详解】由图可知πππ==43124T -,得=πT ,所以2π==2Tω,()112A =--=,1b =-,所以()()2cos 21f x x ϕ=+-,由图ππ2cos 2111212f ϕ⎛⎫⎛⎫=⨯+-= ⎪ ⎪⎝⎭⎝⎭,得π2π6k ϕ=-+,Z k ∈,又π2ϕ<,所以π6ϕ=-,故()π2cos 216f x x ⎛⎫ -⎪⎝⎭=-,由题意()1ππ2π2cos 212cos 132636g x x x ⎡⎤⎛⎫⎛⎫=⨯+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令2ππ2π2π36k x k -+≤+≤,Z k ∈,得7ππ3π3π44k x k -+≤≤-+,Z k ∈故函数()g x 的单调递增区间为7ππ3π,3π44k k ⎡⎤-+-+⎢⎥⎣⎦,Z k ∈,当0k =时,函数()g x 的一个单调递增区间为7ππ,44⎡⎤--⎢⎥⎣⎦,故答案为:7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)6.π3π(,)44【分析】根据角的范围分区间讨论,去掉绝对值号,转化为不含绝对值的三角不等式,求解即可.【详解】由题,当π[0,]2α∈时,原不等式可化为sin cos αα>,解得ππ42α<≤,当ππ2α<≤时,由原不等式可得tan 1α<-,解得π3π24α<<,综上π3π(,44α∈.故答案为:π3π(,)44反思提升:1.求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题,利用特值验证排除法求解更为简捷.【基础篇】一、单选题1.(2024·福建·模拟预测)若函数()sin23f x A x =-在3π5π,812⎛⎫ ⎪⎝⎭上有零点,则整数A 的值是()A .3B .4C .5D .62.(2024·贵州黔南·二模)若函数()πcos 3f x x ϕ⎛⎫=-+ ⎪⎝⎭为偶函数,则ϕ的值可以是()A .5π6B .4π3C .πD .π23.(2024·安徽·三模)“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(22-23高一下·湖北武汉·期中)若函数()sin 0y x x ωωω=->在区间π,03⎛⎫- ⎪⎝⎭上恰有唯一对称轴,则ω的取值范围为()A .17,22⎡⎫⎪⎢⎣⎭B .17,36⎛⎤ ⎥⎝⎦C .17,33⎛⎤ ⎥⎝⎦D .17,22⎛⎤ ⎥⎝⎦二、多选题5.(2024·云南·模拟预测)已知函数()()()sin ,0,0,πf x x ωϕωϕ=+>∈,如图,图象经过点π,112A ⎛⎫ ⎪⎝⎭,π,03B ⎛⎫⎪⎝⎭,则()A .2ω=B .π6ϕ=C .11π12x =是函数()f x 的一条对称轴D .函数()f x 在区间7π13π,1212⎛⎫⎪⎝⎭上单调递增6.(2023·辽宁·模拟预测)已知定义域为I 的偶函数0(),f x x I ∃∈,使()00f x <,则下列函数中符合上述条件的是()A .2()3f x x =-B .()22x xf x -=+C .2()log||f x x =D .()cos 1f x x =+7.(23-24高一上·广东肇庆·期末)关于函数πtan 3y x ⎛⎫=- ⎪⎝⎭,下列说法中正确的有()A .是奇函数B .在区间ππ,66⎛⎫- ⎪⎝⎭上单调递增C .5π,06⎛⎫⎪⎝⎭为其图象的一个对称中心D .最小正周期为π三、填空题8.(2022·江西·模拟预测)将函数()tan2f x x =的图像向左平移t (0t >)个单位长度,得到函数g (x )的图像,若12g π⎛⎫= ⎪⎝⎭,则t 的最小值是.9.(2022·重庆沙坪坝·模拟预测)若函数cos y x ω=在,06π⎛⎫- ⎪⎝⎭单调递增,在0,3π⎛⎫ ⎪⎝⎭单调递减,则实数ω的取值范围是.10.(21-22高三上·河南·阶段练习)已知函数()3cos 2n f x x x p ⎛⎫=+ ⎪⎝⎭为偶函数,且当()0,x π∈时,()0f x >,则n 的值可能为.四、解答题11.(2022·北京门头沟·一模)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,6x π=是函数()f x 的对称轴,且()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调.(1)从条件①、条件②、条件③中选一个作为已知,使得()f x 的解析式存在,并求出其解析式;条件①:函数()f x 的图象经过点10,2A ⎛⎫⎪⎝⎭;条件②:,03π⎛⎫⎪⎝⎭是()f x 的对称中心;条件③:5,012π⎛⎫ ⎪⎝⎭是()f x 的对称中心.(2)根据(1)中确定的()f x ,求函数()0,2y f x x π⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的值域.12.(2021·浙江·模拟预测)已知函数()22sin 263f x x x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的最小正周期和单调递减区间.(2)若对任意的()2,2m ∈-,方程()f x m =(其中[)0,x a ∈)始终有两个不同的根1x ,2x .①求实数a 的值;②求12x x +的值.参考答案:1.C【分析】将函数的零点问题转化为sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上的交点问题,求出sin2y x =的值域即可.【详解】由于函数()sin23f x A x =-在3π5π,812⎛⎫⎪⎝⎭上有零点,所以方程sin230A x -=在3π5π812⎛⎫⎪⎝⎭,上有实数根,即sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上有交点,令2t x =,则3π5π46t <<,当3π5π46t <<,sin y t =单调递减,故在区间上最多只有1个零点,又1sin 2t ⎛∈ ⎝⎭,即312A ⎛∈ ⎝⎭,解得()6A ∈,由于A 是整数,所以5A =.故选:C.2.B【分析】由题意可知:0x =为函数()f x 的对称轴,结合余弦函数对称性分析求解.【详解】由题意可知:0x =为函数()f x 的对称轴,则ππ,3k k ϕ-+=∈Z ,则ππ,3k k ϕ=+∈Z ,对于选项A :令π5ππ36k ϕ=+=,解得12k =∉Z ,不合题意;对于选项B :令π4ππ33k ϕ=+=,解得1k =∈Z ,符合题意;对于选项C :令πππ3k ϕ=+=,解得23k =∉Z ,不合题意;对于选项D :令πππ32k ϕ=+=,解得16k =∉Z ,不合题意;故选:B.3.A【分析】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,根据正切函数的对称性可得ππ,42k k ϕ=-+∈Z ,再根据充分、必要条件结合包含关系分析求解.【详解】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,则ππ,42k k ϕ+=∈Z ,解得ππ,42k k ϕ=-+∈Z ,因为π|π,4k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 是ππ|,42k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 的真子集,所以“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的充分不必要条件.故选:A.4.D【分析】利用辅助角公式化简得到π2cos 6y x ω⎛⎫=+ ⎪⎝⎭,再求出ππππ,6366x ωω⎛⎫ ⎪⎝+∈-⎭+,结合对称轴条数得到不等式,求出答案.【详解】πsin 2cos 6y x x x ωωω⎛⎫=-=+ ⎪⎝⎭,。

一轮复习第24讲 三角函数的图像与性质

一轮复习第24讲 三角函数的图像与性质
课前基础巩固
课堂考点探究
第24讲 三角函数的图像与性质
教师备用习题
作业手册
1.能画出三角函数的图像,了解三角函数的周期性、单调性、奇偶性、最大(小)值.
2.借助图像理解正弦函数、余弦函数在[0,2π]上的性质,正切函数在上的性质.
课标要求
1. “五点法”作图原理(1)在函数y=sin x,x∈[0,2π]的图像上,起关键作用的五个点是(0,0), ,(π,0), ,(2π,0). (2)在函数y=cos x,x∈[0,2π]的图像上,起关键作用的五个点是(0,1), , (π,-1), ,(2π,1).
(k∈Z)
[解析] y=2sin=-2sin,令2kπ-≤x-≤2kπ+(k∈Z),解得2kπ-≤x≤ 2kπ +(k∈Z),所以函数y=2sin的单调递减区间为(k∈Z).
6.函数y=-sin2x+3sin x-1的最大值为 . 7.函数y=的值域是 .
课前基础巩固
1
[解析] ∵y=-sin2x+3sin x-1=-+,sin x∈[-1,1],∴当sin x=1时,ymax=1.
[解析]因为x∈,所以cos x∈,故y=2cos x的值域为[-2,1],所以b-a=3.
题组二 常错题
索引:忽视y=Asin ωx(或y=Acos ωx)中ω对函数单调性的影响;忽视正、余弦函数的有界性;忽视函数的定义域.5.函数y=2sin的单调递减区间是 .
课前基础巩固
[解析] ∵函数y==cos x的定义域为,∴该函数的值域为(-1,0)∪(0,1).
(-1,0)∪(0,1)
例1 (1)函数f(x)=-2tan的定义域是( ) A. B.C. D.

高中数学一轮复习重难点 三角函数的图象与性质

高中数学一轮复习重难点  三角函数的图象与性质

5.3 三角函数的图象与性质五年高考考点1 三角函数的图象及其变换1.(2022浙江,6,4分,易)为了得到函数y=2sin 3x 的图象,只要把函数y=2sin (3x +π5)图象上所有的点( )A.向左平移π5个单位长度 B.向右平移π5个单位长度 C.向左平移π15个单位长度 D.向右平移π15个单位长度 答案 D2.(2021全国乙理,7,5分,中)把函数y=f(x)图象上所有点的横坐标缩短到原来的12,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin (x-π4)的图象,则f(x)=( ) A.sin (x 2-7π12) B.sin (x2+π12) C.sin (2x-7π12) D.sin (2x +π12) 答案 B3.(2017课标Ⅰ理,9,5分,中)已知曲线C 1:y=cos x,C 2:y=sin (2x +2π3),则下面结论正确的是 ( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 D.把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 答案 D4.(2023全国甲理,10,5分,中)函数y=f(x)的图象由函数y=cos(2x+π6)的图象向左平移π6个单位长度得到,则y=f(x)的图象与直线y=12x−12的交点个数为()A.1B.2C.3D.4答案C5.(2019天津,文7,理7,5分,中)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g(π4)=√2,则f (3π8)=()A.-2B.-√2C.√2D.2答案C6.(2021全国甲文,15,5分,中)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则f(π2)=.答案-√37.(2023新课标Ⅱ,16,5分,中)已知函数f(x)=sin(ωx+φ),如图,A,B是直线y=12与曲线y=f(x)的两个交点,若|AB|=π6,则f(π)=.答案-√32考点2三角函数的性质及其应用1.(2021新高考Ⅰ,4,5分,易)下列区间中,函数f(x)=7sin(x-π6)单调递增的区间是()A.(0,π2) B.(π2,π)C.(π,3π2) D.(3π2,2π)答案A2.(2021全国乙文,4,5分,易)函数f(x)=sin x3+cos x3的最小正周期和最大值分别是()A.3π和√2B.3π和2C.6π和√2D.6π和2 答案C3.(2023全国乙理,6,5分,易)已知函数f(x)=sin(ωx+φ)在区间(π6,2π3)单调递增,直线x=π6和x=2π3为函数y=f(x)的图象的两条对称轴,则f (-5π12)=()A.-√32B.−12C.12D.√32答案D4.(2018课标Ⅰ文,8,5分,中)已知函数f(x)=2cos2x-sin2x+2,则()A. f(x)的最小正周期为π,最大值为3B. f(x)的最小正周期为π,最大值为4C. f(x)的最小正周期为2π,最大值为3D. f(x)的最小正周期为2π,最大值为4答案B5.(2021北京,7,4分,中)函数f(x)=cos x-cos 2x是()A.奇函数,且最大值为2B.偶函数,且最大值为2C.奇函数,且最大值为98D.偶函数,且最大值为98答案D6.(2022北京,5,4分,中)已知函数f(x)=cos2x-sin2x,则()A. f(x)在(-π2,-π6)上单调递减B. f(x)在(-π4,π12)上单调递增C. f(x)在(0,π3)上单调递减D. f(x)在(π4,7π12)上单调递增答案C7.(2020天津,8,5分,中)已知函数f(x)=sin(x+π3).给出下列结论:①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sin x的图象上所有点向左平移π3个单位长度,可得到函数y=f(x)的图象.其中所有正确结论的序号是()A.①B.①③C.②③D.①②③答案B8.(2020课标Ⅰ,文7,理7,5分,中)设函数f(x)=cos(ωx+π6)在[-π,π]的图象大致如图,则f(x)的最小正周期为()A.10π9B.7π6C.4π3D.3π2答案C9.(2022新高考Ⅰ,6,5分,中)记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=()A.1B.32C.52D.3答案A10.(多选)(2022新高考Ⅱ,9,5分,中)已知函数f(x)=sin(2x+φ)(0<φ<π)的图象关于点(2π3,0)中心对称,则()A. f(x)在区间(0,5π12)单调递减B. f(x)在区间(-π12,11π12)有两个极值点C.直线x=7π6是曲线y=f(x)的对称轴D.直线y=√32-x是曲线y=f(x)的切线答案AD11.(2019北京理,9,5分,易)函数f(x)=sin22x的最小正周期是.答案π212.(2023新课标Ⅰ,15,5分,中)已知函数f(x)=co s ωx-1(ω>0)在区间[0,2π]有且仅有3个零点,则ω的取值范围是.答案[2,3)13.(2019课标Ⅰ文,15,5分,中)函数f(x)=sin(2x+3π2)-3cos x的最小值为. 答案-414.(2022全国乙理,15,5分,中)记函数f(x)=cos(ωx+φ)(ω>0,0<φ<π)的最小正周期为T.若f(T)=√32,x=π9为f(x)的零点,则ω的最小值为. 答案 315.(2020江苏,10,5分,中)将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是.答案x=-524π16.(2020课标Ⅲ理,16,5分,难)关于函数f(x)=sin x+1sinx有如下四个命题:①f(x)的图象关于y轴对称.②f(x)的图象关于原点对称.③f(x)的图象关于直线x=π2对称.④f(x)的最小值为2.其中所有真命题的序号是.答案②③三年模拟一、单项选择题1.(2021江苏七市第二次调研,6,易)函数f(x)=sin xcos x+√3cos2x的图象的一条对称轴为()A.x=π12B.x=π6C.x=π3D.x=π2答案A2.(2023广东潮州二模,5,中)若f(x)=sin(2x+π6)在区间[-t,t]上单调递增,则实数t的取值范围为()A.[π6,π2] B.(0,π3]C.[π6,π3] D.(0,π6]答案D3.(2023安徽“江南十校”一模,中)已知函数f(x)=cos(x+π2)cos(x+π4),则下列说法正确的是()A.点(-π8,0)是曲线y=f(x)的对称中心 B.点(π8,√24)是曲线y=f(x)的对称中心C.直线x=5π8是曲线y=f(x)的对称轴 D.直线x=3π8是曲线y=f(x)的对称轴 答案 C4.(2023湖南岳阳一模,中)已知函数f(x)=sin x+acos x 的一个零点是π3,将函数y=f(2x)的图象向左平移5π12个单位长度后所得图象的表达式为( ) A.y=2sin (2x-7π6) B.y =2sin (2x +π12)C.y=-2cos 2xD.y=2cos 2x 答案 D5.(2023河北邯郸二模,6,中)已知函数f(x)=cos(2x-θ)(|θ|<π2),将函数f(x)的图象沿x 轴向左平移π6个单位长度后,得到一个偶函数的图象,则函数f(x)的极值点为( ) A.π6+kπ(k ∈Z ) B.π6+kπ2(k ∈Z ) C.π12+kπ(k ∈Z ) D.π12+kπ2(k ∈Z ) 答案 B6.(2023皖南八校一模,6,中)已知函数f(x)=√3sin x 2cos x 2−sin2x 2+12,则下列结论正确的有( ) A.|f(x)|的最小正周期为2πB.直线x=-π3是f(x)图象的一条对称轴 C. f(x)在(0,π2)上单调递增D.若f(x)在区间[-π2,m]上的最大值为1,则m ≥π3 答案 D7.(2021天津南开一模,7,中)已知函数f(x)=√3sin ωx -cos ωx(ω>0)满足f(x 1)-f(x 2)=4,且|x 1-x 2|的最小值为π2,则 f (π8)的值为( ) A.√6-√22B.1C.√3D.2答案 A8.(2022湖南新高考教学教研联盟第一次联考,7,中)若函数f(x)=sin(2x+φ)(|φ|<π2)的图象向左平移π6个单位长度后关于直线x=π4对称,则函数f(x)在区间[0,π2]上的最小值为()A.-√32B.−12C.√32D.12答案A二、多项选择题9.学科融合(2023广东一模,9,中)如图,弹簧下端悬挂着的小球做上下运动(忽略小球的大小),它在t(s)时刻相对于平衡位置的高度h(cm)可以由h=2sin(π2t+π4)确定,则下列说法正确的是()A.小球运动的最高点与最低点的距离为2 cmB.小球经过4 s往复运动一次C.t∈(3,5)时小球是自下往上运动D.当t=6.5时,小球到达最低点答案BD10.(2023湖南永州二模,9,中)已知函数f(x)=sin(2x+π6)−2√3sin xcos x,则()A.f(x)的最大值为1B.直线x=π3是f(x)图象的一条对称轴C. f(x)在区间(-π6,π3)上单调递减D. f(x)的图象关于点(π6,0)对称答案ABC11.(2022湖南株洲一模,中)若x=π6是函数f(x)=asin x+bcos x(ab≠0)图象的一条对称轴,则下列说法正确的是()A.b=√3aB.x=-5π6是函数f(x)图象的一条对称轴C.点(2π3,0)是函数f(x)图象的一个对称中心D.函数f(x)在(π6,7π6)上单调递减 答案 ABC12.(2023广东深圳二模,10,中)已知f(x)是定义在闭区间上的偶函数,且在y 轴及其右侧的图象是函数y=sin(ωx+φ)(ω>0,0<φ<π)图象的一部分(如图所示),则( )A.f(x)的定义域为[-π,π]B.当x=π6时, f(x)取得最大值 C.当x<0时, f(x)的单调递增区间为[-2π3,-π6] D.当x<0时, f(x)有且只有两个零点-5π12和-11π12 答案 BCD13.(2022山东滨州二模,中)设函数f(x)=|cos x|+cos 2x,则下列结论中正确的是( ) A. f(x)的最小正周期为π B. f(x)在[0,2π3]上单调递减 C. f(x)的图象关于直线x=π4对称 D. f(x)的值域为[-1,2] 答案 AD 三、填空题14.(2023浙江强基联盟2月统测,中)已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<π2), f(x)≤|f (π6)|, f(x)+f (4π3-x)=0, f(x)在(π36,π6)上单调,则正整数ω的最大值为 . 答案 715.(2022上海杨浦二模,12,中)若函数f(x)=cos ωx(ω>0)在区间(2π,3π)内既没有最大值1,也没有最小值-1,则ω的取值范围是 . 答案 (0,13]∪[12,23]∪{1} 四、解答题16.(2023山东青岛第一次适应性测试,中)已知函数f(x)=2cos 2ωx+sin 2ωx(ω>0),x 1,x 2是f(x)的两个相邻极值点,且满足|x 1-x 2|=π.(1)求函数f(x)图象的对称轴方程; (2)若f(α)=13,求sin 2α.解析 (1)f(x)=2cos 2ωx+sin 2ωx=1+cos 2ωx+sin 2ωx=√2sin (2ωx +π4)+1.(2分) 由题意得T=2π,所以2ω=2πT=1.(3分) 所以f(x)=√2sin (x +π4)+1.令x+π4=kπ+π2(k ∈Z ),得x=kπ+π4(k ∈Z ),所以函数f(x)图象的对称轴方程为x=kπ+π4(k ∈Z ).(5分) (2)由f(α)=13得sin (α+π4)=−√23.(6分)所以sin α+cos α=-23,所以(sin α+cos α)2=49,即1+sin 2α=49,所以sin 2α=-59.(10分) 17.(2023江苏南京一模,17,中)已知f(x)=sin ωx -√3cos ωx,ω>0. (1)若函数f(x)图象的两条相邻对称轴之间的距离为π2,求f (3π2)的值; (2)若函数f(x)的图象关于(π3,0)对称,且函数f(x)在[0,π4]上单调,求ω的值. 解析 (1)f(x)=sin ωx -√3cos ωx =2(12sinωx-√32cosωx)=2sin (ωx-π3),因为函数f(x)图象的两条相邻对称轴之间的距离为π2,所以12T =π2,则T=π,所以T=2πω=π,解得ω=2, 所以f(x)=2sin (2x-π3), 所以f (3π2)=2sin (2×3π2-π3)=2sin π3=2×√32=√3.(2)由(1)知f(x)=2sin (ωx-π3),因为函数f(x)的图象关于点(π3,0)对称,所以πω3−π3=kπ,k ∈Z ,所以ω=3k+1,k ∈Z .由x ∈[0,π4],ω>0,得ωx -π3∈[-π3,πω4-π3], 因为f(x)在[0,π4]上单调,所以{πω4-π3≤π2,ω>0,解得0<ω≤103,所以取k=0,ω=1.18.(2022山东临沂二模,18,中)已知函数f(x)=Asin (ωx +π4)(A>0,0<ω<1), f (π4)=f (π2),且f(x)在(0,3π4)上的最大值为√2. (1)求f(x)的解析式;(2)将函数f(x)图象上所有点的横坐标缩小为原来的13,纵坐标不变,得到函数g(x)的图象,若g (α2)=12,求sin 2α的值.解析 (1)因为0<ω<1,所以周期T=2πω>2π,又f(x)在(0,3π4)上的最大值为√2,且f (π4)=f (π2),所以当x=12×(π4+π2)=3π8时, f(x)取得最大值√2, 所以A=√2,且f (3π8)=√2,即√2sin (3π8ω+π4)=√2, 因为0<ω<1,所以π4<3π8ω+π4<5π8,故3π8ω+π4=π2,解得ω=23,故f(x)=√2sin (23x +π4).(2)由题意得g(x)=f(3x)=√2sin (2x +π4), 又g (α2)=√2sin (α+π4)=12,所以sin (α+π4)=2√2,所以sin 2α=-cos (2α+π2)=2sin2(α+π4)−1=−34.。

§6.5 三角函数的图象与性质

§6.5 三角函数的图象与性质

π
π
2
2
在 kπ- ,kπ+ 上单调递增
π
π + , 0
2
π
,0
2
x=kπ

5
目录
拓展知识
1.函数 y=Asin(ωx+φ)和 y=Acos(ωx+φ)的最小正周期为 T=
正周期为 T=

|ω|
2
|ω|
,函数 y=tan(ωx+φ)的最小
.
2.正弦曲线与余弦曲线的相邻两对称中心、相邻两对称轴之间的距离都是半个周期,相
π

8
8
解得 kπ+ ≤x≤kπ+ (k∈Z),
π
π

4
8
8
所以函数 y=cos -2x 的单调递减区间为 kπ+ ,kπ+
(k∈Z).
(2)函数 y=2-3cos x 的单调递减区间即函数 y=-cos x 的单调递减区间,也就是函数
y=cos x 的单调递增区间,即[2kπ-π,2kπ](k∈Z).
||
||
2.求含有绝对值的三角函数的周期,通常要画出图象,结合图象判断.
3.解决三角函数对称性问题的关键是熟练掌握三角函数图象的对称轴、对称中心.
对于函数y=Asin(ωx+φ),其对称轴一定经过图象的最高点或最低点,对称中心的横
坐标一定是函数的零点,因此在判断直线x=x0或点(x0,0)是否是函数图象的对称轴
( √ )
7
目录
【对接教材】
1
2. 函数 f(x)=4-2cos3x 的最小值是
2
,取得最小值时,x 的取值集合

三角函数的图象与性质课件高三数学一轮复习

三角函数的图象与性质课件高三数学一轮复习
,所以 ≤



3

C.
3


≤ φ ≤ 2π

D.
3
≤φ≤


[解析] 因为 ∈ [− , ],所以�� + ∈ [− + , + ].
又 ≤ <
所以


+ ≤ ,



+ ≥ ,

解得

+<

,且函数

≤≤

,即



在[− , ]上单调递增,
φ = kπ +
π
2
k∈ .
③若y = Atan ωx + φ 为奇函数,则有φ = kπ k ∈ .
自测诊断
1.函数f x = 2sin
A.
π
2
1
x
2

π
4
的最小正周期为(
B.π
[解析] 由题意知,在 =
D )
C.2π






D.4π


中, = ,∴ =


=
π 3π
π π
A.
B. ,
C. − ,
D.
4 4
2 2



[解析] 因为 = + − = + = − ,




令 − ≤ ≤ + , ∈




,解得 − ≤ ≤ + , ∈ ,

2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质2含解析

2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质2含解析

三角函数的图像和性质学校:___________姓名:___________班级:___________考号:___________1.函数y=lgcos x的定义域为( )A. (2k π,+2kπ)(k∈Z)B. (-+2k π,+2kπ)(k∈Z)C. (k π,+kπ)(k∈Z)D. (-+k π,+kπ)(k∈Z)2.将函数的图象向左平移个单位长度,再将得到的图象上的全部点的横坐标变为原来的2倍(纵坐标不变),最终得到函数的图象,则()A. B. C. D.3.将函数的图象上各点向右平行移动个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是()A. B.C. D.4.函数y=cos-2x的单调递增区间是()A. (k∈Z)B. (k∈Z)C. (k∈Z)D. (k∈Z)5.函数的单调递减区间为()A. B.C. D.6.函数在定义域内零点的个数为A. 3B. 4C. 6D. 77.下列函数中最小值为8的是()A. B. C . D.18.函数的图象向右平移个单位长度后得到函数g(x)的图象,且g(x)的图象的一条对称轴是直线,则ω的最小值为.9.函数的单调减区间为()A. B.C. D.10.已知函数.(1)求的最小正周期和单调递减区间;(2)试比较与的大小.1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】9.【答案】A10.【答案】解:(1),∴函数的最小正周期为.令,得,函数的单调增区间为,函数的单调减区间为,(2),.,且在上单调递增,,即.3。

2025版高考数学一轮总复习第4章三角函数解三角形第4讲三角函数的图象与性质课件


(2)y=3tanπ6-4x=-3tan4x-π6, 由 kπ-π2<4x-π6<kπ+π2, 解得 4kπ-43π<x<4kπ+83π(k∈Z). ∴函数的单调递减区间为 4kπ-34π,4kπ+83π(k∈Z).无增区间.
(3)画图知单调递减区间为kπ-π4,kπ+π4(k∈Z).
2.(2023·洛阳模拟)若 f(x)=2sin ωx(ω>0)在区间-π2,23π上是增函数, 则 ω 的取值范围是_____0_,__34_ ___.
[解析] 依题意可知 f(x)=cos2 x-sin2x=cos 2x,对于 A 选项,因为 x ∈-π2,-6π,所以 2x∈-π,-π3,函数 f(x)=cos 2x 在-π2,-6π上单 调递增,所以 A 选项不正确;对于 B 选项,因为 x∈-π4,1π2,所以 2x∈ -π2,π6,函数 f(x)=cos 2x 在-π4,1π2上不单调,所以 B 选项不正确;对于 C 选项,因为 x∈0,π3,所以 2x∈0,23π,函数 f(x)=cos 2x 在0,π3上单 调递减,所以 C 选项正确;对于 D 选项,因为 x∈π4,71π2,所以 2x∈π2,76π, 函数 f(x)=cos 2x 在π4,71π2上不单调,所以 D 选项不正确,故选 C.
y=tan x ___R___
单调性
在____-__π2_+__2_k_π_,__2π_+__2_k_π_ _, 在_[_(_2_k-__1_)_π_,__2_k_π_]_,
k∈Z 上递增;
k∈Z 上递增;
在____π2_+__2_k_π_,__32_π_+__2_k_π_ __,
在_[_2_k_π_,__(2_k_+__1_)_π_]_, k∈Z 上递减

第五讲+三角函数的图象与性质课件-2025届高三数学一轮复习

[2kπ-π,2kπ]
y=tan x R π
奇函数
kπ-π2,kπ+π2
(续表) 函数 递减 区间 对称 中心 对称轴 方程
y=sin x
2kπ
π 2
,
2kπ+
3π 2
(kπ,0)
x=kπ+π2
y=cos x [2kπ,2kπ+π]
kπ+π2,0 x=kπ
y=tan x 无
k2π,0 无
【常用结论】 (1)三角函数的对称性与周期性 ①正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间
考点二 三角函数的周期性、奇偶性与对称性 考向 1 三角函数奇偶性、周期性 [例 1](1)已知函数 f(x)=2cos2x-sin2x+2,则( ) A.f(x)的最小正周期为π,最大值为 3 B.f(x)的最小正周期为π,最大值为 4 C.f(x)的最小正周期为 2π,最大值为 3 D.f(x)的最小正周期为 2π,最大值为 4
2025年高考一轮总复习
第三章 三角函数、解三角形
第五讲 三角函数的 图象与性质
1.用五点法作正弦函数和余弦函数的简图 (1)正弦函数 y=sin x,x∈[0,2π]的图象中,五个关键点是 (0,0),π2,1,(π,0),32π,-1,(2π,0). (2)余弦函数 y=cos x,x∈[0,2π]的图象中,五个关键点是 (0,1),π2,0,(π,-1),32π,0,(2π,1).
答案:B
2.函数 y= 16-x2+ sin x的定义域是______________.
解析:由题意可得1si6n-x≥x2≥0,0,
∴- 2kπ4≤≤xx≤≤24k,π+π,k∈Z. 如图 D17, 由图可知定义域为[-4,-π]∪[0,π].

2025年高考数学一轮复习-三角函数的图象与性质-专项训练【含答案】

2025年高考数学一轮复习-三角函数的图象与性质-专项训练基础巩固练1.函数f(x)=tanπ 2的最小正周期是()A.2πB.4πC.2D.42.函数f(x)=sin2 在0()A.1B.-1 D.[0,1]3.若tan2=a,tan3=b,tan5=c,则()A.a<b<cB.b<c<aC.c<b<aD.c<a<b4.已知函数f(x)=x5+tan x-3,且f(-m)=-2,则f(m)=()A.-4B.-1C.1D.45.(多选题)已知f(x)=cos2x-sin2x,则()A.f(x)是偶函数B.f(x)的最小正周期是πC.f(x)0D.f(x)在06.(多选题)设函数f(x)=cos 则下列结论正确的有()A.y=f(x)的一个周期为2πB.y=f(x)的图象关于直线x=83π对称C.y=f(x+π)的一个零点为x=π6D.y=f(x)π上单调递减7.函数y=f(x)=sin2x,x∈-π6.8.若函数f(x)=cos(2x+φ)(-π≤φ<π)为奇函数,则φ=.9.已知函数f(x)=A sin +A>0,ω>0)的最小值为-2,最小正周期为π.(1)求实数A,ω的值;(2)当x∈0,求函数f(x)的值域.综合提升练10.下列坐标所表示的点不是函数y=tan3 ()000011.已知函数f(x)=sin +ω>0)在区间0,但无最小值,则ω的取值范围是()12.已知函数f(x)=+ω>0)的图象的两个相邻对称中心之间的距离为π4,则ω=()A.2B.4C.8D.1613.(多选题)已知函数f(x)=sin|x|+|sin x|,则下列结论正确的有()A.f(x)是偶函数B.f(x)π上单调递增C.f(x)在[-π,π]上有4个零点D.f(x)的最大值为214.若函数f(x)=sin(x+φ)+cos x的最大值为2,则常数φ的一个取值为.15.已知函数f(x)=4sinωx sin +1(ω>0)的最小正周期为π.(1)求ω的值及f(x)的增区间;(2)求f(x)图象的对称中心.创新应用练16.已知f(x)=sinωx-3cosωx,ω>0,若函数f(x)0对称,且函数f(x)在0调,则ω的值为()A.4B.3C.2D.117.若x=π8是函数f(x)=2sin x∈R)的一个零点,且0<ω<10,则函数f(x)的最小正周期为.18.已知函数f(x)=a2cos2 2+sin +b.(1)若a=-1,求函数f(x)的增区间;(2)当x∈[0,π]时,函数f(x)的值域是[5,8],求a,b的值.参考答案1.C2.A3.D4.A5.ABC6.ABC7.18.±π29.解(1)由题意知A=2,2π =π,解得ω=2.故A=2,ω=2.(2)由(1)知f(x)=2sin2因为x∈0所以2x+π3∈所以sin2 -21,所以2sin2 +∈-3,2,所以函数f(x)的值域为-3,210.C11.A12.B13.AD14 π2(答案不唯一)15.解(1)f(x)=4sinωx·12sinωx-1=2sin2ωx+23sinωx·cosωx-1=1-cos2ωx+3sin2ωx-1=3sin2ωx-cos2ωx=2sin2∵函数的最小正周期为π, 2π2 =π,∴ω=1,∴f(x)=2sin2令-π2+2kπ≤2x-π6≤π2+2kπ,k∈Z,解得-π6+kπ≤x≤π3+kπ,k∈Z,∴f(x)的增区间为-π6+kπ,π3+kπ(k∈Z).(2)令2x-π6=kπ,k∈Z,解得x=π12+ π2,k∈Z,∴f(x)+ π2,0,k∈Z.16.D17.π18.解f(x)=a(1+cos x+sin x)+b=2asin +(1)当a=-1时,f(x)=-2sin 1,由2kπ+π2≤x+π4≤2kπ+3π2(k∈Z),得2kπ+π4≤x≤2kπ+5π4(k∈Z),∴函数f(x)的增区间为2kπ+π4,2kπ+5π4(k∈Z).(2)∵0≤x≤π, π4≤x+π4≤5π4,∴≤sin +≤1.依题意知a≠0,①当a>0时,2 + + =8,=5,∴a=32-3,b=5;②当a<0时, =8,2 + + =5,∴a=3-32,b=8.综上所述,a=32-3,b=5或a=3-32,b=8.。

高考总复习一轮数学精品课件 第五章 三角函数 第五节 三角函数的图象与性质

π
A. 2
B.π
(2)函数 f(x)=cos x+2cos
A.π
B.2π
C.4π
1
x
2
D.2π
的一个周期为(
C.3π
)
)
D.4π
(3)(2023新高考Ⅰ,15)已知函数f(x)=cos ωx-1(ω>0)在区间[0,2π]上有且仅
有3个零点,则ω的取值范围是
.
答案 (1)D
(2)D
2
(3)[2,3)
2
π

A.[ +4kπ, +4kπ](k∈Z)
3
3
1
5
B.[3+4k,3+4k](k∈Z)
π

C.[6+4kπ, 6 +4kπ](k∈Z)
1
5
D.[6+4k,6+4k](k∈Z)
)
(2)函数y=tan(
π
4
-2x)的定义域是
答案 (1)B (2) ≠
解析
π

+ ,
2
8
.

π
(1)由题意得,2sin x-1≥0,所以
,则(
A.函数f(x)的周期为π
B.函数f(x)的图象关于原点对称
C.f(x)的最大值为2
D.函数 f(x)在区间
答案 AC
π
0,
2
上单调递增
)
解析由三角函数周期得函数 f(x)的周期为
f(0)=2sin
π
3

T= 2 =π,A
正确;
=-√3≠0,B 错误;
由正弦函数性质知 f(x)max=2,C 正确;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2k(k Z) x=___________ 时, 2
y=cosx 2kπ (k∈Z) 时, x=___________ ymax=1; π +2kπ (k∈Z) x=______________ 时,ymin=-1
y=tanx
最值
ymax=1;
无最大值
和最小值
2k(k Z) x=____________ 2
2
由余弦函数的图象得,其解集为 {x | 5 2k x 7 2k, k Z}.
6 6
【规律方法】 1.三角函数定义域的求法 (1)应用正切函数y=tan x的定义域求函数y=Atan (ω x+φ)的定义域. (2)转化为求解简单的三角不等式求复杂函数的定义域. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.
链接教材
练一练
3
(1)(必修4P40T3(2)改编)函数f(x)=4-2cos 1 x的最小值是_____,取
得最小值时,x的取值集合为______.
【解析】f(x)min=4-2=2,此时, 1 x=2kπ(k∈Z),x=6kπ(k∈Z),所以
3
x的取值集合为{x|x=6kπ,k∈Z}
答案:2 {x|x=6kπ,k∈Z}
(2)(必修4P44例6改编)函数y=tan( x )的最小正周期是______,
2 3
单调增区间是_________.
【解析】T 2, 由 k x k ,得 1 2k <x
| |
< 5 2k ,即函数的增区间是 ( 1 2k, 5 2k)(k Z).
3 3 3
2
2
2
3
2
3
答案: 2
1 5 ( 2k, 2k)(k Z) 3 3
3.真题小试
感悟考题
试一试
4
(1)(2014·陕西高考)函数f(x)=cos(2x+ )的最小正周期是(
A. 2 B. C.2 D.4
)
【解析】选B.由 T 2 2 ,故B正确.
(2)余弦函数y=cos x的对称轴是y轴.(
(3)正切函数y=tan x在定义域内是增函数.(
)
(4)若非零实数T是函数f(x)的周期,则kT(k是非零整数)也是函数f(x)
的周期.(
)
【解析】(1)错误.如正弦函数y=sin x在[0,2π)上有两个增区间 [0,
]和[ 3 ,2π).(2)错误.余弦函数y=cos x的对称轴有无穷多 2 2
条,y轴只是其中的一条.(3)错误.正切函数y=tan x在每一个区间 (kπ- ,kπ+ )(k∈Z)上都是增函数,但在定义域内不是单调函
2 2
数,故不是增函数.(4)正确.周期函数的周期不只一个,其某一周期 的非零整数倍全是其周期. 答案:(1)× (2)× (3)× (4)√
2.教材改编
三角函数的定义域及简单的三角不等式
6 B.{x | x } 12 k D.{x | x (k Z)} 2 6
【典例1】(1)函数f(x)=-2tan(2x+ )的定义域是(
A.{x | x } 6 C.{x | x k (k Z)} 6
)
(2)不等式 3 +2cos x≥0的解集是_________. (3)函数f(x)= 64 x 2 +log2(2sin x-1)的定义域是___________.
第三节 三角函数的图象与性质
【知识梳理】
1.必会知识
教材回扣
填一填
(1)周期函数: 非零常数T 使得当x取___ 定 ①周期函数:对于函数f(x),如果存在一个__________,
义域 内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期 _____
非零常数T 叫做这个函数的周期. 函数,__________ 最小的正 ②最小正周期:如果在周期函数f(x)的所有周期中存在一个_________ 数 那么这个_________ 最小正数 就叫做f(x)的最小正周期. ___,
数的周期是2π,所以定义域为 {x | 2k x 5 2k, k Z}.
5 答案: {x | 2k x 2k, k Z} 4 4 4 4
4 4
【加固训练】函数 y 1 tan 2 x 的定义域是_______. 【解析】由1-tan2x≥0得tan2x≤1,即-1≤tan x≤1,由正切函数的图 象得不等式的解集为 {x | k x k, k Z}.
【解题提示】(1)利用正切函数的定义域求解.
(2)利用余弦函数的图象求解.
(3)由题意列不等式组求解.
【规范解答】(1)选D.由正切函数的定义域,得 2x k , 即
x k (k∈Z),故选D. 2 6 6 2
(2)由 3 +2cos x≥0, 得cos x≥ 3 ,
y=sin(x+
)=cos x的图象.该函数是偶函数,故A错;周期为2π, 2 2
故B错;该函数图象的对称轴为x=kπ(k∈Z),故C错;对称中心为
( +kπ,0)(k∈Z),故D正确.
2
5 (3)(2015·铜陵模拟)已知ω >0,0<φ<π ,直线x= 和x= 是函数 4 4
f(x)=sin(ω x+φ)图象的两条相邻的对称轴,则φ=(
(2)数学思想:函数与方程、数形结合. (3)记忆口诀:正(余)弦曲线,都是一条波浪线 波峰取得最大值,波谷处见最小值 波峰、波谷相连间,要么递增要么减 两条曲线很完美,中心对称轴对称
【小题快练】 1.思考辨析 静心思考 判一判
(1)正弦函数y=sin x在其任一周期内都只有一个增区间,一个减区 间.( ) )
【变式训练】(2015·深圳模拟)函数 y sin x cos x 的定义域为____. 【解析】要使函数有意义,必须使sin x-cos x≥0. 利用图象.在同一坐标系中画出[0,2π]上y=sin x和y=cos x的图象, 如图所示.
5 再结合正弦、余弦函 在[0,2π]内,满足sin x=cos x的x为 , ,
2 2
5 6
7 6
y=-t2-2t+1 =-(t+1)2+2, 所以ymax= 7 ,ymin= 1 ,
4 4 故函数的值域是[ 1 , 7 ]. 4 4
【规律方法】三角函数最值或值域的三种求法 (1)直接法:利用sin x,cos x的值域.
(2)化一法:化为y=Asin(ω x+φ)+k的形式,确定ω x+φ的范围,
(2)正弦函数、余弦函数、正切函数的图象和性质: 函数 y=sinx y=cosx y=tanx
图象

定义域 值域 最小正周期
R __
[-1,1] ________ 2π
R __
[-1,1] ________ 2π
{x|x∈R且x≠ + _______________ 2 k π ,k∈Z} _______________ R __ π
x=kπ ,k∈Z ____________
无对称轴
2.必备结论
教材提炼
记一记
对称与周期
①正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是
半周期,相邻的对称中心与对称轴之间的距离是 1 周期.
4
②正切曲线相邻两对称中心之间的距离是半周期.
3.必用技法
核心总结
看一看
(1)常用方法:数形结合法.
2
(2)(2014·福建高考)将函数y=sin x的图象向左平移 个单位,得到
2
函数y=f(x)的函数图象,则下列说法正确的是(
A.y=f(x)是奇函数
)
B.y=f(x)的周期是π
C.y=f(x)的图象关于直线x=
2 对称 2
D.y=f(x)的图象关于点(- ,0)对称
【解析】选D.将函数y=sin x的图象向左平移 个单位, 得到函数
2
由余弦函数的图象,得 在一个周期[-π,π]上,不等式cos x≥ ≤ }, 故原不等式的解集为 {x | 5 2k x 5 2k, k Z}.
6 6 5 5 答案: {x | 2k x 2k, k Z} 6 6 5 6
3 5 的解集为{x|≤x 6 2
时,ymin=-1
函数 对称 对 中心 称 性 对称 轴
y=sinx
y=cosx
(k ,0), k Z 2 ____________ (
y=tanx
k ,0), k Z 2 ___________
(kπ ,0), ___________ k∈Z _____
x k , k Z ____________ 2
A. 4 B. 3 C.
)
3 D. 2 4 【解析】选A.由于直线x= 和x= 5 是函数f(x)=sin(ωx+φ)图象 4 4
的两条相邻的对称轴,所以函数f(x)的最小正周期T=2π,所以ω=1, 所以 +φ=kπ+
4
(k∈Z).又0<φ<π,所以φ=
2
. 4
考点1
答案: {x | k x k, k Z} 4 4 4 4
考点2
三角函数的最值与值域
6 6
【典例2】(1)函数y=-2sin x-1,x∈[ 7 , 13 )的值域是(
A.[-3,1] B.[-2,1] C.(-3,1] D.(-2,1]
)
相关文档
最新文档