化工原理课程设计填料塔
填料塔化工原理课程设计

填料塔化工原理课程设计填料塔是一种常见的化工设备,广泛应用于化工、环保、石油等领域。
填料作为塔内的主要组成部分,对于塔内的传质、反应等过程起着至关重要的作用。
因此,在化工原理课程设计中,填料塔的设计和优化是必不可少的一部分。
填料塔化工原理课程设计主要包括以下内容:一、填料的选择和设计填料的种类繁多,不同的填料有着不同的物理化学性质和结构特征,对于塔内传质、反应等过程有着重要的影响。
在填料选择时,需要根据实际工艺要求和特定条件进行选择,同时考虑填料的成本、维护和清洗难度等因素。
设计填料塔需要考虑的因素包括:填料堆积密度、总塔体积、填料层数、塔径、塔高、塔底和塔顶结构等。
这些因素需要通过计算和模拟来确定最佳的设计参数,以满足特定的工艺要求。
二、塔内流体传输和传质填料塔中的流体传输和传质是塔内传质过程的关键。
塔内传质过程可以用物理和数学模型来描述和分析,以确定传质速率、传质效率等基本参数。
主要的传质模型包括:对流传质、扩散传质、反应传质等。
对于填料塔的设计和优化,需要进行流体传输和传质的数值模拟和实验验证。
实验验证可以通过建立实验装置,通过对工艺参数和填料种类的变化,来实现对塔内传质的观测和分析。
数值模拟可以基于参数偏微分方程或者多相流模型,来模拟塔内传质过程,从而得到设计和优化的基本参数。
三、塔内反应过程填料塔中的反应过程是化工原理课程设计的另一个关键部分。
填料塔由于具有大量的表面积、液膜和气液界面,为反应过程提供了良好的反应条件。
塔内反应过程主要包括:吸收、脱吸附、萃取、沉淀等反应过程。
在设计和优化填料塔反应过程时,需要考虑多种因素,如反应物浓度、反应速率、塔高、填料种类等。
通过物理学和化学动力学等基本原理,可以建立反应过程的模型,从而对反应过程进行分析和优化设计。
四、优化设计与实践填料塔化工原理课程设计的最后一部分是优化设计与实践。
通过对填料塔的设计和优化,可以实现工艺目标的达成。
同时,优化设计也需要根据实际情况和运行经验进一步调整和改善,以适应工艺的不断发展和变化。
化工课程设计填料塔设计

化工课程设计填料塔设计一、教学目标本节课的学习目标包括:知识目标:学生需要掌握填料塔的基本概念、类型和设计方法;了解填料塔在化工过程中的应用和重要性。
技能目标:学生能够运用所学的知识,独立完成填料塔的设计计算;能够分析并解决实际工程中的问题。
情感态度价值观目标:培养学生对化工行业的兴趣和热情,提高学生对工程实践的重视,培养学生的创新意识和团队合作精神。
二、教学内容本节课的教学内容主要包括:1.填料塔的基本概念和类型:介绍填料塔的定义、结构和工作原理,分析不同类型填料塔的特点和应用范围。
2.填料塔的设计方法:讲解填料塔的设计步骤和方法,包括填料的选择、塔径的确定、塔高的计算等。
3.填料塔在化工过程中的应用:介绍填料塔在化工过程中的重要作用,分析其在不同领域的应用案例。
4.实际工程案例分析:通过分析实际工程中的填料塔设计案例,使学生能够将理论知识应用于实际问题解决。
三、教学方法为了提高教学效果,本节课将采用多种教学方法:1.讲授法:教师通过讲解填料塔的基本概念、设计方法和应用案例,使学生掌握相关理论知识。
2.讨论法:学生进行小组讨论,分享不同类型的填料塔设计和应用经验,培养学生的团队合作精神和创新意识。
3.案例分析法:分析实际工程中的填料塔设计案例,引导学生运用所学知识解决实际问题。
4.实验法:安排实验室实践环节,让学生亲自操作填料塔设备,增强学生的实践能力和操作技能。
四、教学资源为了支持本节课的教学内容和教学方法,将采用以下教学资源:1.教材:选用权威的化工教材,为学生提供系统的理论知识。
2.参考书:推荐相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT课件,通过图片、图表和动画等形式,直观地展示填料塔的原理和设计方法。
4.实验设备:提供填料塔实验装置,让学生亲身体验填料塔的操作和应用。
五、教学评估本节课的评估方式包括:1.平时表现:通过观察学生的课堂参与、提问回答、小组讨论等,评估学生的学习态度和积极性。
化工原理课程设计 填料塔的设计说明书

化工原理课程设计—填料塔的设计说明书化学与化工学院制目录一、绪论 (3)二、设计任务及操作条件 (3)三、设计方案的确定 (4)1、装置流程的确定 (4)2、吸收剂选择 (5)3、操作温度与压力的确定 (5)4、填料的类型与选择 (6)四、基础物性参数的确定 (8)1、液相物性参数 (8)2、气相物性参数 (8)3、气液相平衡参数 (9)4、物料衡算 (9)5、填料物性参数 (10)五、填料塔工艺尺寸的确定 (11)1、塔径的计算 (11)2、填料层高度计算 (14)六、填料层压降计算 (16)七、填料塔内件的类型与设计 (17)八、总结 (18)九、参考文献 (19)十、后记......................................................................................................... 错误!未定义书签。
十一、符号说明.. (19)一、绪论塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的形式,可以分为填料塔和板式塔。
板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。
工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。
塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。
板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。
填料塔由填料、塔内件及筒体构成。
填料分规整填料和散装填料两大类。
塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。
与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。
填料塔的类型很多,其设计的原则大体相同,一般来说,填料塔的步骤如下:根据设计任务和工艺要求,确定设计方案;根据设计任务和工艺要求,合理地选择填料;确定塔径、填料层高度等工艺尺寸;计算填料层的压降;进行填料塔塔内件的设计和选型。
化工原理课程设计(规整填料塔)

化工原理课程设计(规整填料塔)填料精馏塔设计任务书一、设计题目:填料塔设计二、设计任务:苯-甲苯精馏塔设计三、设计条件:1、年处理含苯41%(质量分数,下同)的苯-甲苯混合液3万吨;2、产品苯含量不低于96%;3、残液中苯含量不高于1%;4、操作条件:填料塔的塔顶压力:4kPa(表压)进料状态:自选回流比:自选加热蒸汽压力:101.33kPa(表压)5、设备型式:规整填料塔6、设备工作日:300天/年,24h连续运行四、设计内容和要求序号设计内容要求1 工艺计算物料衡算、热量衡算、理论塔板数等2 结构设计塔高、塔径、分布器、接口管的尺寸等3 流体力学验算塔板负荷性能图4 冷凝器的传热面积和冷却介质的用量计算5 再沸器的传热面积和加热介质的用量计算6 计算机辅助计算将数据输入计算机,绘制负荷性能图7 编写设计说明书目录、设计任务书、设计计算及结果、流程图、参考资料等目录第1章流程的确定和说明 (3)1.1加料方式 (3)1.2进料状态 (3)1.3冷凝方式 (3)1.4回流方式 (3)1.5加热方式 (3)1.6加热器 (4)第2章精馏塔设计计算 (5)2.1操作条件和基础数据 (5)2.1.1操作压力 (5)2.1.2基础数据 (5)2.2精馏塔工艺计算 (7)2.2.1物料衡算 (7)2.2.2热量衡算 (9)2.2.3理论塔板数计算 (11)2.3精馏塔的主要尺寸 (12)2.3.1精馏塔设计的主要依据 (12)2.3.2塔径设计计算 (15)2.3.3填料层高度的计算 (16)第3章附属设备及主要附件的选型计算 (17) 3.1冷凝器 (17)3.1.1计算冷却水流量 (18)3.1.2冷凝器的计算与选型 (18)3.2再沸器 (18)3.2.1间接加热蒸汽 (18)3.2.2再沸器加热面积 (18)3.3塔内其他结构 (19)3.3.1接管的计算与选择 (19)3.3.2液体分布器 (20)3.3.3除沫器 (21)3.3.4液体再分布器 (22)3.3.5填料支撑板的选择 (22)3.3.6塔底设计 (23)3.3.7塔的顶部空间高度 (23)第4章结束语 (24)参考文献 (25)第1章流程的确定和说明1.1加料方式加料分两种方式:泵加料和高位槽加料。
化工原理填料吸收塔课程设计

化工原理填料吸收塔课程设计引言:填料吸收塔是化工工艺中常用的一种设备,用于将气体中的有害物质通过吸收剂吸附或反应的方式去除。
本次课程设计旨在通过对填料吸收塔的设计和工艺参数的优化,实现高效的气体净化效果。
一、填料吸收塔的基本原理及结构填料吸收塔是利用填料表面积大、内部通道多、与气体充分接触的特点,通过物理吸附或化学吸收的方式将气体中的有害成分去除。
其基本结构包括进气口、出气口、填料层和液体循环系统等。
二、填料的选择及特性填料是填料吸收塔中起到关键作用的部分,其选择应根据气体的性质和处理效果的要求来确定。
常用的填料包括球状填料、骨架填料和网状填料等,它们具有不同的表面积、孔隙率和液体分布性能,对吸收效果和塔内气液分布起到重要影响。
三、填料吸收塔的设计步骤及要点1. 确定气体的物理和化学性质,包括流量、温度、压力、组成等;2. 选择合适的填料类型和尺寸,考虑填料的表面积、孔隙率和液体分布性能;3. 确定填料层数和塔径高比,以及液体循环系统的设计参数;4. 进行塔内气液分布的模拟和优化,保证填料与气体充分接触;5. 进行设备的结构设计和材料选择,考虑耐腐蚀性和操作安全性;6. 进行设备的动态模拟和优化,确定最佳操作条件和效果。
四、填料吸收塔的性能评价及优化填料吸收塔的性能评价主要包括吸收效率、压降和能耗等指标。
通过调整填料层数、液体循环系统和操作条件等参数,可以实现吸收效率的提高和能耗的降低。
同时,还应考虑填料的寿命和维护等方面的因素,以保证设备的稳定运行和经济性。
五、填料吸收塔的应用及发展趋势填料吸收塔广泛应用于化工、环保和能源等行业,用于废气处理、脱硫和脱硝等工艺。
随着环保要求的提高和技术的进步,填料吸收塔的设计和优化将更加注重能耗和运行成本的降低,同时也将更加重视对废气中微量有害物质的去除效果。
结论:填料吸收塔作为一种重要的气体净化设备,在化工工艺中发挥着重要作用。
通过合理的设计和优化,可以实现高效的气体净化效果和能耗降低。
化工原理课程设计(水吸收氨填料吸收塔设计)

化工原理课程设计(水吸收氨填料吸收塔设计)目录第1节前言31.1填料塔的主体结构与特点31.2填料塔的设计任务及步骤31.3填料塔设计条件及操作条件4第2节精馏塔主体设计方案的确定42.1装置流程的确定42.2吸收剂的选择52.3填料的类型与选择52.3.1填料种类的选择52.3.2填料规格的选择52.3.3填料材质的选择62.4基础物性数据62.4.1液相物性数据62.4.2气相物性数据72.4.3气液相平衡数据72.4.4物料横算8第3节填料塔工艺尺寸的计算93.1塔径的计算93.2填料层高度的计算及分段113.2.1传质单元数的计算113.2.2传质单元高度的计算113.2.3填料层的分段143.3填料层压降的计算14第4节填料塔内件的类型及设计154.1塔内件类型154.2塔内件的设计164.2.1液体分布器设计的基本要求:164.2.2液体分布器布液能力的计算16注:171.填料塔设计结果一览表 (17)2.填料塔设计数据一览 (18)3.参考文献 (19)4.后记及其他 (19)附件一:塔设备流程图20附件二:塔设备设计图20表索引表 21工业常用吸收剂 (5)表 22 常用填料的塔径与填料公称直径比值D/d的推荐值 (6)图索引图 11 填料塔结构图 (3)图 31 Eckert图 (15)第1节前言1.1填料塔的主体结构与特点结构图错误!文档中没有指定样式的文字。
1所示:图错误!文档中没有指定样式的文字。
1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
1.2填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。
(完整版)化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计任务书目录一前言 (3)二设计任务 (4)三设计条件 (4)四设计方案 (5)1.吸收剂的选择 (5)2.流程图及流程说明 (5)3.塔填料的选择 (7)五工艺计算 (11)1.物料衡算,确定塔顶、塔底的气液流量和组成 (11)2.塔径的计算 (12)3. 填料层高度计算 (14)4. 填料层压降计算 (16)5. 液体分布装置 (17)6. 液体再分布装置 (19)7. 填料支撑装置 (20)8. 流体进出口装置 (21)9. 水泵及风机的选型 (22)六设计一览表 (23)七对本设计的评述 (23)八参考文献 (24)九主要符号说明 (24)十致谢 (25)一前言在石油化工、食品医药及环境保护等领域,塔设备属于使用量大应用面广的重要单元设备。
塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。
所以塔设备的研究一直是国内外学者普遍关注的重要课题。
在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。
吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。
塔设备按其结构形式基本上可分为两类:板式塔和填料塔。
以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。
近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。
因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。
如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。
随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。
氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,氨对接触的皮肤组织都有腐蚀和刺激作用,可以吸收皮肤组织中的水分,使组织蛋白变性,并使组织脂肪皂化,破坏细胞膜结构。
化工原理课程设计填料塔

目录第1章概述 (3)1.1吸收技术概况 (3)1.2吸收设备的发展 (3)1.3吸收在工业生产中的应用 (4)1.4丙酮的性质 (5)第2章方案比选 (7)2.1方案选择与对比 (7)2.2吸收剂的比选 (8)2.3填料的作用以及选择 (9)2.4操作参数的选择 (12)2.5流向选择 (12)2.6吸收剂再生方法的选择 (12)2.7操作参数的选择 (13)第3章吸收塔的工艺计算 (14)3.1基础物性数据 (14)3.1.1 气液相物性数据 (14)3.1.2物料计算 (14)3.2塔径计算 (15)3.3填料层高度确定 (18)3.3.1. 传质单元数计算 (18)3.3.2 传质单元高度计算 (18)3.3.3填料层高度的计算 (20)第四章塔的结构设计 (21)4.1筒体的设计 (21)4.2封头设计 (21)4.3除沫器设计 (21)4.4液体进料管的设计 (22)4.5液体出料管的设计 (22)4.6气体进料管的设计 (22)4.7气体出料管的设计 (23)4.8填料支撑板设计 (23)4.9填料压板 (23)4.10体分布装置 (23)4.11再分布器 (24)4.12气体入塔分布器 (24)4.13法兰的设计 (25)4.14手孔的设计 (25)4.15吸收塔支座的设计 (25)4.16泵的选择 (26)4.17吸收塔高度的计算 (26)填料吸收塔主要尺寸 (27)课程设计心得 (28)参考文献 (29)第1章概述1.1吸收技术概况气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
在化工生产中,原料气的净化,气体产品的精制,治理有害气体保护环境等方面得到了广泛的应用。
在研究和开发吸收过程中,在方法上多从吸收过程的传质速率着手,希望在整个设备中,气液两相为连续微分接触过程,这一特点则与填料塔得到了较好的结合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第1章概述 (3)1.1吸收技术概况 (3)1.2吸收设备的发展 (3)1.3吸收在工业生产中的应用 (4)1.4丙酮的性质 (5)第2章方案比选 (7)2.1方案选择与对比 (7)2.2吸收剂的比选 (8)2.3填料的作用以及选择 (9)2.4操作参数的选择 (12)2.5流向选择 (12)2.6吸收剂再生方法的选择 (12)2.7操作参数的选择 (13)第3章吸收塔的工艺计算 (14)3.1基础物性数据 (14)3.1.1 气液相物性数据 (14)3.1.2物料计算 (14)3.2塔径计算 (15)3.3填料层高度确定 (18)3.3.1. 传质单元数计算 (18)3.3.2 传质单元高度计算 (18)3.3.3填料层高度的计算 (20)第四章塔的结构设计 (21)4.1筒体的设计 (21)4.2封头设计 (21)4.3除沫器设计 (21)4.4液体进料管的设计 (22)4.5液体出料管的设计 (22)4.6气体进料管的设计 (22)4.7气体出料管的设计 (23)4.8填料支撑板设计 (23)4.9填料压板 (23)4.10体分布装置 (23)4.11再分布器 (24)4.12气体入塔分布器 (24)4.13法兰的设计 (25)4.14手孔的设计 (25)4.15吸收塔支座的设计 (25)4.16泵的选择 (26)4.17吸收塔高度的计算 (26)填料吸收塔主要尺寸 (27)课程设计心得 (28)参考文献 (29)第1章概述1.1吸收技术概况气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
在化工生产中,原料气的净化,气体产品的精制,治理有害气体保护环境等方面得到了广泛的应用。
在研究和开发吸收过程中,在方法上多从吸收过程的传质速率着手,希望在整个设备中,气液两相为连续微分接触过程,这一特点则与填料塔得到了较好的结合。
由于填料塔的通量大,阻力小,使得其在某些处理量大要求压降小的分离过程中备受亲睐。
尤其今年高效填料塔的开发,使得填料塔在分离过程中占据了重要的地位。
丙酮是一种重要的基本有机化工原料,它是制造丙酮氰醇,双酚A等化工产品的原料,也用于制造维生素C,此外还作为溶剂广泛用于醋酸纤维素胶片、塑料、涂料、医药及炼油等工业部门。
气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
实际生产中,吸收过程所用的吸收剂常需回收利用,故一般来说,完整的吸收过程应包括吸收和解吸两部分,因而在设计上应将两部分综合考虑,才能得到较为理想的设计结果。
作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作:(1)根据给定的分离任务,确定吸收方案;(2)根据流程进行过程的物料和热量衡算,确定工艺参数;(3)依据物料及热量衡算进行过程的设备选型或设备设计;(4)绘制工艺流程图及主要设备的工艺条件图;(5)编写工艺设计说明书。
吸收剂将混合气体中溶质组分吸收后所得到的溶液是混合溶液,在生产中常需要使溶质从吸收后的溶液中重新释放出来,实现最终分离,而液相的吸收剂又可得以再生重新使用。
这种使溶质组分从溶液中脱出的过程称为解吸,是吸收的逆过程,也是一种通过相际间传质而实现物质分离的单元操作。
在化工生产中,吸收和解吸是常用的联合操作,共同构成了一个完整的工艺流程。
1.2吸收设备的发展吸收设备是化工、石油化工、生物化工等生产过程中广泛采用的气液传质设备。
根据塔内气液接触构件的结构形式,可氛围板式塔和填料塔两大类。
过去由于填料本体及塔内构件的不完善,填料塔大多局限于处理腐蚀性介质或不适宜安装塔板的小直径塔。
近年来由于填料结构的改进,新型的高效、高负荷填料的开发,既提高了塔的通过能力和分离效能,又保持了压力降小的特点,因此填料塔已被推广到所有大型气液操作中。
在某些场合,还代替了传统的板式塔。
随着对填料塔的研究和开发,性能优良的填料塔已大量地用于工业生产中。
由于填料塔通量大,阻力小,压降低,填料易用耐腐蚀材料制造,结构简单,效率高,有利于过程节能。
所以对于吸收过程来说,以采用填料塔居多。
填料塔约有100年的发展史,1914年拉西环的出现使填料塔进入了科学发展的轨道,至50年代取得了很大的发展,但由于填料塔的“放大效应”,50年代后填料塔进入了缓慢发展时期,而板式塔应运而生。
70年代由于世界性的能源危机后,为了节能,填料塔得到了蓬勃发展,规整填料的出现和塔内件的改进使“放大效应”问题基本解决。
填料塔的特点:1.生产能力大2.分离效率高3.压力降小4.操作弹性大5 . 持液量小对于吸收过程,能够完成分离任务的塔设备有多种,如何从众多的塔设备中选择合适类型是进行工艺设计的首要任务。
而进行这一项工作则需对吸收过程进行充分的研究后,并经多方面对比方能得到满意的结果。
一般而言,吸收用塔设备与精馏过程所需要的塔设备具有相同的原则要求,用较小直径的塔设备完成规定的处理量,塔板或填料层阻力要小,具有良好的传质性能,具有合适的操作弹性,结构简单,造价低,便于安装、操作和维修等。
但是吸收过程,一般具有液气比大的特点,因而更适用填料塔。
此外,填料塔阻力小,效率高,有利于过程节能。
所以对于吸收过程来说,以采用填料塔居多。
近年来随着化工产业的发展,大规模的吸收设备已经广泛用于实际生产当中。
具有了很高的吸收效率,以及在节能方面也日趋完善。
填料塔的工艺设计内容是在明确了装置的处理量,操作温度及操作压力及相应的相平衡关系的条件下,完成填料塔的工艺尺寸及其他塔内件设计。
在今后的化学工业的生产中,对吸收设备的要求及效率将会有更高的要求,所以日益完善的吸收设备会逐渐应用于实际的工业生产中。
1.3吸收在工业生产中的应用气体吸收在化工生产中的应用大致有以下几种。
(1) 净化或精制气体。
混合气的净化或精制常采用吸收的方法。
如在合成氨工艺中,采用碳酸丙烯酯(或碳酸钾水溶液)脱除合成气中的二氧化碳等。
(2) 制取某种气体的液态产品。
气体的液态产品的制取常采用吸收的方法。
如用水吸收氯化氢气体制取盐酸等。
(3) 回收混合气体中所需的组分。
回收混合气体中的某组分通常亦采用吸收的方法。
如用洗油处理焦炉气以回收其中的芳烃等。
(4) 工业废气的治理。
在工业生产所排放的废气中常含有少量的SO2、H2S、HF等有害气体成分,若直接排入大气,则对环境造成污染。
因此,在排放之前必须加以治理,工业生产中通常采用吸收的方法,选用碱性吸收剂除去这些有害的酸性气体。
1.4丙酮的性质(1)物理性质无色液体,具有令人愉快的气味(辛辣甜味)。
易挥发。
能与水、乙醇、N,N-二甲基甲酰胺、氯仿、乙醚及大多数油类混溶。
相对密度 (d25)0.7845。
熔点-94.7℃。
沸点56.05℃。
折光率 (n20D)1.3588。
闪点-20℃。
易燃。
半数致死量(大鼠,经口)10.7ml/kg。
有刺激性。
(2)化学性质丙酮是脂肪族酮类具有代表性的的化合物,具有酮类的典型反应。
例如:与亚硫酸氢钠形成无色结晶的加成物。
与氰化氢反应生成丙酮氰醇。
在还原剂的作用下生成异丙酮与频哪醇。
丙酮对氧化剂比较稳定。
在室温下不会被硝酸氧化。
用碱性高锰酸钾或铬酸钾等强氧化剂做氧化剂时,生成乙酸、甲酸、二氧化碳和水。
在碱存在下发生双分子缩合,生成双丙酮醇。
2mol丙酮在各种酸性催化剂(盐酸,氯化锌或硫酸)存在下生成亚异丙基丙酮,再与1mol丙酮加成,生成佛尔酮(二亚异丙基丙酮)。
3mol丙酮在浓硫酸作用下,脱3mol水生成1,3,5-三甲苯。
在石灰。
醇钠或氨基钠存在下,缩合生成异佛尔酮(3,5,5-三甲基-2-环己烯-1-酮)。
在酸或碱存在下,与醛或酮发生缩合反应,生成酮醇、不饱和酮及树脂状物质。
与苯酚在酸性条件下,缩合成双酚-A。
丙酮的α-氢原子容易被卤素取代,生成α-卤代丙酮。
与次卤酸钠或卤素的碱溶液作用生成卤仿。
丙酮与Grignard 试剂发生加成作用,加成产物水解得到叔醇。
丙酮与氨及其衍生物如羟氨、肼、苯肼等也能发生缩合反应。
此外,丙酮在500~1000℃时发生裂解,生成乙烯酮。
在170~260℃通过硅-铝催化剂,生成异丁烯和乙醛;300~350℃时生成异丁烯和乙酸等。
(3)作用和用途丙酮是重要的有机合成原料,用于生产环氧树脂,聚碳酸酯,有机玻璃,医药,农药等。
亦是良好溶剂,用于涂料、黏结剂、钢瓶乙炔等。
也用作稀释剂,清洗剂,萃取剂。
还是制造醋酐、双丙酮醇、氯仿、碘仿、环氧树脂、聚异戊二烯橡胶、甲基丙烯酸甲酯等的重要原料。
在无烟火药、赛璐珞、醋酸纤维、喷漆等工业中用作溶剂。
在油脂等工业中用作提取剂。
(4)危害健康危害:急性中毒主要表现为对中枢神经系统的麻醉作用,出现乏力、恶心、头痛、头晕、易激动。
重者发生呕吐、气急、痉挛,甚至昏迷。
对眼、鼻、喉有刺激性。
口服后,先有口唇、咽喉有烧灼感,后出现口干、呕吐、昏迷、酸中毒和酮症。
慢性影响:长期接触该品出现眩晕、灼烧感、咽炎、支气管炎、乏力、易激动等。
皮肤长期反复接触可致皮炎。
燃爆危险:该品极度易燃,具刺激性。
因此,合理处理空气中的丙酮不但有利于对环境的保护,而且能使杂质丙酮回收加以利用或转为部分经济利益。
第2章方案比选2.1 方案选择与对比对于许多逆流气液接触过程,填料塔和板式塔都可以适用。
因此必须根据情况进行选用。
填料塔和板式塔有许多不同点,因此要了解这些不同点来合理决定塔的选用。
(1)具有良好的操作稳定性这是保证正常生产的先决条件。
一个性能良好的塔设备,首先要保证塔设备在连续生产中的稳定操作,具有一定的操作弹性。
在允许的工艺波动范围内,设备本身的操作弹性必须大于等于生产中可能产生的工艺波动率。
(2)具有较高的生产效率和良好的产品质量该项是设备设计制造核心。
没有良好的产品质量,说明该设备不能胜任其相应的工艺操作。
当然,仅有较高的产品质量,而没有较高的生产率也是不可取的。
一个好的设计应使两者兼顾,在保证产品质量的前提下,尽可能提高产品生产效率。
(3)结构简单,制造费用低塔设备在能保证满足相应的要求的前提下,尽量采用简单的结构,降低设备材料、加工制作和日常维护的费用。
设备尽可能采用通用材料,特殊场合如遇到盐酸、加氢反应、高温高压等比较苛刻的条件下,也应尽可能采用复合材料,以便降低塔设备的制造成本。
(4)塔设备的寿命、质量与运行安全化工设备一般要求其使用寿命在10年以上。
在设计时,要能考虑选用材料的成本、设备的运行安全、制造质量和其一次性投资等之间的关系,不要一味追求高寿命,并应注意塔设备在运行使用中的安全性和操作的方便性,不能出现任何在操作中可能导致操作失误的结构和部件。