正弦波方波三角波信号发生器设计

合集下载

正弦波三角波方波发生器设计

正弦波三角波方波发生器设计

积分电路
通过滞回电压比较器电路输出的方波 经过积分电路转换为三角波
实验结果展示
实验心得

本次试验通过自己动手查资料、设计电路、 仿真等过程,个人感觉收获很大。电路波形图成 功显示时,当时的心情非常激动,谢谢老师同学 们的帮助。
请老师批评指正
RC桥式正弦振荡电路
该电路回路串联两个并联的二极管,如下 图所示串联了两个并联的1BH62,这样利用电 流增大时二极管动态电阻减小、电流减小时动 态电阻增大的特点,加入非线性环节,从而使 输出电压稳定
滞回电压比较器电路
而滞回比较器具有滞回特性,即具有 惯性,因此也就具有一定的抗干扰能力。 滞回比较器电路中引人了正反馈。
一.总体设计方案;
二.电路各模块工作原理;
ቤተ መጻሕፍቲ ባይዱ
三.实验结果展示;
四.实验心得;
一.总体设计方案
该电路分为三部 分,第一部分为RC桥 式正弦振荡电路,其 功能是利用RC振荡产 生特定频率的正弦波; 第二部分为滞回电压 比较器电路,其功能 为将正弦波转成方波; 第三部分为积分电路, 其功能为利用积分电 路将方波转成三角波

能产生方波,三角波,正弦波的信号发生器(用741)

能产生方波,三角波,正弦波的信号发生器(用741)

模拟电子技术——课程设计报告题目:信号发生器专业:班级:学号:姓名:日期:指导老师:目录(信号发生器)1 信号发生器的总方案及原理框图1.1 电路设计原理框图1.2 电路设计方案设计2 设计的目的及任务2.1 课程设计的目的2.2 课程设计的任务与要求2.3 课程设计的技术指标3 各部分电路设计3.1 正弦波产生电路的工作原理3.2 正弦波——方波发生电路的工作原理3.3 方波——三角波转换电路的工作原理3.4 电路的参数选择与计算3.5 总电路图4 电路的仿真4.1 正弦波发生电路仿真4.2 方波——三角波发生电路的仿真5 电路的安装与调试5.1 正弦波发生电路的安装与调试5.2 正弦波——方波的安装与调试5.3 方波——三角波的安装与调试5.4 总电路的安装与调试5.5 电路安装与调试中遇到的问题及分析解决方法6 电路的实验结果6.1 正弦波发生电路的实验结果6.2 正弦波——方波转换电路的实验结果6.3 方波——三角波转换电路的实验结果6.4 实测电路误差分析及改进方法7 实验总结1 信号发生器的总方案及原理框图1.1 电路设计原理框图电路设计原理框图如图1所示。

三角波图1 电路设计原理框图1.2 电路设计方案设计1、采用RC串并联网络构成的RC桥式振荡电路产生正弦波。

2、将第一级送出的正弦波经过第二级的滞回电压比较器输出方波。

3、将第二级的方波通过第三级的积分器输出三角波。

4、电路完成。

2 设计的目的及任务2.1 课程设计的目的1、学习用集成运放构成正弦波、方波、三角波发生器。

2、学习波形发生器的调整和主要性能指标的测试方法。

2.2 课程设计的任务与要求1、设计出能产生正弦波、方波和三角波的函数发生器。

2、完成电路的仿真操作,并安装实际电路。

3、完成对焊接电路的检验工作。

4、确保无误后,安装芯片,接入电源,开始测试。

5、调试,实现功能并记录测试数据的结果。

6. 教师检查并评分,上交设计作品,完成实验报告。

正弦波-方波-三角波信号发生器设计

正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院模拟电子技术课程设计指导书课设名称正弦波-方波-三角波信号发生器设计组长李为学号1232106101组员谢渊博学号1232106102组员张翔学号1232106104专业电子物联网指导教师二〇一二年七月模拟电子技术课程设计指导书一设计课题名称正弦波-方波-三角波信号发生器设计二课程设计目的、要求与技术指标2.1课程设计目的(1)巩固所学的相关理论知识;(2)实践所掌握的电子制作技能;(3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则;(5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题;(6)学会撰写课程设计报告;(7)培养实事求是,严谨的工作态度和严肃的工作作风;(8)完成一个实际的电子产品,提高分析问题、解决问题的能力。

2.2课程设计要求(1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单;(3)安装调试所设计的电路,达到设计要求;2.3技术指标(1)输出波形:方波-三角波-正弦波;(2)频率范围:100HZ~200HZ连续可调;(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调;γ。

(4)正弦波失真度:%≤5三系统知识介绍3 函数发生器原理本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。

实现该要求有多种方案。

方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。

方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。

3.1函数发生器的各方案比较我选的是第一个方案,上述两个方案均可以产生三种波形。

方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。

方波-三角波-正弦波函数发生器设计

方波-三角波-正弦波函数发生器设计

摘要函数发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

本设计研究了函数发生器的一种设计方法,先由函数比较器产生方波,再通过积分器产生三角波,最后通过有损积分器产生正弦波,完成了三种波形的产生与仿真。

设计中各波形的频率可以通过电路中的可变电阻进行调节。

本文从基础的电路原理阐述函数发生器的设计过程,利用集成运算放大器最大程度满足课题要求。

设计实现了波形、频率、幅值以及失真度的控制,并且在软件中进行了仿真,直观地显示了函数发生器的波形和相关数据控制效果。

关键字:函数发生器;积分器;Multisim9仿真AbstractFunction generator is a kind of common source, modern testing field is most widely used one of general instrument. The design of the function generator a design method, first by function comparator produce square wave, again through the integrator produce triangle wave, the last through the harm integrator produce sine wave, the completion of the three waveform generation and simulation. In the design of the wave frequency can through the circuit of the variable resistor adjustment.Based on the basic of the circuit principle of this function generator design process, using the integrated operational amplifier satisfy subject requirements. Design realize the waveform, frequency, amplitude and the distortion degree of control, and the software simulation, intuitively shows the function generator of related data waveform and control effect.Keyword: Function generator; Integrators; Multisim9 simulation目录1 引言 (1)1.1 设计目的与任务 (1)1.2 设计要求 (1)2 方案论证与比较 (2)2.1 电路实现方案一 (2)2.2 电路实现方案二 (2)2.3 电路实现方案三 (3)3 基本原理 (5)3.1 函数发生器的组成 (5)3.2 方波发生电路部分的工作原理 (5)3.3 方波---三角波转换电路的工作原理 (6)3.4 三角波---正弦波转换电路 (8)3.5总电路图 (9)3.6电路的参数选择及计算 (10)3.6.1.比较器A1与积分器A2元器件 (10)3.6.2.方波——三角波中电容C1变化 (10)4 安装电路并调试电路 (11)4.1 总电路的安装与调试 (11)4.2电路仿真 (11)4.2.1Multisim仿真软件简介 (11)4.2.2 方波---三角波发生电路的仿真 (13)4.2.3 三角波---正弦波发生电路的仿真 (14)5 课题总结及问题 (14)5.1 课程总结 (14)5.2 设计所遇问题 (15)心得体会 (15)参考文献 (17)致谢 (18)1 引言函数发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

论文方波三角波正弦波发生器论文

论文方波三角波正弦波发生器论文

2.方波、三角波、正弦波发生器方案2.1 方案一原理框图图1 方波、三角波、正弦波、信号发生器的原理框图首先由555定时器组成的多谐振荡器产生方波,然后由积分电路将方波转化为三角波,最后用低通滤波器将方波转化为正弦波,但这样的输出将造成负载的输出正弦波波形变形,因为负载的变动将拉动波形的崎变。

2.2方案二原理框图图2 正弦波、方波、三角波信号发生器的原理框图RC 正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法,电路框图如上。

先通过RC 正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。

此电路具有良好的正弦波和方波信号。

但经过积分器电路产生的同步三角波信号,存在难度。

原因是积分器电路的积分时间常数是不变的,而随着方波信号频率的改变,积分电路输出的三角波幅度同时改变。

若要保持三角波幅度不变,需同时改变积分时间常数的大小。

2.3函数发生器的选择方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题未采用单片函数发生器模块8038。

方案一的电路结构、思路简单,运行时性能稳定且能较好的符合设计要求,且成本低廉、调整方便,关于输出正弦波波形的变形,可以通过可变电阻的调节来调整。

而方案二,关于三角波的缺陷,不是能很好的处理,且波形质量不太理想,且频率调节不如方案一简单方便。

综上所述,我们选择方案一。

3.各组成部分的工作原理3.1方波发生电路的工作原理图3 由555定时器组成的多谐振荡器利用555与外围元件构成多谐振荡器,来产生方波的原理。

用555定时器组成的多谐振荡器如图3所示。

接通电源后,电容C2被充电,当电容C2上端电压Vc升到2Vcc/3时使555第3脚V0为低电平,同时555内放电三极管T导通,此时电容C2通过R3、Rp放电,Vc下降。

方波-三角波-正弦波函数发生器设计

方波-三角波-正弦波函数发生器设计

湖北民族学院课程设计报告课程设计题目课程:电子线路课程设计专业:班级:学号:学生姓名:指导教师:2014年 6 月20 日信息工程学院课程设计任务书2014年6月20日信息工程学院课程设计成绩评定表摘要函数信号发生器是一种能够产生多种波形,如方波、三角波、正弦波的电路。

函数发生器在电路实验和设备检测中具有十分广泛的用途。

通过对函数波形发生器的原理以及构成分析,可设计一个能变换出方波、三角波、正弦波、方波的函数波形发生器。

该系统通过介绍一种电路的连接,实现函数发生器的基本功能。

将其接入电源,并通过在示波器上观察波形及数据,得到结果。

其中电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。

该系统利用了Protues电路仿真软件进行电路图的绘制以及仿真。

Protues软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。

凭借Protues,可以立即创建具有完整组件库的电路图,并让设计者实现相应的技术指标。

本课题采用集成芯片ICL8038制作方波-三角波-正弦波函数发生器的设计方法,经过protues仿真得出了方波、三角波、正弦波、方波-正弦波转换及三角波-正弦波转换的波形图。

关键词:电源,波形,比较器,积分器,转换电路,低通滤波,Protues目录1引言-------------------------------------------------------------- 51.1课程设计任务------------------------------------------------- 51.2课程设计的目的----------------------------------------------- 51.3课程设计要求------------------------------------------------ 52 任务提出与方案论证------------------------------------------------ 62.1函数发生器的概述--------------------------------------------- 62.2方案论证 --------------------------------------------------- 63 总体设计---------------------------------------------------------- 83.1总电路图----------------------------------------------------- 83.2 电路仿真与调试技术------------------------------------------ 94 详细设计及仿真--------------------------------------------------- 10 4.1 方波发生电路的工作原理与运放741工作原理-------------------- 10 4.2方波—三角波产生电路的工作原理------------------------------ 104.3三角波—正弦波转换电路的工作原理---------------------------- 114.4整体仿真效果图---------------------------------------------- 135 总结------------------------------------------------------------- 14 参考文献----------------------------------------------------------- 151引言现在世界中电子技术和电子产品的应用越加广泛,人们对电子技术的要求也越来越高。

方波三角波正弦波函数发生器的设计

方波三角波正弦波函数发生器的设计

方波三角波正弦波函数发生器的设计
设计方波、三角波、正弦波函数发生器需要经过以下步骤:
首先,设计电路图。

其主要由单稳态触发器、行波触发器、电源部分和振荡放大部分组成,使用的主要器件有电阻、电容、三极管和二极管。

其次,具体元器件的参数选择。

为了保证输出波形的稳定性,应该选择具有良好温度稳定性和频率稳定性的元器件,同时考虑到制作成本和实际应用要求,选择适合的元器件。

第三,制作电路板。

在选择好元器件之后,需要合理布局电路,将元器件焊接到电路板上。

为保证电路的稳定性和可靠性,电路板应该选用高质量的绝缘材料,并进行严格的质量控制。

然后,对电路进行调试和测试。

初始调试时,需要使用示波器和电压表等测试仪器,调整电路参数,使其达到预期的性能要求。

在测试中,应注意观察波形的稳定性、频率、峰值、偏移量等参数,对异常情况进行分析和处理。

最后,进行封装和安装。

根据实际应用环境和要求,选择合适的封装方式和安装位置。

考虑到散热和防护问题,需要选择具有良好散热性能和防护性能的封装材料,并进行严格的防护处理。

综上所述,设计方波、三角波、正弦波函数发生器是一项既需要严谨的理论知识,又需要熟练的实践技能和深入的电路分析能力的工作,这需要设计者具有深厚的电子技术基础和丰富的实践经验。

正弦波方波三角波信号发射器设计

正弦波方波三角波信号发射器设计

正弦波方波三角波信号发生器设计报告一、设计目的作用1.掌握简易信号发生器的设计、组装与调试方法。

2.能熟练使用multisim10电路仿真软件对电路进行设计仿真调试。

3.加深对模拟电子技术相关知识的理解及应用。

二、设计要求1.设计任务和要求设计一个能够输出正弦波、方波、三角波三种波形的信号发生器,性能要求如下:○1输出频率为300Hz,误差小于2%。

○2正弦波输出幅度不小于5V,矩形波输出幅度不小于500mV,三角波输出幅度不小于20mV。

○3要求波形失真小,电路工作稳定可靠,布线美观。

2.设计要求○1根据课题,查阅相关资料。

○2画出系统原理框图。

○3参数计算和元器件选择。

○4画出单元电路图及整体电路图。

○5用multisim进行仿真,修改。

○6在实验箱上进行验证。

○7用万能电路板焊接电路,并调试之。

○8撰写课程设计报告。

三、设计的具体实现1、系统概述1.1正弦波发生电路的工作原理:产生正弦振荡的条件:正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。

正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。

其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。

因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路个部分。

正弦波振荡电路的组成判断及分类:(1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。

(2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。

(3)正反馈网络:引入正反馈,使放大电路的输入信号等于其反馈信号。

(4)稳幅环节:也就是非线性环节,作用是输出信号幅值稳定。

判断电路是否振荡。

方法是:(1)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产生振荡(2)放大电路的结构是否合理,有无放大能力,静态工作是否合适;(3)是否满足幅度条件正弦波振荡电路检验,若:(1)则不可能振荡;(2)振荡,但输出波形明显失真;(3)产生振荡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州科技学院天平学院模拟电子技术课程设计指导书课设名称正弦波-方波-三角波信号发生器设计组长李为学号1232106101组员谢渊博学号1232106102组员张翔学号1232106104专业电子物联网指导教师二〇一二年七月模拟电子技术课程设计指导书一设计课题名称正弦波-方波-三角波信号发生器设计二课程设计目的、要求与技术指标2、1课程设计目的(1)巩固所学的相关理论知识;(2)实践所掌握的电子制作技能;(3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册与文献资料,熟悉常用电子器件的类型与特性,并掌握合理选用元器件的原则;(5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题;(6)学会撰写课程设计报告;(7)培养实事求就是,严谨的工作态度与严肃的工作作风;(8)完成一个实际的电子产品,提高分析问题、解决问题的能力。

2、2课程设计要求(1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单;(3)安装调试所设计的电路,达到设计要求;2、3技术指标(1)输出波形:方波-三角波-正弦波;(2)频率范围:100HZ~200HZ连续可调;(3)输出电压:正弦波-方波的输出信号幅值为6V、三角波输出信号幅值为0~2V连续可调;γ。

(4)正弦波失真度:%5≤三系统知识介绍3 函数发生器原理本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。

实现该要求有多种方案。

方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。

方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。

3.1函数发生器的各方案比较我选的就是第一个方案,上述两个方案均可以产生三种波形。

方案二的电路过多连接部方便而且这样用了很多元器件,但就是方案的在调节的时候比较方便可以很快的调节出波形。

方案一电路简洁利于连接可以节省元器件,但就是在调节波形的时候会比较费力,由于整个电路时一起的只要调节前面部分就会影响后面的波形。

四电路方案与系统、参数设计4.1基于集成运算放大器与晶体管差分放大器的函数发生器4、1、1设计思路我们组总体设计思路为:先通过比较器产生方波,方波通过积分器产生三角波,三角波通过差分放大器产生正弦波。

函数发生器电路组成框图如下所示由比较器与积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别就是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理就是利用差分放大器传输特性曲线的非线性。

4、1、2工作原理4、1、2、1方波产生电路原理此电路由反相输入的滞回比较器与RC电路组成。

RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。

设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT。

Uo通过R1对电容C1正向充电,如图中实线箭头所示。

反相输入端电位n随时间t 的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但就是,一旦Un=+Ut,再稍增大,Uo从+Uz跃变为-Uz,与此同时Up从+Ut跃变为-Ut。

随后,Uo又通过R1对电容C1反向充电,如图中虚线箭头所示。

Un随时间逐渐增长而减低,当t趋于无穷大时,Un趋于-Uz;但就是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。

上述过程周而复始,电路产生了自激振荡。

4、1、2、2方波——三角波转换电路的工作原理4、1、2、3正弦波——方波转换电路的工作原理4、1、3元器件与参数设计1、从电路的设计过程来瞧电路分为三部分:①方波部分②三角波部分③三角波部分正弦波部分2、方波部分与三角波部分参数的确定 由442314()1P P R R R C T R R f⨯+⨯==+,可见f 与c 成反比,若要得到100Hz~200Hz,C 为0、1F μ。

3.正弦波-方波部分比较器A1与积分器A2的元件计算如下:2231O m CC R U V R RP =+,R 2/(R 3+RP 1)=U 02M /V CC =6/12=1/2;210R K =Ω,则(R 3+RP 1)=20K Ω,取R 3=10K Ω,RP1为47K Ω的电位器,取平衡电阻R1=R2//(R3+RP1)=7K Ω,由式3124224()R RP f R R RP C +=+,即3141224R RP R RP R C ++=+。

当100HZ<f<200HZ 时,取C 2=0、1uf,42(75~7.5)R RP k +=Ω,取平衡电阻542()10p R R R k =+≈Ω。

231p R V V R R =+三角方波,由输出的三角形幅值与输出方波的幅值分别为2V ,6V ,有 2=231p R R R +6⇒231p R R R +=1/3取R2=20K Ω,1p R ≈47 k Ω,R3=20K Ω三角波—>正弦波变换电路的参数选择原则就是:隔直电容C3、C4、C5要取得较大,因为输出频率很低,取345470C C C F μ===,滤波电容6C 视输出的波形而定,若含高次斜波成分较多,6C 可取得较小,6C 一般为几十皮法至0、1微法。

ICL8038单片函数发生器有两种工作方式,即输出函数信号的频率调节电压可以由内部供给,也可以由外部供给。

图3为几种由内部供给偏置电压调节的接线图。

图3 ICL8038典型应用在以上应用中,由于第7脚频率调节电压偏置一定,所以函数信号的频率与占空比由R A 、R B 与C 决定,其频率为F,周期T,t 1为振荡电容充电时间,t 2为放电时间。

T =t 1+t 2 f =1/T由于三角函数信号在电容充电时,电容电压上升到比较器规定输入电压的1/3倍,分得的时间为t1=CV/I=(C+1/3·Vcc ·R A)/(1/5·Vcc)=5/3RA ·C 在电容放电时,电压降到比较器输入电压的1/3时,分得的时间为 t 2=CV /I =(C +1/3·V CC )/(2/5·V CC R B -1/5·V CC /R A ) =(3/5·R A *R B ·C)/(2R A -R B )f=1/(t1+t2)=3/{5RAC[1+RB/(2RA-R)]}对图3(a)中,如果RA =RB,就可以获得占空比为50%的方波信号。

其频率f=3/(10RAC)。

4、2、3、1 正弦函数信号的失真度调节由于ICL8038单片函数发生器所产生的正弦波就是由三角波经非线性网络变换而获得。

该芯片的第1脚与第12脚就就是为调节输出正弦波失真度而设置的。

图4为一个调节输出正弦波失真度的典型应用,其中第1脚调节振荡电容充电时间过程中的非线性逼近点,第12脚调节振荡电容在放电时间过程中的非线性逼近点,在实际应用中,两只100K的电位器应选择多圈精度电位器,反复调节,可以达到很好的效果。

图4 正弦波失真度调节电路4、1、4仿真结果与分析(1)正弦波---方波转换电路的仿真(2) 方波---三角波发生电路的仿真(3) 总电路的仿真4、1、5器件清单表元器件名称个数型号主要参数集成运放 1 LM358集成芯片 1 ICL8038可调电阻 2 20k,100k电阻8 R 22k,1k,62k,10k,0、1k 电容 4 C 470nF,10nF直流稳压电源 1 ±12V, ±5V4.2ICL8038元器件的函数发生器ICL8038就是一种具有多种波形输出的精密振荡集成电路, 只需调整个别的外部组件就能产生从0、001HZ~300kHz 的低失真正弦波、三角波、矩形波等脉冲信号。

输出波形的频率与占空比还可以由电流或电阻控制。

另外由于该芯片具有调频信号输入端, 所以可以用来对低频信号进行频率调制。

icl8038中文资料ICL 8038 的主要特点:(1) 可同时输出任意的三角波、矩形波与正弦波等。

(2) 频率范围: 0、001HZ~300kHz(3) 占空比范围: 2%~98%(4) 低失真正弦波: 1%(5) 低温度漂移: 50ppm/℃(6) 三角波输出线性度: 0、1%(7) 工作电源: ±5V~±12V 或者+ 12V~+ 25V图1 ICL8038的引脚功能排列图图2 ICL8038内部电路方框图由图2可知, 该芯片由三角波振荡电路、比较器1、比较器2、触发器、三角波—正弦波变换电路、恒流源CS1、CS2 等组成。

恒流源CS1、CS2主要用于对外接电容C 进行充电放电, 可利用4、5脚外接电阻调整恒流源的电流, 以改变电容C 的充放电时间常数, 从而改变10脚三角波的频率。

两个比较器分别被内部基准电压设定在2 3V s 与1 3V s。

使两个比较器必须在大于2 3V s 或小于1 3Vs 的范围内翻转。

其输出同时控制触发器, 使其一方面控制恒流源CS2 的通断, 另一方面输出方波经集电极开路缓冲器, 由9 脚输出方脉冲, 而10脚经缓冲器直接由3 脚输出三角波, 另外还经三角波—正弦波变换电路由2 脚输出低失真正弦波。

外接电容C 由两个恒流源充电与放电。

若S 断开, 仅有电流I1 向C 充电, 当C 上电压上升到比较器1 的门限电压2 3V s 时, 触发器输出Q = 1。

开关S 导通, CS2 把电流I2加到C上反充电, 当I2> I1 时, 相当于C 由一个净电流I2- I1放电, 此时C 上电压逐渐下降, 当下降到比较器2的门限电压1 3V s时, R·S触发器被复位,Q = 0, 于就是S 断开CS2, 仅有CS1 对C充电, 如此反复形成振荡, C上电压近似为三角波, 而触发器输出则为方波。

当两个电流源CS1、CS2 的电流分别设定为I、2I时, 电容C上的充电、放电时间相等, 则10脚三角波以及变换的正弦波就就是对称的, 方波的占空比就是50%。

若恒流源CS1、CS2的电流不满足上述关系, 则3脚输出非对称的锯齿波, 2 脚输出非对称的正弦波, 9脚输出占空比为2%~98% 的脉冲波形。

另外改变恒流源I的大小, 即可改变振荡信号的频率。

相关文档
最新文档