[精品]2014-2015年安徽省蚌埠铁路中学高一(上)数学期中试卷与答案
2014-2015学年安徽省蚌埠一中高三(上)期中数学试卷和答案(理科)

2014-2015学年安徽省蚌埠一中高三(上)期中数学试卷(理科)一、选择题(每题5分)1.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知集合A={x|y=},B={x|≤0},则A∩B=(A.[﹣1,1]B.[﹣1,2)C.[1,2) D.[﹣2,﹣1]3.(5分)已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>14.(5分)已知=(1,n),=(﹣1,n),若2﹣与垂直,则||=()A.1 B.C.2 D.45.(5分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.36.(5分)下列命题中真命题的个数是()(1)若命题p,q中有一个是假命题,则¬(p∧q)是真命题.(2)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的必要不充分条件.(3)C表示复数集,则有∀x∈C,x2+1≥1.A.0 B.1 C.2 D.37.(5分)将函数y=sin2x﹣cos2x的图象向右平移个单位长度,所得图象对应的函数g(x)()A.由最大值,最大值为B.对称轴方程是C.是周期函数,周期D.在区间上单调递增8.(5分)已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.设,,则()A.a<b<c B.b<a<c C.c<b<a D.c<a<b9.(5分)若f(x)是定义在R上的可导函数,且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)<2f(1) B.f(0)+f(2)>2f(1) C.f(0)+f(2)≤2f (1)D.f(0)+f(2)≥2f(1)10.(5分)现有四个函数:①y=xsinx,②y=xcosx,③y=x|cosx|,④y=x•2x的部分图象如下,但顺序被打乱了,则按照从左到右将图象对应的函数序号排列正确的一组是()A.①②③④B.②①③④C.③①④②D.①④②③11.(5分)已知f(x)=若函数y=f(x)﹣k(x+1)有三个零点,则实数k的取值范围是()A.(﹣,0)B.(0,)C.(,1)D.(1,+∞)二、填空题(每题5分)12.(5分)已知||=3,||=4,(+)(+3)=33,则与的夹角为.13.(5分)函数y=sin2x+4sin2x,x∈R的值域是.14.(5分)在△ABC中,角A、B、C的对边分别为a、b、c,若a+b+c=20,三角形面积为10,A=60°,则a=.15.(5分)曲线C的参数方程是(θ为参数,且θ∈(π,2π)),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线D的方程为,取线C与曲线D的交点为P,则过交点P且与曲线C相切的极坐标方程是.16.(5分)设f(x)=log3(x+6)的反函数为f﹣1(x),若〔f﹣1(m)+6〕〔f﹣1(n)+6〕=27,则f(m+n)=.三、解答题17.(12分)集合,B={y|y=asinθ,,a>0}(1)求集合A和B;(2)若A∩B=∅,求a的取值范围.18.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)证明:函数f(x)在R上是减函数;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.19.(14分)已知函数f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<,且y=f (x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求φ;(2)计算f(1)+f(2)+…+f(2014)的值.20.(14分)在△ABC中,a,b,c分别为角A,B,C所对的边,向量=(2a+c,b),=(cosB,cosC),且,垂直.(Ⅰ)确定角B的大小;(Ⅱ)若∠ABC的平分线BD交AC于点D,且BD=1,设BC=x,BA=y,试确定y 关于x的函数式,并求边AC长的取值范围.21.(16分)已知函数f(x)=a x+x2﹣xlna(a>0,a≠1).(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;(Ⅲ)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.2014-2015学年安徽省蚌埠一中高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每题5分)1.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数==1﹣i,复数对应点为(1,﹣1)在第四象限.故选:D.2.(5分)已知集合A={x|y=},B={x|≤0},则A∩B=(A.[﹣1,1]B.[﹣1,2)C.[1,2) D.[﹣2,﹣1]【解答】解:集合A={x|x2﹣2x﹣3≥0}={x|x≤﹣1或x≥3},B={x|﹣2≤x<2},利用集合的运算可得:A∩B={x|﹣2≤x≤﹣1}.故选:D.3.(5分)已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>1【解答】解:∵¬p是对p的否定∴¬p:∃x∈R,sinx>1故选:C.4.(5分)已知=(1,n),=(﹣1,n),若2﹣与垂直,则||=()A.1 B.C.2 D.4【解答】解:∵=(1,n),=(﹣1,n),∴2﹣=(3,n),∵2﹣与b垂直∴∴||=2故选:C.5.(5分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.3【解答】解:f(f(2))=f(log3(22﹣1))=f(1)=2e1﹣1=2,故选C.6.(5分)下列命题中真命题的个数是()(1)若命题p,q中有一个是假命题,则¬(p∧q)是真命题.(2)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的必要不充分条件.(3)C表示复数集,则有∀x∈C,x2+1≥1.A.0 B.1 C.2 D.3【解答】解:(1)真命题,若p,q中有一个为假命题,则p∧q为假命题,所以¬(p∧q)为真命题;(2)真命题,在△ABC中,若cosA+sinA=cosB+sinB,则(cosA+sinA)2=(cosB+sinB)2,∴1+2sinAcosA=1+2sinBcosB,∴sin2A=sin2B;∵A,B中必有一个是锐角,不妨设A是锐角,∴2A=2B,或2A=180°﹣2B,∴A=B,或A+B=90°;∴由cosA+sinA=cosB+sinB不一定得出C=90°,而C=90°一定得到cosA+sinA=cosB+sinB,所以“cosA+sinA=cosB+sinB”是“C=90°”的必要不充分条件;(3)假命题,x是复数,不妨设x=i,则i2=﹣1,∴x2+1=0<1;∴为真命题的个数为:2.故选:C.7.(5分)将函数y=sin2x﹣cos2x的图象向右平移个单位长度,所得图象对应的函数g(x)()A.由最大值,最大值为B.对称轴方程是C.是周期函数,周期D.在区间上单调递增【解答】解:化简函数得,所以将函数y=sin2x﹣cos2x的图象向右平移个单位长度,所得图象对应的函数g(x)=2sin[2(x﹣)﹣],即,易得最大值是2,周期是π,故A,C均错;由,得对称轴方程是,故B错;由,令k=0,故D正确.故选:D.8.(5分)已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.设,,则()A.a<b<c B.b<a<c C.c<b<a D.c<a<b【解答】解:已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.则=﹣lg>0,=﹣lg>0,=lg<0,又lg>lg∴0<﹣lg<﹣lg∴c<a<b,故选:D.9.(5分)若f(x)是定义在R上的可导函数,且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)<2f(1) B.f(0)+f(2)>2f(1) C.f(0)+f(2)≤2f (1)D.f(0)+f(2)≥2f(1)【解答】解:∵(x﹣1)f'(x)≥0∴x>1时,f′(x)≥0;x<1时,f′(x)≤0∴f(x)在(1,+∞)为增函数;在(﹣∞,1)上为减函数∴f(2)≥f(1)f(0)≥f(1)∴f(0)+f(2)≥2f(1)故选:D.10.(5分)现有四个函数:①y=xsinx,②y=xcosx,③y=x|cosx|,④y=x•2x的部分图象如下,但顺序被打乱了,则按照从左到右将图象对应的函数序号排列正确的一组是()A.①②③④B.②①③④C.③①④②D.①④②③【解答】解:研究发现①是一个偶函数,其图象关于y轴对称,故它对应第一个图象②③都是奇函数,但②在y轴的右侧图象在x轴上方与下方都存在,而③在y轴右侧图象只存在于x轴上方,故②对应第三个图象,③对应第四个图象,④与第二个图象对应,易判断.故按照从左到右与图象对应的函数序号①④②③故选:D.11.(5分)已知f(x)=若函数y=f(x)﹣k(x+1)有三个零点,则实数k的取值范围是()A.(﹣,0)B.(0,)C.(,1)D.(1,+∞)【解答】解:y=f(x)﹣k(x+1)=0得f(x)=k(x+1),设y=f(x),y=k(x+1),在同一坐标系中作出函数y=f(x)和y=k(x+1)的图象如图:因为当x<0时,函数f(x)=e﹣x﹣e x单调递减,且f(x)>0.由图象可以当直线y=k(x+1)与相切时,函数y=f(x)﹣k(x+1)有两个零点.下面求切线的斜率.由得k2x2+(2k2﹣1)x+k2=0,当k=0时,不成立.由△=0得△=(2k2﹣1)2﹣4k2⋅k2=1﹣4k2=0,解得,所以k=或k=(不合题意舍去).所以要使函数y=f(x)﹣k(x+1)有三个零点,则0<k.故选:B.二、填空题(每题5分)12.(5分)已知||=3,||=4,(+)(+3)=33,则与的夹角为120°.【解答】解:因为(+)(+3)=33,即(+)(+3)=++,又由所以=.所以120°;故答案为120°.13.(5分)函数y=sin2x+4sin2x,x∈R的值域是[2﹣,2+] .【解答】解:化简可得y=sin2x+4sin2x=sin2x+4•=sin2x﹣2cos2x+2=sin(2x﹣θ)+2,其中tanθ=4,∵sin(2x﹣θ)的值域为[﹣1,1],∴y=sin(2x﹣θ)+2的值域为[2﹣,2+]故答案为:[2﹣,2+]14.(5分)在△ABC中,角A、B、C的对边分别为a、b、c,若a+b+c=20,三角形面积为10,A=60°,则a=7.=bcsinA=bcsin60°【解答】解:由题意可得,S△ABC∴bcsin60°=10∴bc=40∵a+b+c=20∴20﹣a=b+c.由余弦定理可得,a2=b2+c2﹣2bccos60°=(b+c)2﹣3bc=(20﹣a)2﹣120解得a=7.故答案为:7.15.(5分)曲线C的参数方程是(θ为参数,且θ∈(π,2π)),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线D的方程为,取线C与曲线D的交点为P,则过交点P且与曲线C相切的极坐标方程是ρsinθ=﹣2.【解答】解:曲线D的方程为,展开化为:=0,即直线D的普通方程为x+y=0,又曲线C的参数方程是,化为(x﹣2)2+y2=4,曲线C是圆心为C(2,0),半径为2的半圆,注意到θ∈(π,2π),∴y<0,联立方程组得,解之得,故交点P的坐标为(2,﹣2).过交点P且与曲线C相切的直线的普通方程是y=﹣2,对应的极坐标方程为ρsinθ=﹣2.16.(5分)设f(x)=log3(x+6)的反函数为f﹣1(x),若〔f﹣1(m)+6〕〔f﹣1(n)+6〕=27,则f(m+n)=2.【解答】解:∵f﹣1(x)=3x﹣6故〔f﹣1(m)+6〕•〔f﹣1(x)+6〕=3m•3n =3m+n =27,∴m+n=3,∴f(m+n)=log3(3+6)=2.故答案为2.三、解答题17.(12分)集合,B={y|y=asinθ,,a>0}(1)求集合A和B;(2)若A∩B=∅,求a的取值范围.【解答】解:(1)由集合A中的不等式变形得:≥0,可化为(x﹣4)(x+3)≥0,且x+3≠0,解得:x≥4或x<﹣3,∴A=(﹣∞,﹣3)∪[4,+∞);由集合B中的函数y=asinθ(a>0),θ∈[﹣,],得到﹣≤sinθ≤1,∴﹣a≤y=asinθ≤a,∴B=[﹣a,a];(2)∵A∩B=∅,∴,解得:a<4,则a的范围为a<4.18.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)证明:函数f(x)在R上是减函数;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.【解答】解:(1)因为f(x)是奇函数,函数的定义域为R,∴f(0)=0,即=0,解得:b=1,f(﹣1)=﹣f(1),即=﹣,解得:a=2证明:(2)由(1)得:f(x)=,设x1<x2,则f(x1)﹣f(x2)=﹣=,∵y=2x在实数集上是增函数且函数值恒大于0,故>0,>0,>0.即f(x1)﹣f(x2)>0.∴f(x)在R上是单调减函数;(3)由(2)知f(x)在(﹣∞,+∞)上为减函数.又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0,等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式△=4+12k<0⇒k<﹣.所以k的取值范围是k<﹣.19.(14分)已知函数f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<,且y=f (x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求φ;(2)计算f(1)+f(2)+…+f(2014)的值.【解答】解:(1)y=Asin2(ωx+φ)=﹣cos(2ωx+2φ),∵y=f(x)的最大值为2,A>0.∴A=2.又∵其图象相邻两对称轴间的距离为2,ω>0,∴=2×2,ω=,∴f(x)=1﹣cos(x+2φ)=1﹣cos(x+2φ),∵y=f(x)过(1,2)点,∴cos(+2φ)=﹣1,∴+2φ=2kπ+π,k∈Z,∴2φ=2kπ+,k∈Z,∴φ=kπ+,k∈Z,又∵0<φ<,∴φ=.(2)根据(1)知,函数的周期为4,∴f(1)+f(2)+f(3)+f(4)=2+1+0+1=4.又∵y=f(x)的周期为4,2014=4×503+2,∴f(1)+f(2)+…+f(2014)=4×503+f(1)+f(2)=2012+3=2015.20.(14分)在△ABC中,a,b,c分别为角A,B,C所对的边,向量=(2a+c,b),=(cosB,cosC),且,垂直.(Ⅰ)确定角B的大小;(Ⅱ)若∠ABC的平分线BD交AC于点D,且BD=1,设BC=x,BA=y,试确定y 关于x的函数式,并求边AC长的取值范围.【解答】解:(I)∵⊥,∴(2a+c)cosB+bcosC=0,在△ABC中,由正弦定理得:,∴a=ksinA,b=ksinB,c=ksinC,代入得k[(2sinA+sinC)cosB+sinBcosC]=0,∴2sinAcosB+sin(B+C)=0,即sinA(2cosB+1)=0.∵A,B∈(0,π),∴sinA≠0,∴,解得B=.(II)∵S=S△ABD+S△BCD,,S△ABD==,△ABC,∴xy=x+y,∴.在△ABC中,由余弦定理得:=x2+y2+xy=(x+y)2﹣xy=(x+y)2﹣(x+y)=.∵,x>0,y>0,∴x+y≥4,∴,∴.又AC<x+y.∴AC的取值范围是:AC∈.21.(16分)已知函数f(x)=a x+x2﹣xlna(a>0,a≠1).(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;(Ⅲ)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.【解答】解:(Ⅰ)∵函数f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna=2x+(a x ﹣1)lna,由于a>1,故当x∈(0,+∞)时,lna>0,a x﹣1>0,所以f′(x)>0,故函数f(x)在(0,+∞)上单调递增.(Ⅱ)当a>0,a≠1时,因为f′(0)=0,且f(x)在(0,+∞)上单调递增,故f′(x)=0有唯一解x=0.所以x,f′(x),f(x)的变化情况如下表所示:又函数y=|f(x)﹣t|﹣1有三个零点,所以方程f(x)=t±1有三个根,即y=f(x)的图象与两条平行于x轴的两条直线y=t±1共有三个交点.不妨取a>1,y=f(x)在(﹣∞,0)递减,在(0,+∞)递增,极小值f(0)=1也是最小值,当x→±∞时,f(x)→+∞.∵t﹣1<t+1,∴f(x)=t+1有两个根,f(x)=t﹣1只有一个根.∴t﹣1=f min(x)=f(0)=1,∴t=2.(Ⅲ)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))≥e﹣1,min由(Ⅱ)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而,记,因为(当t=1时取等号),所以在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1),当0<a<1时,f(1)<f(﹣1).综合可得,①当a>1时,由f(1)﹣f(0)≥e﹣1,可得a﹣lna≥e﹣1,求得a ≥e.②当0<a<1时,由,综上知,所求a的取值范围为(0,]∪[e,+∞).。
安徽省蚌埠市铁路中学2018-2019学年高一上学期期中检测数学试题(精编含解析)

()
A. f (x) = - x(x +2) C. f (x) = - x(x - 2)
B. f (x) = x(x - 2) D. f (x) = x(x +2)
【答案】A 【解析】
试题分析:x<0,则-x>0,则 f(-x)= x2 +2x = - f (x)\ f (x) = - x(x +2) ,故选 A.
( ) 【详解】函数 f
x
=
ì ïïí ï ïî
ax, x æ ççè4 -
>1
a 2
ö ÷÷øx
+ 2,
x
£
1
是
R
上的增函数,
ì
ï ï
a
>1
\ ïïí 4 - a > 0 ,
ï2
ï
ï ïî
a
³
4-
a +2 2
[ ) [ ) 解得实数 a 的取取值范围是 4,8 ,故答案为 4,8 .
【点睛】本题主要考查分段函数的解析式及单调性,属于中档题.分段函数的单调性是分段函数性质中的难 点,也是高考命题热点,要正确解答这种题型,必须熟悉各段函数本身的性质,在此基础上,不但要求各 段函数的单调性一致,最主要的也是最容易遗忘的是,要使分界点处两函数的单调性与整体保持一致.
则 a2003 +b2004 = _____. 【答案】 - 1
【解析】
根据题意,
0Î
ìï í
a,
b
,1üïý 且
a
¹
0,
ïî a ïþ
可得 b = 0 ,即 b=0, a
{ } 从而{a, 0,1} = a2, a, 0 ,
安徽省蚌埠一中届高三数学上学期期中试卷文(含解析)【含答案】

2014-2015学年安徽省蚌埠一中高三(上)期中数学试卷(文科)一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的..每小题5分,总分60分1.已知全集U=R,集合A={x|2x>1},B={x|﹣4<x<1},则A∩B等于()A.(0,1) B.(1,+∞) C.(﹣4,1) D.(﹣∞,﹣4)2.若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A. B. C. D.3.已知曲线y=﹣3lnx的一条切线的斜率为﹣,则切点的横坐标为()A. 3 B. 2 C. 1 D.4.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.在索契冬奥会跳台滑雪空中技巧比赛赛前训练中,甲、乙两位队员各跳一次.设命题p 是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A. p∨q B. p∨(¬q) C.(¬p)∧(¬q) D.(¬p)∨(¬q)6.若a=30.5,b=ln2,c=logπsin,则()A. b>a>c B. a>b>c C. c>a>b D. b>c>a7.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1) B.(﹣∞,1) C.(﹣∞,0) D.(0,+∞)8.已知f(x)为偶函数,当x≥0时,f(x)=,则不等式f (x﹣1)≤的解集为()A. [,]∪[,] B. [﹣,﹣]∪[,]C. [,]∪[,] D. [﹣,﹣]∪[,]9.若函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g(x)=log a(x+k)的是()A. B. C. D.10.若幂函数的图象不过原点,且关于原点对称,则m的取值是()A. m=﹣2 B. m=﹣1 C. m=﹣2或m=﹣1 D.﹣3≤m≤﹣111.已知函数f(x)=sinx+λcosx的图象的一个对称中心是点(,0),则函数g(x)=λsinxcosx+sin2x的图象的一条对称轴是直线()A. x= B. x= C. x= D. x=﹣12.若a,b为非零实数,则以下不等式中恒成立的个数是()①;②;③;④.A. 4 B. 3 C. 2 D. 1二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在横线相应位置上.13.集合M={x||x2﹣2x|+a=0}有8个子集,则实数a的值为.14.已知函数f(x)=e x﹣2x+a有零点,则a的取值范围是.15.已知函数f(x)=则f(f())= .16.已知x≥0,y≥0,且x+y=1,则的最小值为.三.解答题:本大题共6小题,共74分.解答应写文字说明、证明过程或演算步骤.解答过程写在答题卷上的指定区域内.17.对于定义域为[0,1]的函数f(x),如果同时满足以下三个条件:①对任意的x∈[0,1],总有f(x)≥0②f(1)=1③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立;则称函数f(x)为理想函数.试证明下列三个命题:(1)若函数f(x)为理想函数,则f(0)=0;(2)函数f(x)=2x﹣1(x∈[0,1])是理想函数;(3)若函数f(x)是理想函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,则f(x0)=x0.18.已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.19.已知函数f(x)=2cos(cos﹣sin).(Ⅰ)设x∈[﹣,],求f(x)的值域;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c.已知c=1,f(C)=+1,且△ABC的面积为,求边a和b的长.20.设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1,记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,求函数h(x)=x2f(x)+x[f(x)]2的最大值.21.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.(Ⅰ)求函数f(x)的表达式.(Ⅱ)若sinα+f(α)=,求的值.22.已知函数f(x)=,a∈R.(1)若函数y=f(x)在x=1处取得极值,求a的值;(2)若函数y=f(x)的图象上存在两点关于原点对称,求a的范围.2014-2015学年安徽省蚌埠一中高三(上)期中数学试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的..每小题5分,总分60分1.已知全集U=R,集合A={x|2x>1},B={x|﹣4<x<1},则A∩B等于()A.(0,1) B.(1,+∞) C.(﹣4,1) D.(﹣∞,﹣4)考点:交集及其运算.专题:集合.分析:求出A中不等式的解集确定出A,找出A与B的交集即可.解答:解:由A中的不等式变形得:2x>1=20,解得:x>0,即A=(0,+∞),∵B=(﹣4,1),∴A∩B=(0,1).故选:A.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A. B. C. D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值.分析:利用两角和的正弦函数对解析式进行化简,由所得到的图象关于y轴对称,根据对称轴方程求出φ的最小值.解答:解:函数f(x)=sin2x+cos2x=sin(2x+)的图象向右平移φ的单位,所得图象是函数y=sin(2x+﹣2φ),图象关于y轴对称,可得﹣2φ=kπ+,即φ=﹣,当k=﹣1时,φ的最小正值是.故选:C.点评:本题考查三角函数的图象变换,考查正弦函数图象的特点,属于基础题.3.已知曲线y=﹣3lnx的一条切线的斜率为﹣,则切点的横坐标为()A. 3 B. 2 C. 1 D.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,设出斜率为的切线的切点为(x0,y0),由函数在x=x0时的导数等于2求出x0的值,舍掉定义域外的x0得答案.解答:解:由y=﹣3lnx,得,设斜率为2的切线的切点为(x0,y0),则.由,解得:x0=﹣3或x0=2.∵函数的定义域为(0,+∞),∴x0=2.故选:B.点评:考查了利用导数求曲线上过某点切线方程的斜率,考查了基本初等函数的导数公式,是中档题.4.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:正弦函数的奇偶性;必要条件、充分条件与充要条件的判断.专题:计算题.分析:通过φ=⇒函数y=sin(x+φ)为偶函数,以及函数y=sin(x+φ)为偶函数推不出φ=,判断充要条件即可.解答:解:因为φ=⇒函数y=sin(x+φ)=cosx为偶函数,所以“φ=”是“函数y=sin (x+φ)为偶函数”充分条件,“函数y=sin(x+φ)为偶函数”所以“φ=kπ+,k∈Z”,所以“φ=”是“函数y=sin(x+φ)为偶函数”的充分不必要条件.故选A.点评:本题是基础题,考查正弦函数的奇偶性,必要条件、充分条件与充要条件的判断,正确计算函数是偶函数的条件是解题的关键.5.在索契冬奥会跳台滑雪空中技巧比赛赛前训练中,甲、乙两位队员各跳一次.设命题p 是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A. p∨q B. p∨(¬q) C.(¬p)∧(¬q) D.(¬p)∨(¬q)考点:复合命题.专题:简易逻辑.分析:命题“至少有一位队员落地没有站稳”表示“甲落地没有站稳”与“乙落地没有站稳至少一个发生”.解答:解:设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”表示¬p与¬q至少一个发生,即¬p与¬q至少一个发生,表示为(¬)p∨(¬q).故选:D点评:本题考查用简单命题表示复合命题的非命题,属于基础题6.若a=30.5,b=ln2,c=logπsin,则()A. b>a>c B. a>b>c C. c>a>b D. b>c>a考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数和指数函数的单调性比较大小.解答:解:∵a=30.5>30=1,0<ln1<b=ln2<lne=1,c=logπsin<logπ1=0,∴a>b>c.故选:B.点评:本题考查对数值大小的比较,是基础题,解题时要认真审题,注意对数函数和指数函数的单调性的合理运用.7.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1) B.(﹣∞,1) C.(﹣∞,0) D.(0,+∞)考点:函数的定义域及其求法.专题:计算题;整体思想.分析:根据函数f(x)的定义域是(0,1),而2x相当于f(x)中的x,因此得到0<2x <1,利用指数函数的单调性即可求得结果.解答:解:∵函数f(x)的定义域是(0,1),∴0<2x<1,解得x<0,故选C.点评:此题主要考查了函数的定义域和指数函数的单调性,体现了整体代换的思想,是一道基础题.8.已知f(x)为偶函数,当x≥0时,f(x)=,则不等式f (x﹣1)≤的解集为()A. [,]∪[,] B. [﹣,﹣]∪[,]C. [,]∪[,] D. [﹣,﹣]∪[,]考点:分段函数的应用.专题:不等式的解法及应用.分析:先求出当x≥0时,不等式f(x)≤的解,然后利用函数的奇偶性求出整个定义域上f(x)≤的解,即可得到结论.解答:解:当x∈[0,],由f(x)=,即cosπx=,则πx=,即x=,当x>时,由f(x)=,得2x﹣1=,解得x=,则当x≥0时,不等式f(x)≤的解为≤x≤,(如图)则由f(x)为偶函数,∴当x<0时,不等式f(x)≤的解为﹣≤x≤﹣,即不等式f(x)≤的解为≤x≤或﹣≤x≤﹣,则由≤x﹣1≤或﹣≤x﹣1≤﹣,解得≤x≤或≤x≤,即不等式f(x﹣1)≤的解集为{x|≤x≤或≤x≤},故选:A.点评:本题主要考查不等式的解法,利用分段函数的不等式求出x≥0时,不等式f(x)≤的解是解决本题的关键.9.若函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g(x)=log a(x+k)的是()A. B. C. D.考点:奇偶性与单调性的综合;对数函数的图像与性质.专题:数形结合.分析:由函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.解答:解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C点评:若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.10.若幂函数的图象不过原点,且关于原点对称,则m的取值是()A. m=﹣2 B. m=﹣1 C. m=﹣2或m=﹣1 D.﹣3≤m≤﹣1考点:幂函数的性质.分析:根据函数为幂函数,可知函数的系数为1,从而可求m的取值,再根据具体的幂函数,验证是否符合图象不过原点,且关于原点对称即可.解答:解:由题意,m2+3m+3=1∴m2+3m+2=0∴m=﹣1或m=﹣2当m=﹣1时,幂函数为y=x﹣4,图象不过原点,且关于y轴对称,不合题意;当m=﹣2时,幂函数为y=x﹣3,图象不过原点,且关于原点对称,符合题意;故选A.点评:本题以幂函数性质为载体,考查幂函数的解析式的求解.函数为幂函数,可知函数的系数为1是解题的关键.11.已知函数f(x)=sinx+λcosx的图象的一个对称中心是点(,0),则函数g(x)=λsinxcosx+sin2x的图象的一条对称轴是直线()A. x= B. x= C. x= D. x=﹣考点:两角和与差的正弦函数;正弦函数的对称性.专题:三角函数的求值.分析:由对称中心可得λ=﹣,代入g(x)由三角函数公式化简可得g(x)=﹣sin (2x+),令2x+=kπ+解x可得对称轴,对照选项可得.解答:解:∵f(x)=sinx+λcosx的图象的一个对称中心是点(,0),∴f()=sin+λcos=+λ=0,解得λ=﹣,∴g(x)=﹣sinxcosx+sin2x=sin2x+=﹣sin(2x+),令2x+=kπ+可得x=+,k∈Z,∴函数的对称轴为x=+,k∈Z,结合四个选项可知,当k=﹣1时x=﹣符合题意,故选:D点评:本题考查两角和与差的三角函数,涉及三角函数对称性,属中档题.12.若a,b为非零实数,则以下不等式中恒成立的个数是()①;②;③;④.A. 4 B. 3 C. 2 D. 1考点:基本不等式.专题:不等式的解法及应用.分析: a,b为非零实数,①利用(a﹣b)2≥0,展开即可得出;②由(a﹣b)2≥0,展开可得a2+b2≥2ab,2(a2+b2)≥(a+b)2,即可得出;③取a=b=﹣1,则不成立;④取ab<0,则不成立.解答:解:a,b为非零实数,①∵(a﹣b)2≥0,展开可得;②∵(a﹣b)2≥0,展开可得a2+b2≥2ab,∴2(a2+b2)≥(a+b)2,∴;③取a=b=﹣1,则不成立;④取ab<0,则不成立.综上可得:成立的只有①②.故选:C.点评:本题考查了基本不等式的性质,使用时注意“一正二定三相等”的法则,属于基础题.二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在横线相应位置上.13.集合M={x||x2﹣2x|+a=0}有8个子集,则实数a的值为﹣1 .考点:函数的零点;子集与真子集.专题:集合思想;函数的性质及应用.分析:根据集合M有8个子集,可以判断出集合M中共有3个元素,即|x2﹣2x|+a=0有3个根,转化为y=|x2﹣2x|与y=﹣a的图象有三个交点,画出图象即可解得a的值.解答:解:∵集合M={x||x2﹣2x|+a=0}有8个子集,根据集合中有n个元素,则集合有2n 个子集,∴2n=8,解得,n=3,∴集合M={x||x2﹣2x|+a=0}中有3个元素,即|x2﹣2x|+a=0有3个根,∴函数y=|x2﹣2x|与y=﹣a的图象有三个交点,作出y=|x2﹣2x|与y=﹣a的图象如右图所示,∴实数a的值a=﹣1.故答案为:﹣1.点评:本题考查了集合的子集个数以及函数的零点.如果集合中有n个元素,则集合有2n 个子集.对于方程的根问题,可以运用数形结合的思想转化为两个图象的交点的问题进行解决.属于中档题.14.已知函数f(x)=e x﹣2x+a有零点,则a的取值范围是(﹣∞,2ln2﹣2] .考点:函数零点的判定定理.专题:计算题;压轴题.分析:先讨论函数的单调性,得出函数的最值,由函数的最大值大于或等于零(或函数的最小值小于或等于零)得出a的取值范围.解答:解:f′(x)=e x﹣2,可得f′(x)=0的根为x0=ln2当x<ln2时,f′(x)<0,可得函数在区间(﹣∞,ln2)上为减函数;当x>ln2时,f′(x)>0,可得函数在区间(ln2,+∞)上为增函数,∴函数y=f(x)在x=ln2处取得极小值f(ln2)=2﹣2ln2+a,并且这个极小值也是函数的最小值,由题设知函数y=f(x)的最小值要小于或等于零,即2﹣2ln2+a≤0,可得a≤2ln2﹣2,故答案为:(﹣∞,2ln2﹣2].点评:利用导数工具讨论函数的单调性,是求函数的值域和最值的常用方法,本题可以根据单调性,结合函数的图象与x轴交点,来帮助对题意的理解.15.已知函数f(x)=则f(f())= .考点:函数的值.专题:函数的性质及应用.分析:由此得f()==﹣2,由此能求出f(f()).解答:解:∵函数f(x)=,∴f()==﹣2,f(f())=f(﹣2)=3﹣2=.故答案为:.点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.16.已知x≥0,y≥0,且x+y=1,则的最小值为 3 .考点:基本不等式.专题:导数的综合应用.分析:由已知x≥0,y≥0,且x+y=1,可得0≤x≤1,y=1﹣x.代入可得==f(x),再利用导数研究其单调性即可得出.解答:解:∵x≥0,y≥0,且x+y=1,∴0≤x≤1,y=1﹣x.∴==f(x),∴f′(x)==≥0,∴函数f(x)在[0,1]上单调递增.∴当x=0时,f(x)取得极小值即最小值3.故答案为:3.点评:本题考查了利用导数研究函数的单调性极值与最值,属于基础题.三.解答题:本大题共6小题,共74分.解答应写文字说明、证明过程或演算步骤.解答过程写在答题卷上的指定区域内.17.对于定义域为[0,1]的函数f(x),如果同时满足以下三个条件:①对任意的x∈[0,1],总有f(x)≥0②f(1)=1③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立;则称函数f(x)为理想函数.试证明下列三个命题:(1)若函数f(x)为理想函数,则f(0)=0;(2)函数f(x)=2x﹣1(x∈[0,1])是理想函数;(3)若函数f(x)是理想函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,则f(x0)=x0.考点:抽象函数及其应用;函数的最值及其几何意义.专题:函数的性质及应用.分析:(1)首先根据理想函数的概念,可以采用赋值法,可得f(0)=0;(2)根据“理想函数”的定义,只要检验函数gfx)=2x﹣1,是否满足理想函数的三个条件即可;(3)根据“理想函数”的定义进行推导即可.解答:解:(1)取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),可得f(0)≥f(0)+f(0)即f(0)≤0,由已知∀x∈[0,1],总有f(x)≥0可得f(0)≥0,∴f(0)=0;(2)①显然f(x)=2x﹣1在[0,1]上满足f(x)≥0;②f(1)=1.若x1≥0,x2≥0,且x1+x2≤1,则有f(x1+x2)﹣[f(x1)+f(x2)]=2x1+x2﹣1﹣[(2x1﹣1)+(2x2﹣1)]=(2x2﹣1)(2x1﹣1)≥0,故f(x)=2x﹣1满足条件①②③,故f(x)=2x﹣1为理想函数.(3)由条件③知,任给m、n∈[0,1],当m<n时,由m<n知n﹣m∈[0,1],∴f(n)=f(n﹣m+m)≥f(n﹣m)+f(m)≥f(m).若f(x0)>x0,则f(x0)≤f[f(x0)]=x0,前后矛盾;若:f(x0)<x0,则f(x0)≥f[f(x0)]=x0,前后矛盾.故f(x0)=x0.点评:本题主要考查抽象函数的应用,利用赋值法是解决抽象函数问题的常用方法,函数的新定义则转化为函数性质问题,本题则结合指数函数的性质,探讨函数的函数值域,指数函数的单调性的应用等知识点.综合性较强.18.已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.考点:指数函数单调性的应用;奇函数.专题:压轴题.分析:(Ⅰ)利用奇函数定义,在f(﹣x)=﹣f(x)中的运用特殊值求a,b的值;(Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2﹣2t)+f(2t2﹣k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.解答:解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即又由f(1)=﹣f(﹣1)知.所以a=2,b=1.经检验a=2,b=1时,是奇函数.(Ⅱ)由(Ⅰ)知,易知f(x)在(﹣∞,+∞)上为减函数.又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式.所以k的取值范围是k<﹣.点评:本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略.19.已知函数f(x)=2cos(cos﹣sin).(Ⅰ)设x∈[﹣,],求f(x)的值域;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c.已知c=1,f(C)=+1,且△ABC的面积为,求边a和b的长.考点:三角函数中的恒等变换应用;正弦定理.专题:计算题;三角函数的图像与性质.分析:(Ⅰ)化简可得f(x)=.x∈[﹣,],即可求出f(x)的值域;(Ⅱ)先求出C,再由三角形面积公式有,由正弦定理得a2+b2=7.联立方程即可解得.解答:解:(Ⅰ)==.时,值域为.(Ⅱ)因为C∈(0,π),由(1)知.因为△ABC的面积为,所以,于是.①在△ABC中,设内角A、B的对边分别是a,b.由余弦定理得,所以a2+b2=7.②由①②可得或.点评:本题主要考察了三角函数中的恒等变换应用和正弦定理的综合应用,属于中档题.20.设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1,记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,求函数h(x)=x2f(x)+x[f(x)]2的最大值.考点:函数的最值及其几何意义;不等式的证明.专题:计算题;分类讨论;函数的性质及应用;不等式的解法及应用.分析:(Ⅰ)由所给的不等式可得①,或②.分别求得①、②的解集,再取并集,即得所求;(Ⅱ)由g(x)≤4,求得N,可得M∩N=[0,].当x∈M∩N时,f(x)=1﹣x,h(x)=﹣(x﹣)2,显然它小于或等于,最大值即可得到.解答:解:(Ⅰ)由f(x)=2|x﹣1|+x﹣1≤1 可得①,或②.解①求得1≤x≤,解②求得 0≤x<1.综上,原不等式的解集M为[0,].(Ⅱ)由g(x)=16x2﹣8x+1≤4,求得﹣≤x≤,∴N=[﹣,],∴M∩N=[0,].∵当x∈M∩N时,f(x)=1﹣x,h(x)=x2f(x)+x[f(x)]2 =xf(x)[x+f(x)]=﹣(x﹣)2≤,当且仅当x=时,取得最大值.则函数的最大值为.点评:本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.21.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.(Ⅰ)求函数f(x)的表达式.(Ⅱ)若sinα+f(α)=,求的值.考点:三角函数的周期性及其求法;同角三角函数基本关系的运用.专题:综合题.分析:(I)函数是偶函数,求出ϕ,利用图象上相邻两对称轴之间的距离为π,求出ω,即可求得函数f(x)的表达式.(II)利用两角和的正弦以及弦切互化,化简为sinαcosα,应用,求出所求结果即可.解答:解:(I)∵f(x)为偶函数∴sin(﹣ωx+ϕ)=sin(ωx+ϕ)即2sinωxcosϕ=0恒成立∴cosϕ=0,又∵0≤ϕ≤π,∴(3分)又其图象上相邻对称轴之间的距离为π∴T=2π∴ω=1∴f(x)=cosx(6分)(II)∵原式=(10分)又∵,∴(11分)即,故原式=(12分)点评:本题考查三角函数的周期性及其求法,同角三角函数基本关系的运用,考查计算能力,是基础题.22.已知函数f(x)=,a∈R.(1)若函数y=f(x)在x=1处取得极值,求a的值;(2)若函数y=f(x)的图象上存在两点关于原点对称,求a的范围.考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)当x>0时,f'(x)=2(e x﹣x+a)从而f'(1)=0,解出即可,(2)由题意得到方程组,求出a的表达式,设(x>0),再通过求导求出函数h(x)的最小值,问题得以解决.解答:解:(1)当x>0时,f(x)=2e x﹣(x﹣a)2+3,f′(x)=2(e x﹣x+a),∵y=f(x)在x=1处取得极值,∴f′(1)=0,即2(e﹣1+a)=0解得:a=1﹣e,经验证满足题意,∴a=1﹣e.(2)y=f(x)的图象上存在两点关于原点对称,即存在y=2e x﹣(x﹣a)2+3图象上一点(x0,y0)(x0>0),使得(﹣x0,﹣y0)在y=x2+3ax+a2﹣3的图象上则有,∴化简得:,即关于x0的方程在(0,+∞)内有解设(x>0),则∵x>0∴当x>1时,h'(x)>0;当0<x<1时,h'(x)<0即h(x)在(0,1)上为减函数,在(1,+∞)上为增函数∴h(x)≥h(1)=2e,且x→+∞时,h(x)→+∞;x→0时,h(x)→+∞即h(x)值域为[2e,+∞),∴a≥2e时,方程在(0,+∞)内有解∴a≥2e时,y=f(x)的图象上存在两点关于原点对称.点评:本题考察了函数的单调性,函数的最值问题,导数的应用,函数图象的对称性,是一道综合题.。
安徽省蚌埠市高一上学期数学期中考试试卷

安徽省蚌埠市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2015高一下·兰考期中) 集合A={α|α=kπ+ ,k∈Z}与集合B={α|α=2kπ± ,k∈Z}的关系是()A . A=BB . A⊆BC . B⊆AD . 以上都不对2. (2分)已知集合,则下列不正确的是()A .B .C .D .3. (2分) (2016高一上·晋江期中) 下列四组函数中表示同一个函数的是()A . f(x)=|x|与B . f(x)=x0与g(x)=1C . 与D . 与4. (2分)函数的定义域是()A . (0,2]B . (1,2]C .D .5. (2分)(2019·广东模拟) 下列函数为偶函数的是()A .B .C .D .6. (2分)设集合,,则()A .B .C .D .7. (2分) (2017高一上·定州期末) 已知函数f(x)=a2﹣x(a>0且a≠1),当x>2时,f(x)>1,则f(x)在R上()A . 是增函数B . 是减函数C . 当x>2时是增函数,当x<2时是减函数D . 当x>2时是减函数,当x<2时是增函数8. (2分) (2018高三上·汕头期中) 函数的图象大致是()A .B .C .D .9. (2分)已知函数的定义域是,则实数取值范围是()A .B .C .D .10. (2分) (2018高二下·衡阳期末) 设,,,则()A .B .C .D .11. (2分) (2020高一上·石景山期末) 下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A .B .C .D .12. (2分) (2016高一上·河北期中) 定义在R上的奇函数f(x),满足f()=0,且在(0,+∞)上单调递减,则xf(x)>0的解集为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2019高二上·德惠期中) 函数在处的切线方程是,则________.14. (1分) (2017高三上·邯郸模拟) 若log2(log3x)=log3(log2y)=2,则x+y=________.15. (1分)幂函数y=(m2﹣m+1)x5m﹣3在x∈(0,+∞)时为减函数,则m的值为________16. (1分) (2019高一上·郏县期中) 设函数的最大值为,最小值为,那么 ________三、解答题 (共7题;共65分)17. (10分) (2019高一上·吴忠期中) 已知:函数是上的增函数,且过和两点,集合,关于的不等式的解集为 .(1)求集合A;(2)求使成立的实数的取值范围.18. (10分) (2019高一上·高台期中) 已知对数函数f(x)=(m2–m–1)logm+1x.(1)求m的值;(2)求f(27).19. (10分) (2016高一上·南京期中) 设集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}(1)求集合A,B;(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.20. (15分) (2016高一上·荔湾期中) 已知二次函数(,,均为实数),满足,对于任意实数都有恒成立.(1)求 f ( 1 ) 的值.(2)求的解析式.(3)当时,讨论函数在上的最大值.21. (5分)如图,已知四边形ABCD是矩形,AB=1,BC=2,P D⊥平面ABCD,且PD=3,PB的中点E,求异面直线AE与PC所成角的大小.(用反三角表示)22. (10分) (2016高一上·南昌期中) 计算:(1) 0.027 ﹣(﹣)﹣2+256 ﹣3﹣1+(﹣1)0;(2).23. (5分)设函数y=f(x)在[﹣3,3]上是奇函数,且对任意x,y都有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,f(1)=﹣2:(Ⅰ)求f(2)的值;(Ⅱ)判断f(x)的单调性,并证明你的结论;(Ⅲ)求不等式f(x﹣1)>4的解集.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、第11 页共11 页。
蚌埠铁路中学2016-2017学年高一下学期期中数学试卷 含解析

2016-2017学年安徽省蚌埠市铁路中学高一(下)期中数学试卷一。
选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC中,角A、B、C所对的边分别为a、b、c,若B=60°,b2=ac,则△ABC一定是()A.直角三角形 B.钝角三角形C.等边三角形 D.等腰直角三角形2.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.33.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1 C.3 D.74.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=()A.64 B.81 C.128 D.2435.已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.976.△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为( )A.B.C.1 D.7.若cos(﹣α)=,则sin2α=()A.B. C.﹣ D.﹣8.若tanθ=,则cos2θ=()A.B.C. D.9.在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.10.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.11.函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是( )A.B.π C.D.2π12.已知函数f(x)=e x+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:①△ABC一定是钝角三角形;②△ABC可能是直角三角形;③△ABC可能是等腰三角形;④△ABC不可能是等腰三角形.其中,正确的判断是()A.①③B.①④C.②③D.②④二.填空题:本大题共4小题,每小题5分,共20分.13.﹣= .14.已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.15.已知,则的值为.16.无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为.三.解答题:本大题共6小题,共70分.要求写出必要演算或推理过程.17.在△ABC中,a2+c2=b2+ac.(Ⅰ)求∠B的大小;(Ⅱ)求cosA+cosC的最大值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.已知函数f(x)=asinx•cosx﹣acos2x+a+b(a>0)(1)写出函数的单调递减区间;(2)设x∈[0,],f(x)的最小值是﹣2,最大值是,求实数a,b的值.20.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.21.已知等比数列{a n}满足,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{a n}的前n项和为S n,若不等式S n>ka n﹣2对一切n ∈N*恒成立,求实数k的取值范围.22.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(1)求数列{ a n}的通项公式;。
安徽蚌埠铁中1415学年度第一学期高三期中——数学(文)数学文

蚌埠铁中2014—2015学年第一学期高三期中考试数学(文)试题考试时间:120分钟 试卷分值:150分一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}R x x x A ∈≤=,2|| ,,则 ( ) A .B.C.D.2.三个数60.7 ,0.76 ,的大小顺序是( )A .0.76<<60.7 B. 0.76<60.7< C. <60.7<0.76 D. <0.76<60.7 3. 已知αααααcos 5sin 3cos sin ,2tan +-=那么的值为( )A. -2B. 2C. -D.4. 已知=(3,4),=(5,12),与则夹角的余弦为( )A .B .C .D .5. 已知P:(2x -3)2<1, Q :x(x -3)<0, 则P 是Q 的( )A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件 6. 己知函数,那么()()()++⋅⋅⋅+++)2009(321f f f f ⎪⎭⎫ ⎝⎛+⋅⋅⋅+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛200913121f f f = ( )A .2005B .2006C .2007D .20087.函数的最小值为( ) A .B .C .D .18.已知是奇函数,且方程有且仅有3个实根,则的值为A..0B. 1C.1D.无法确定9. 设f′(x)是函数f(x)的导函数,将y =f(x)和y =f′(x)的图象画在同一个直角坐标系中,不可能正确的是( )10.函数在(1,3)上递增,则a 的取值范围是 ( ) A .(0,1) B . C .D .二、填空题(本大题共5小题,每小题5分,共25分) 11. 复数的值是____;12. 全称命题”,“032>++∈∀x x R x 的否定是____________________; 13. 已知||=1,||=2,、的夹角为60°,若(3+5)⊥(m -),则m 的值为 ; 14. 若函数有三个单调区间,则的取值范围是 ; 15、给出下列五个命题: ①函数的一条对称轴是; ②函数的图象关于点(,0)对称; ③正弦函数在第一象限为增函数; ④若12sin(2)sin(2)44x x ππ-=-,则,其中.以上四个命题中正确的有 (填写正确命题前面的序号)。
试题精选_【百强校】安徽省蚌埠市第二中学2014-2015学年高一上学期期中考试数学参考答案_精校完美版

解(3)在集合 中, 在 上是减函数 ,
21. 解:(1)令 即 (2)由 当 当 若 化简得: 时,方程无解 时,解得 ,则 即 即 ,则
若 ,则 (3)(3) f ( x) a 2 2 x 2 2 x 1 a , x [ 1,1] 1 1 令2 x t , 则y a t 2 2t 1 a, t [ ,2] , 令g (t ) at 2 2t 1 a, t [ ,2] 2 2 1 当a 0时,g (t )在 [ ,2] 单调递减, g (t ) min g (2) 3a 3 2 1 当a 0时,g (t ) 2t 1在 [ ,2] 单调递减, g (t ) min g (2) 3a 3 2 1 1 g (t ) min g (2) 3a 3 , 当0 a 时,g (t )在 [ ,2] 单调递减, 2 2 1 1 1 1 1 1 当 a 2时,g (t )在[ , ]单调递减,在[ ,2]单调递增 , g (t ) min g ( ) 1 a , 2 a 2 a a a 1 3 1 当a 2时,g (t )在 [ ,2] 单调递增, g (t ) min g ( ) a , 2 4 2 1 3a 3, a 2 1 1 综上, (a ) g (t ) min 1 a , a 2 a 2 3 a, a2 4
(2)因为函数
,满足
17.试题分析: , (2)由题意: 解得: 或 . 6分 或 12 分 , 10 分
3分
18.【解析】 解析:(
时,解集为 时,解集为
(5)当
时,解集为
19.【解析】(1)由已知 (2) (3) 设 即: 且 在
2014-2015学年安徽省蚌埠五中、蚌埠十二中联考高三(上)期中数学试卷和答案(文科)

2014-2015学年安徽省蚌埠五中、蚌埠十二中联考高三(上)期中数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的表格内(每小题5分,共50分).1.(5分)已知集合M={1,2,3},N={2,3,4},则M∩N=()A.{2,3}B.{1,2,3,4}C.{1,4}D.∅2.(5分)已知a>b,则下列不等式一定成立的是()A.a﹣3>b﹣3 B.ac>bc C.<D.a+2>b+33.(5分)函数y=x+(x>0)的最小值是()A.1 B.2 C.﹣2 D.以上都不对4.(5分)函数f(x)=x+lnx的零点所在的大致区间为()A.(0,1) B.(1,2) C.(1,e) D.(2,e)5.(5分)若,则值为()A.﹣ B.C.D.6.(5分)若a∈R,则“a2>a”是“a>1”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件D.充要条件7.(5分)下列说法中正确的是()①f(x)=x0与g(x)=1是同一个函数;②y=f(x)与y=f(x+1)有可能是同一个函数;③y=f(x)与y=f(t)是同一个函数;④定义域和值域相同的函数是同一个函数.A.①②B.②③C.②④D.①③8.(5分)已知函数f(x)是定义在实数集R上的偶函数,则下列结论一定成立的是()A.∀x∈R,f(x)>f(﹣x)B.∃x0∈R,f(x0)>f(﹣x0)C.∀x∈R,f(x)f(﹣x)≥0 D.∃x0∈R,f(x0)f(﹣x0)<09.(5分)已知函数f(x)=2x﹣2,则函数y=|f(x)|的图象可能是()A.B.C.D.10.(5分)下列命题中正确的是()A.若命题P为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若p则q”的否命题是“若q则p”C.命题“∀x∈R,2x>0”的否定是“∀x0∈R,≤0”D.函数y=的定义域是{x|0≤x≤2}二、填空题:请把答案填在题中横线上(每小题5分,共25分).11.(5分)函数f(x)=x2﹣2x+5的定义域是x∈(﹣1,2],值域是.12.(5分)函数y=的f(x+1)单调递减区间是.13.(5分)已知f(x)=log0.5x,且f(1﹣a)<f(2a﹣1),则a的取值范围是.14.(5分)若点(1,3)和(﹣4,﹣2)在直线2x+y+m=0的两侧,则m的取值范围是.15.(5分)已知函数f(2x﹣1)的定义域是[﹣2,3],则函数f(x+1)的定义域是t.三、解答题:请写出详细过程(6小题,共75分)16.(12分)设集合U={2,3,a2+2a﹣3},A={|2a﹣1|,2},∁U A={5},求实数a的值.17.(12分)已知函数f(x)=x2﹣x﹣2lnx.①求函数f(x)在点(1,﹣)处的切线方程.②求函数f(x)的极值.18.(12分)某工厂生产一种产品的固定成本是20000元,每生产一件产品需要另外投入100元,市场销售部进行调查后得知,市场对这种产品的年需求量为1000件,且销售收入函数,其中t是产品售出的数量,且0≤t≤1000.(利润=销售收入﹣成本)(1)若x为年产量,y表示利润,求y=f(x)的解析式;(2)当年产量为多少时,工厂的利润最大,最大值为多少?19.(13分)已知定义在R上的函数f(x)对所有的实数m,n都有f(m+n)=f (m)+f(n),且当x>0时,f(x)<0成立,f(2)=﹣4.①求f(0),f(1),f(3)的值.②证明函数f(x)在R上单调递m=n=0减.③解不等式f(x2)+f(2x)<﹣6.20.(13分)已知不等式mx2﹣2x﹣m+1<0.(1)若对于所有的实数x,不等式恒成立,求m的取值范围;(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.21.(13分)已知函数f(x)=ax3﹣(a+2)x2+6x+b在x=2处取得极值.(Ⅰ)求a的值及f(x)的单调区间;(Ⅱ)若x∈[1,4]时,不等式f(x)>b2恒成立,求b的取值范围.2014-2015学年安徽省蚌埠五中、蚌埠十二中联考高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的表格内(每小题5分,共50分).1.(5分)已知集合M={1,2,3},N={2,3,4},则M∩N=()A.{2,3}B.{1,2,3,4}C.{1,4}D.∅【解答】解:∵M={1,2,3},N={2,3,4},∴M∩N={2,3}.故选:A.2.(5分)已知a>b,则下列不等式一定成立的是()A.a﹣3>b﹣3 B.ac>bc C.<D.a+2>b+3【解答】解:∵a>b,∴a﹣3>b﹣3.故选:A.3.(5分)函数y=x+(x>0)的最小值是()A.1 B.2 C.﹣2 D.以上都不对【解答】解:∵x>0,∴y=x+=2,当且仅当x=1时取等号.∴函数y=x+(x>0)的最小值是2.故选:B.4.(5分)函数f(x)=x+lnx的零点所在的大致区间为()A.(0,1) B.(1,2) C.(1,e) D.(2,e)【解答】解:∵函数f(x)=x+lnx,(x>0)∴f′(x)=1+=,令f′(x)=0,∴x=﹣1,若x>0,f′(x)>0,f(x)为增函数,f()=+ln=﹣1<0,f(1)=1>0,f(x)在(,1)存在唯一的零点,∵(,1)⊆(0,1),∴函数f(x)=x+lnx的零点所在的大致区间(0,1),故选:A.5.(5分)若,则值为()A.﹣ B.C.D.【解答】解:由题意知,,∴f()=﹣+3=,则f[f()]=+1=.故选:B.6.(5分)若a∈R,则“a2>a”是“a>1”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件D.充要条件【解答】解:由a2>a得a>1或a<0,则“a2>a”是“a>1”的必要不充分条件,故选:B.7.(5分)下列说法中正确的是()①f(x)=x0与g(x)=1是同一个函数;②y=f(x)与y=f(x+1)有可能是同一个函数;③y=f(x)与y=f(t)是同一个函数;④定义域和值域相同的函数是同一个函数.A.①②B.②③C.②④D.①③【解答】解:命题①,f(x)=x0x≠0,g(x)=1中,x∈R,故不是同一个函数;命题②,若f(x)=1,则f(x+1)=1,y=f(x),故y=f(x+1)有可能是同一个函数,该选项正确;命题③,y=f(x)与y=f(t)解析式相同,定义域一致,y=f(x)与y=f(t)是同一个函数;命题④,函数y=x与y=x+1,定义域和值域均为R,但由于对应法则不同,故浊相同的函数,选项④不正确.故选:B.8.(5分)已知函数f(x)是定义在实数集R上的偶函数,则下列结论一定成立的是()A.∀x∈R,f(x)>f(﹣x)B.∃x0∈R,f(x0)>f(﹣x0)C.∀x∈R,f(x)f(﹣x)≥0 D.∃x0∈R,f(x0)f(﹣x0)<0【解答】解:∵函数f(x)是定义在实数集R上的偶函数,∴f(﹣x)=f(x),故∀x∈R,f(x)>f(﹣x)错误,即A错误;对于B,若f(x)=0,则不存在x0∈R,f(x0)>f(﹣x0),故B错误;对于C,∀x∈R,f(x)f(﹣x)≥0,正确;对于D,若f(x)=0,则不存在x0∈R,f(x0)f(﹣x0)<0,故D错误;故选:C.9.(5分)已知函数f(x)=2x﹣2,则函数y=|f(x)|的图象可能是()A.B.C.D.【解答】解:先做出y=2x的图象,在向下平移两个单位,得到y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.故选:B.10.(5分)下列命题中正确的是()A.若命题P为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若p则q”的否命题是“若q则p”C.命题“∀x∈R,2x>0”的否定是“∀x0∈R,≤0”D.函数y=的定义域是{x|0≤x≤2}【解答】解:对于A,若命题P为真命题,命题q为假命题,则命题“p∧q”为假命题,所以A不正确;对于B,命题“若p则q”的否命题是“¬p则¬q”,显然B不正确;对于C,命题“∀x∈R,2x>0”的否定是“∃x0∈R,≤0”,显然C不正确;对于D,函数y=有意义,必须2x﹣x2≥0,解得x∈[0,2].所以函数的定义域是{x|0≤x≤2},正确.故选:D.二、填空题:请把答案填在题中横线上(每小题5分,共25分).11.(5分)函数f(x)=x2﹣2x+5的定义域是x∈(﹣1,2],值域是[4,8).【解答】解:f(x)=x2﹣2x+5=(x﹣1)2+4;∵x∈(﹣1,2],∴(x﹣1)2+4∈[4,8);故答案为:[4,8).12.(5分)函数y=的f(x+1)单调递减区间是(﹣∞,0] .【解答】解:函数y==,则函数y==,的单调递减区间为(﹣∞,1],即函数f(x)的单调递减区间为(﹣∞,1],将函数f(x)向左平移1个单位得到f(x+1],此时函数f(x+1)单调递减区间为(﹣∞,0],故答案为:(﹣∞,0]13.(5分)已知f(x)=log0.5x,且f(1﹣a)<f(2a﹣1),则a的取值范围是.【解答】解:因为函数y=log0.5x是定义域内的减函数.所以由题意得.解得.故答案为14.(5分)若点(1,3)和(﹣4,﹣2)在直线2x+y+m=0的两侧,则m的取值范围是﹣5<m<10.【解答】解:将点(1,3)和(﹣4,﹣2)的坐标代入直线方程,可得两个代数式,∵在直线2x+y+m=0的两侧∴(5+m)(﹣10+m)<0解得:﹣5<m<10,故答案为﹣5<m<10.15.(5分)已知函数f(2x﹣1)的定义域是[﹣2,3],则函数f(x+1)的定义域是[﹣6,4] t.【解答】解:∵f(2x﹣1)的定义域是[﹣2,3],∴﹣2≤x≤3,﹣4≤2x≤6,﹣5≤2x﹣1≤5,由﹣5≤x+1≤5,得﹣6≤x≤4,即函数f(x+1)的定义域为[﹣6,4],故答案为:[﹣6,4]三、解答题:请写出详细过程(6小题,共75分)16.(12分)设集合U={2,3,a2+2a﹣3},A={|2a﹣1|,2},∁U A={5},求实数a的值.【解答】解:∵集合U={2,3,a2+2a﹣3},C U A={5},∴a2+2a﹣3=5,∴a=2或﹣4.当a=2时,A={2,3}符合题意.当a=﹣4时,A={9,3}不符合题意,舍去.故a=2.17.(12分)已知函数f(x)=x2﹣x﹣2lnx.①求函数f(x)在点(1,﹣)处的切线方程.②求函数f(x)的极值.【解答】解:①,∴k=f'(1)=﹣2,∴所求切线方程为.②函数的导数且x>0,∴0<x<2时,f'(x)<0,当x>2时,f'(x)>0,∴函数f(x)在(0,2)单调递减,在(2,+∞),单调递增.故当x=2时,函数取得极小值f(2)=﹣2ln2.18.(12分)某工厂生产一种产品的固定成本是20000元,每生产一件产品需要另外投入100元,市场销售部进行调查后得知,市场对这种产品的年需求量为1000件,且销售收入函数,其中t是产品售出的数量,且0≤t≤1000.(利润=销售收入﹣成本)(1)若x为年产量,y表示利润,求y=f(x)的解析式;(2)当年产量为多少时,工厂的利润最大,最大值为多少?【解答】解:(1)根据利润=销售收入﹣成本,当0≤x≤1000时,t=x,可得y=﹣x2+1000x﹣20000﹣100x=﹣x2+900x﹣20000当x>1000时,t=1000,y=﹣×10002+10002﹣20000﹣100x=480000﹣100x(4分)∴f(x)=(6分)(2)当0≤x≤1000时,f(x)=﹣x2+900x﹣20000=﹣(x﹣900)2+38500∴x=900时,f(x)max=38500,当x>1000时,f(x)=480000﹣100x为减函数∴f(x)<480000﹣10000=380000(11分)∴当年产量为900件时,工厂的利润最大,最大值为385000元.(12分)19.(13分)已知定义在R上的函数f(x)对所有的实数m,n都有f(m+n)=f (m)+f(n),且当x>0时,f(x)<0成立,f(2)=﹣4.①求f(0),f(1),f(3)的值.②证明函数f(x)在R上单调递m=n=0减.③解不等式f(x2)+f(2x)<﹣6.【解答】解:因为函数f(x)对所有的实数m,n都有f(m+n)=f(m)+f(n).①令m=n=0得f(0)=0.令m=n=1得2f(1)=f(2)=﹣4,所以f(1)=﹣2∴f(3)=f(2)+f(1)=﹣6.②由已知得f(m+n)﹣f(m)=f(n)令x1>x2,且x1,x2∈R∴f(x1)﹣f(x2)=f(x1﹣x2),因x1>x2,∴f(x1﹣x2)<0即f(x1)<f(x2)函数f(x)在R单调递减.③因为f(3)=﹣6,所以不等式可化为,∴f(x2+2x)<f(3),因为f(x)为为R上的减函数,所以x2+2x>3,解得x>1或x<﹣3.20.(13分)已知不等式mx2﹣2x﹣m+1<0.(1)若对于所有的实数x,不等式恒成立,求m的取值范围;(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.【解答】解:(1)当m=0时,1﹣2x<0,即当时不等式恒成立,不满足条件.…(2分)解得m≠0时,设f(x)=mx2﹣2x﹣m+1,由于f(x)<0恒成立,则有,解得m∈∅.综上可知,不存在这样的m使不等式恒成立.…(6分)(2)由题意﹣2≤m≤2,设g(m)=(x2﹣1)m+(1﹣2x),则由题意可得g(m)<0,故有,即,解之得,所以x的取值范围为.…(12分)21.(13分)已知函数f(x)=ax3﹣(a+2)x2+6x+b在x=2处取得极值.(Ⅰ)求a的值及f(x)的单调区间;(Ⅱ)若x∈[1,4]时,不等式f(x)>b2恒成立,求b的取值范围.【解答】解:(Ⅰ)∵函数f(x)=ax3﹣(a+2)x2+6x+b,∴f'(x)=3ax2﹣3(a+2)x+6,∴f'(2)=12a﹣6a﹣12+6=0,∴a=1.由f'(x)=3x2﹣9x+6>0得x>2或x<1,由f'(x)=3x2﹣9x+6<0得1<x<2,∴函数f(x)的单调增区间为(﹣∞,1)、(2,+∞),单调减区间为(1,2).(Ⅱ),当x∈[1,4]时,不等式f(x)>b2恒成立,即有f(x)的最小值大于b2,∵f(x)min=f(2)=2+b,∴2+b>b2,﹣1<b<2,∴b的取值范围(﹣1,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年安徽省蚌埠铁路中学高一(上)期中数学试卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A.{y|0<y<}B.{y|0<y<1}C.{y|<y<1}D.∅2.(5分)设M={1,2,3},N={e,g,h},从M到N的四种对应方式如图,其中是从M到N的映射的是()A. B.C.D.3.(5分)下列函数中哪个与函数y=x相等()A.y=B.y=C.y=D.y=4.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x+1)=()A.x2+6x B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣105.(5分)已知函数y=f(x)的图象如图所示,则函数y=f(|x|)的图象为()A.B.C.D.6.(5分)设f(x)=,则f[f(2)]=()A.2 B.3 C.9 D.187.(5分)函数y=a x﹣a(a>0,a≠1)的图象可能是()A.B. C.D.8.(5分)若函数f(x)=|4x﹣x2|+a有4个零点,则实数a的取值范围是()A.[﹣4,0]B.(﹣4,0)C.[0,4]D.(0,4)9.(5分)若函数f(x)=(a2﹣2a﹣3)x2+(a﹣3)x+1的定义域和值域都为R,则a的取值范围是()A.a=﹣1或3 B.a=﹣1 C.a>3或a<﹣1 D.﹣1<a<310.(5分)若函数f(x)为定义域D上的单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数.若函数g(x)=x2+m是(﹣∞,0)上的正函数,则实数m的取值范围为()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)若a>0,且a≠1,则函数y=a x﹣1+1的图象一定过定点.12.(5分)幂函数f(x)=(m2﹣2m﹣2)在(0,+∞)是增函数,则m=.13.(5分)函数f(x)=log(x2﹣2x)的单调递减区间是.14.(5分)已知函数若方程f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是.15.(5分)函数f(x)是定义在R上的奇函数,给出下列命题:①f(0)=0;②若f(x)在(0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0)上有最大值1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0,f(x)=x2﹣2x;则x<0时,f(x)=﹣x2﹣2x.其中所有正确的命题序号是.三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(1)已知a=,b=,求[b]2的值;(2)计算lg8+lg25+lg2•lg50+lg25的值.17.(12分)已知全集U=R,A={x|x≥3},B={x|x2﹣8x+7≤0},C={x|x≥a﹣1}(1)求A∩B;A∪(∁U B)(2)若C∪A=A,求实数a的取值范围.18.(12分)已知函数.(1)判断函数f(x)的奇偶性,并证明;(2)利用函数单调性的定义证明:f(x)是其定义域上的增函数.19.(13分)已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f (﹣x+5)=f(x﹣3),且方程f(x)=x有两个相等的实根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[3m,3n],若存在,求出m,n的值,若不存在,请说明理由.20.(13分)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)工厂生产多少台产品时,可使盈利最多?21.(13分)如果函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y)(1)求f(1)的值.(2)已知f(3)=1且f(a)>f(a﹣1)+2,求a的取值范围.(3)证明:f()=f(x)﹣f(y).2014-2015学年安徽省蚌埠铁路中学高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A.{y|0<y<}B.{y|0<y<1}C.{y|<y<1}D.∅【解答】解:∵集合A={y|y=log2x,x>1},∴A=(0,+∞)∵B={y|y=()x,x>1},∴B=(0,)∴A∩B=(0,)故选:A.2.(5分)设M={1,2,3},N={e,g,h},从M到N的四种对应方式如图,其中是从M到N的映射的是()A. B.C.D.【解答】解:对于A中的对应,由于集合M中的元素3在集合N中有2个元素g、h和它对应,故不满足映射的定义.对于B中的对应,由于集合M中的元素2在集合N中有2个元素e、h和它对应,故不满足映射的定义.对于C中的对应,由于集合M中的每一个元素在集合N中有唯一确定的一个元素和它对应,故满足映射的定义.对于D中的对应,由于集合M中的元素3在集合N中有2个元素g、h和它对应,故不满足映射的定义.故选:C.3.(5分)下列函数中哪个与函数y=x相等()A.y=B.y=C.y=D.y=【解答】解:A.y=的定义域是{x|x≥0},而函数y=x的定义域R,故不是同一函数.B.y=的定义域是{x|x≠0},而函数y=x的定义域R,故不是同一函数.C.y==|x|与y=x的对应法则、值域皆不同,故不是同一函数.D.y==x与y=x是同一函数.故选:D.4.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x+1)=()A.x2+6x B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣10【解答】解:f(x﹣1)=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x+1)=(x+1)2+6(x+1)=x2+8x+7.5.(5分)已知函数y=f(x)的图象如图所示,则函数y=f(|x|)的图象为()A.B.C.D.【解答】解:函数y=f(|x|)=,是偶函数,因此将函数y=f(x)的图象在y轴右侧的部分保持不变,利用函数y=f(|x|)是偶函数,其图象关于y轴对称,即可得到函数y=f(|x|)的图象故选:B.6.(5分)设f(x)=,则f[f(2)]=()A.2 B.3 C.9 D.18【解答】解:∵f(x)=,∴f(2)=,f[f(2)]=f(1)=2e1﹣1=2.故选:A.7.(5分)函数y=a x﹣a(a>0,a≠1)的图象可能是()A.B. C.D.【解答】解:由于当x=1时,y=0,即函数y=a x﹣a 的图象过点(1,0),故排除A、B、D.故选:C.8.(5分)若函数f(x)=|4x﹣x2|+a有4个零点,则实数a的取值范围是()A.[﹣4,0]B.(﹣4,0)C.[0,4]D.(0,4)【解答】解:∵函数f(x)=|4x﹣x2|+a有4个零点函数y=|4x﹣x2|与函数y=﹣a有4个交点,如图所示:结合图象可得0<﹣a<4,∴﹣4<a<0故选:B.9.(5分)若函数f(x)=(a2﹣2a﹣3)x2+(a﹣3)x+1的定义域和值域都为R,则a的取值范围是()A.a=﹣1或3 B.a=﹣1 C.a>3或a<﹣1 D.﹣1<a<3【解答】解:若a2﹣2a﹣3≠0,则f(x)为二次函数,定义域和值域都为R是不可能的.若a2﹣2a﹣3=0,即a=﹣1或3;当a=3时,f(x)=1不合题意;当a=﹣1时,f(x)=﹣4x+1符合题意.故选:B.10.(5分)若函数f(x)为定义域D上的单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数.若函数g(x)=x2+m是(﹣∞,0)上的正函数,则实数m的取值范围为()A.B.C.D.【解答】解:因为函数g(x)=x2+m是(﹣∞,0)上的正函数,所以a<b<0,所以当x∈[a,b]时,函数单调递减,则g(a)=b,g(b)=a,即a2+m=b,b2+m=a,两式相减得a2﹣b2=b﹣a,即b=﹣(a+1),代入a2+m=b得a2+a+m+1=0,由a<b<0,且b=﹣(a+1),∴a<﹣(a+1)<0,即,∴,解得﹣1<a<﹣.故关于a的方程a2+a+m+1=0在区间(﹣1,﹣)内有实数解,记h(a)=a2+a+m+1,则h(﹣1)>0,h(﹣)<0,即1﹣1+m+1>0且,解得m>﹣1且m<﹣.即,故选:A.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)若a>0,且a≠1,则函数y=a x﹣1+1的图象一定过定点(1,2).【解答】解:令a的幂指数x﹣1=0,可得x=1,此时求得y=2,故所求的定点坐标为(1,2),故答案为(1,2).12.(5分)幂函数f(x)=(m2﹣2m﹣2)在(0,+∞)是增函数,则m=3.【解答】解:∵f(x)=(m2﹣2m﹣2)是幂函数,且在(0,+∞)上是增函数,∴;解得m=3.故答案为:3.13.(5分)函数f(x)=log(x2﹣2x)的单调递减区间是(2,+∞).【解答】解:由题意可得函数的定义域为:(2,+∞)∪(﹣∞,0)令t=x2﹣2x,则y=因为函数y=在定义域上单调递减t=x2﹣2x在(2,+∞)单调递增,在(﹣∞,0)单调递减根据复合函数的单调性可知函数的单调递减区间为:(2,+∞)故答案为:(2,+∞)14.(5分)已知函数若方程f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是(﹣∞,1).【解答】解:函数f(x)=的图象如图所示,当a<1时,函数y=f(x)的图象与函数y=x+a的图象有两个交点,即方程f(x)=x+a有且只有两个不相等的实数根.故答案为(﹣∞,1)15.(5分)函数f(x)是定义在R上的奇函数,给出下列命题:①f(0)=0;②若f(x)在(0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0)上有最大值1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0,f(x)=x2﹣2x;则x<0时,f(x)=﹣x2﹣2x.其中所有正确的命题序号是①②④.【解答】解:由函数f(x)是定义在R上的奇函数,可得f(﹣0)=﹣f(0)即f(0)=0①f(0)=0;正确②若f(x)在(0,+∞)上有最小值为﹣1,则根据奇函数的图形关于原点对称可在f(x)在(﹣∞,0)上有最大值1;正确③若f(x)在[1,+∞)上为增函数,则根据奇函数在对称区间上的单调性可知f(x)在(﹣∞,﹣1]上为增函数;错误④若x>0,f(x)=x2﹣2x;则x<0时,﹣x>0,f(x)=﹣f(﹣x)=﹣[(﹣x)2﹣2(﹣x)]=﹣x2﹣2x.正确故答案为①②④三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(1)已知a=,b=,求[b]2的值;(2)计算lg8+lg25+lg2•lg50+lg25的值.【解答】解:(1)====.∵,∴原式===20=1;(2)=2lg2+lg 25+lg2(1+lg5)+2lg5 =2(lg2+lg5)+lg 25+lg2+lg2•lg5 =2+lg5(lg5+lg2)+lg2 =2+lg5+lg2=3.17.(12分)已知全集U=R ,A={x |x ≥3},B={x |x 2﹣8x +7≤0},C={x |x ≥a ﹣1} (1)求A ∩B ; A ∪(∁U B )(2)若C ∪A=A ,求实数a 的取值范围.【解答】(1)B={x |1≤x ≤7}∴A ∩B={x |3≤x ≤7}A ∪(C U B )={x |x <1或x ≥3}, (2)∵C ∪A=A ,∴C ⊆A ∴a ﹣1≥3,∴a ≥4.18.(12分)已知函数.(1)判断函数f (x )的奇偶性,并证明;(2)利用函数单调性的定义证明:f (x )是其定义域上的增函数. 【解答】解:(1)f (x )为奇函数.证明如下: ∵2x +1≠0,∴f (x )的定义域为R , 又∵,∴f (x )为奇函数. (2),任取x 1、x 2∈R ,设x 1<x 2, ∵==, ∵,∴,又,∴f (x 1)﹣f (x 2)<0,∴f (x 1)<f (x 2).∴f(x)在其定义域R上是增函数.19.(13分)已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f (﹣x+5)=f(x﹣3),且方程f(x)=x有两个相等的实根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[3m,3n],若存在,求出m,n的值,若不存在,请说明理由.【解答】解:(1)∵f(﹣x+5)=f(x﹣3),∴f(x)的对称轴为x=1,即﹣=1即b=﹣2a.∵f(x)=x有两相等实根,∴ax2+bx=x,即ax2+(b﹣1)x=0有两相等实根0,∴﹣=0,∴b=1,a=﹣,∴f(x)=﹣x2+x.(2)f(x)=﹣x2+x=﹣(x﹣1)2+≤,故3n≤,故m<n≤,又函数的对称轴为x=1,故f(x)在[m,n]单调递增则有f(m)=3m,f(n)=3n,解得m=0或m=﹣4,n=0或n=﹣4,又m<n,故m=﹣4,n=0.20.(13分)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)工厂生产多少台产品时,可使盈利最多?【解答】解:(1)由题意得G(x)=2.8+x.…(2分)∵,∴f(x)=R(x)﹣G(x)=.…(7分)(2)当x>5时,∵函数f(x)递减,∴f(x)<f(5)=3.2(万元).…(10分)当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).…(14分)所以当工厂生产4百台时,可使赢利最大为3.6万元.…(15分)21.(13分)如果函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y)(1)求f(1)的值.(2)已知f(3)=1且f(a)>f(a﹣1)+2,求a的取值范围.(3)证明:f()=f(x)﹣f(y).【解答】解:(1)∵f(xy)=f(x)+f(y)∴令x=y=1,得f(1×1)=f(1)+f(1),可得f(1)=0;(2)∵f(3)=1,∴2=1+1=f(3)+f(3)=f(3×3)=f(9),不等式f(a)>f(a﹣1)+2,可化为f(a)>f(a﹣1)+f(9)=f[9(a﹣1)]∵f(x)是定义在(0,+∞)上的增函数,∴,解之得1<a<;(3)∵x=•y,∴f(x)=f(•y)=f()+f(y),由此可得f()=f(x)﹣f(y).。