解决几何体的外接球与内切球

合集下载

立体几何中球的内切和外接问题完美版

立体几何中球的内切和外接问题完美版

S
A.
B.
C.1
D.
答案:D.
O
,即
.
C
A
M
B
7
若棱锥的顶点可构成共斜边的直角三角形,则共斜边的中点就是其外接球的球心。
例 9、已知三棱锥的四个顶点都在球 的球面上,

,,
解:



因为 所以
所以知 所以可得图形为:


,
,求球 的体积。
P

中斜边为

中斜边为
B
取斜边的中点 , 在



所以在几何体中
则这个球的表面积是( )
A.16π
B.20π
C.24π
D.32π
4
举一反三-突破提升
2.正六棱柱的底面边长为 4,高为 6,则它的外接球的表面积为
A. 20 B. 25 C. 100 D. 200
4
举一反三-突破提升
已知正三棱锥 P-ABC 的主视图和俯视图如图所 示,
则此三棱锥的外接球的表面积为 ( )
B、体积为 3
D、外接球的表面积为 16
3
1正视图
1
3 1 侧视图
俯视图
点 A、B、C、D 均在同一球面上,其中
是正三角形,
AD 平面 ABC,AD=2AB=6,则该球的体积为 ( )
(A)
(B)
(C)
(D)
平面四边形 ABCD中, AB AD CD1, BD 2, BD CD ,
将其沿对角线 BD 折成四面体 A'BCD,使平面 A' BD 平面 BCD,
∴S 表=S 侧+S 底=9

内切球和外接球常见解法

内切球和外接球常见解法

内切球和外接球常见解法内切球和外接球是在几何学中常用的概念,它们分别指的是一个几何体内切或外接于另一个几何体的球。

在实际问题中,内切球和外接球常常用于优化问题和几何问题的求解,其解法也有多种。

以下将介绍一些常见的解法。

1. 解法一:利用勾股定理求解。

内切球和外接球都可以利用勾股定理求解。

以内切球为例,我们可以考虑任意三角形ABC,设其内切球的半径为r,以I为内切圆心,则:AB + AC = 2r;AC + BC = 2r;AB + BC = 2r。

整理可得:r = [ABC] / (s + a + b + c),其中s为半周长,a、b、c为三角形ABC的三边长,[ABC]为三角形ABC的面积。

而外接球的半径r'则可用公式r'=[ABC] / (4S),其中S为三角形ABC的外接圆半径。

欧拉定理是内切球和外接球求解的另一个重要工具。

欧拉定理有两种形式,分别为:对于任意四面体,其四个顶点、三条棱的中点和六面体质心共九个点在同一球面上。

对于任意三角形ABC,其外接圆心、垂足交点、垂心、重心四点在同一圆上,且圆心为外接球心。

利用欧拉定理可以求得内切球半径:点O为六面体质心,点I为内切圆心,则IO等于内切球半径r。

点O为三角形外心,点H为垂心,点G为重心,则OG等于外接球半径r'。

对于一些优化问题,内切球和外接球也可以通过线性规划求解。

例如,对于一个凸多面体,求其内切球或外接球的半径最大值,可以将问题转化为线性规划问题,即:max rs.t. A_i * x <= b_i, i=1,2,...,mx_i >= 0, i=1,2,...,n其中,A_i是多面体的几何信息,b_i是多面体中某一点到各个面的距离,x是优化变量,r就是所需要求的内切球或外接球半径。

可以使用线性规划求解器求解其最优解。

立体几何中球的内切和外接问题完美版

立体几何中球的内切和外接问题完美版

性质
内切球的球心位于旋转体 的轴线上,且球的半径等 于旋转体半径。
应用
在几何和工程领域中,内 切球常用于研究旋转体的 体积和表面积。
旋转体的外接球
定义
旋转体的外接球是指与旋 转体外侧相切的球。
性质
外接球的球心位于旋转体 外侧,且球的半径等于旋 转体轴线到旋转体外侧的 垂直距离。
应用
在几何ቤተ መጻሕፍቲ ባይዱ工程领域中,外 接球常用于研究旋转体的 空间位置和关系。
立体几何中球的内 切和外接问题完美 版
目 录
• 球与多面体的内切和外接问题 • 球与旋转体的内切和外接问题 • 球与几何体的内切和外接问题实例 • 总结与展望
01
CATALOGUE
球与多面体的内切和外接问题
多面体的内切球
01
02
03
04
多面体的内切球是指与多面 体的所有顶点和面都相切的
球。
内切球半径的求法:设多面体的 每个面为$S_i$,内切球的半径
03
CATALOGUE
球与几何体的内切和外接问题实例
多面体内切球实例
总结词
多面体内切球是指一个球完全内切于一个多面体,且与多面体的每个面都相切 。
详细描述
多面体内切球的问题可以通过几何定理和公式来解决,例如欧拉公式和球内切 定理。例如,一个正方体的内切球就是其中心,半径等于正方体边长的一半。
旋转体外接球实例
外接球的性质:外接球与 多面体的每个顶点都相切 ,且外接球的直径等于多 面体的对角线长度。
外接球的应用:在几何、 物理和工程领域中,外接 球的概念被广泛应用于研 究多面体的性质和计算。
02
CATALOGUE
球与旋转体的内切和外接问题

球专题几何体的外接球与内切球问题(教学课件)——高中数学人教A版(2019)必修第二册

球专题几何体的外接球与内切球问题(教学课件)——高中数学人教A版(2019)必修第二册
温故知新
请同学回顾球的表面积与体积公式
(1)设球的半径为 R,则球的表面积 S=4πR 2 .
(2)设球的半径为 R,则球的体积 V= πR 3 .
例题解析
1
球的截面问题
用一个平面去截球,截面一定是圆面.
截面过球心,圆为球的大圆(如地球仪上
的赤道圈);截面不过球心,圆为球的小

例题解析
所以球的表面积
为2,求球的表面积.
解:如图所示,作出轴截面,因为ΔABC为正三角形,
练习巩固
练习巩固
练习3:已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面
得到圆M.若圆M的面积为3π,则球O的表面积等于
解析:由题意得圆 M 的半径 r=
由勾股定理得 R2=r2+
答案:16π

,解得

,又球心到圆
1
球的截面问题
练习巩固
1
球的截面问题
练习: 过球面上A,B,C三点的截面和球心的距离是球
半径的一半,且AB=BC=CA=2,则球的表面积是多少?
课堂探究
2
球与几何体外接、内切问题
解决与球有关的外接、内切问题的关键
1、确定球心位置

要!
2、构造直角三角形,确定球的半径
球与多面体
1、多面体外接球:多面体顶点均在球面上;球心到各顶点距离为R
2、多面体内切球:多面体各面均与球面相切;球心到各面距离为R
球与旋转体
旋转体的外接球与内切球:球心都在旋转轴上
球与旋转体
①长方体或正方体的外接球的球心是其体对角线的中点;
②正三棱柱的外接球的球心是上下底面中心连线的中点.
例题解析
2

内切球与外接球常见解法

内切球与外接球常见解法

内切球与外接球常见解法在立体几何的学习中,内切球与外接球问题常常让同学们感到头疼。

其实,只要掌握了常见的解法,这类问题就能迎刃而解。

下面咱们就来详细探讨一下内切球与外接球的常见解法。

首先,咱们得明白什么是内切球和外接球。

内切球就是一个几何体内部恰好能够容纳一个球,并且这个球与几何体的各个面都相切;外接球则是指一个几何体恰好能够被一个球完全包围,并且几何体的各个顶点都在这个球面上。

对于常见的几何体,比如长方体、正方体、正四面体等,都有比较固定的求解方法。

先来说说长方体的外接球。

假设长方体的长、宽、高分别为 a、b、c,那么其外接球的直径就是长方体的体对角线长度。

体对角线长度可以通过勾股定理求出,即\(\sqrt{a^2 + b^2 + c^2}\),所以外接球的半径\(R =\frac{\sqrt{a^2 + b^2 + c^2}}{2}\)。

正方体就更简单啦。

设正方体的棱长为 a,那么其外接球的直径就是正方体的面对角线长度的\(\sqrt{3}\)倍,所以外接球的半径\(R =\frac{\sqrt{3}a}{2}\)。

再看看正四面体的外接球。

正四面体比较特殊,我们可以通过一些几何关系来求解。

设正四面体的棱长为 a,先求出正四面体的高\(h =\frac{\sqrt{6}}{3}a\),然后外接球的半径\(R =\frac{\sqrt{6}}{4}a\)。

接下来,咱们说说一般多面体的外接球求解方法。

其中一种常用的方法是补形法。

比如说,如果一个三棱锥的对棱相等,那么我们可以把它补成一个长方体,然后利用长方体的外接球求解方法来解决。

还有一种方法是找球心。

球心到几何体各个顶点的距离都相等,我们可以通过一些已知条件,比如垂直关系、距离关系等来确定球心的位置。

对于内切球的求解,通常会用到体积分割的方法。

比如说,对于一个三棱锥,如果知道了它的表面积和体积,那么内切球的半径 r 就可以通过体积分割来求。

设三棱锥的体积为 V,表面积为 S,那么\(V =\frac{1}{3}Sr\),从而可以求出内切球的半径 r 。

高考数学一轮复习第六章专题六几何体的外接球与内切球问题课件

高考数学一轮复习第六章专题六几何体的外接球与内切球问题课件

)
A.4 3π
B.8π
C.12π
D.20π
解析:在底面△ABC 中,由正弦定理得底面△ABC 外接圆的
半径为
r=2sin B∠CBAC=2sin2
3π= 4
2.
直三棱柱 ABC-A1B1C1 的外接球的半径 R= ( 2)2+12= 3,
r2+A2A12=
则直三棱柱 ABC-A1B1C1 的外接球的体积为43πR3=4 3π.

λ=12时,cos〈E→B,E→G〉=2
3
2 .
∴cos〈E→B,E→G〉的最大值为2
3
2 .
∵A→C=(-1,1,0),A→F=(0,1,1), ∴E→B·A→C=E→B·A→F=0. ∴EB⊥AC,EB⊥AF. ∵AC∩AF=A,∴EB⊥平面 AFC. ∵E→B·E→G>0,∴cos〈E→B,E→G〉即为 EG 与平面 AFC 所成角
如图 6-7 所示,把四面体 S-ABC 补全为长方体 ABCD-SPMN, 其中 SA,AB,BC 为长方体中首尾相连且两两相互垂直的三条棱, 点 H 为 PM 中点.
图 6-7
∵GH∥AP,∴G,H 两点到平面 AEF 的距离相等.
设点 H 到平面 AEF 的距离为 d.
∵△APF 是边长为 2 2的等边三角形,
[例 1]已知一个圆锥底面半径为 1,母线长为 3,则该圆锥内
切球的表面积为( )
A.π
B.32π
C.2π
D.3π
解析:依题意,作出圆锥与球的轴截面,如图
6-1 所示.设球的半径为 r,易知轴截面三角形边 AB
上的高为 2 2,因为△SOD∽△SBE,所以SSOB=OBED,
即2 32-r=1r,解得 r= 22.所以圆锥内切球的表面

外接球内切球题型总结

外接球内切球题型总结

外接球内切球题型总结和内切球是高中数学中常见的几何题型。

它们看似简单,但实际上需要一定的思维和推理能力。

在这篇文章中,我将总结和内切球的题型,并提供一些解题思路和方法。

一、题型是指一个球完全地包围住一个几何体,即几何体的各个顶点都在球的表面上。

以下是一些常见的题型:1. 外接圆题型外接圆是指一个圆正好切合于一个三角形的三条边上。

在解决外接圆题型时,我们通常可以利用其性质来推导出一些关系式来简化问题。

例如,假设一个三角形的三个顶点分别是A、B、C。

若存在一个外接圆,那么圆心必然在三角形的垂直平分线的交点处。

因此,我们只需要求出垂直平分线的交点即可确定圆心的位置。

2. 题型与外接圆类似,也可以用类似的思路来解决。

我们可以通过求出几何体的垂直平分面的交线来确定球心的位置。

举个例子,假设我们有一个四面体ABCD,我们需要求出其。

首先,我们可以通过连接四面体的两个对角线来得到一个交点E。

然后,我们找出四面体的垂直平分面,分别与对角线DE、CE、BE、AE相交,这些相交点的集合就是球心所在的平面。

最后,我们通过球心与四面体任意一个顶点的距离就可以确定球的半径。

二、内切球题型内切球是指一个球正好与一个几何体的各个面相切。

以下是一些常见的内切球题型:1. 内切圆题型内切圆是指一个圆正好与一个三角形的三边内切。

解决内切圆题型时,我们通常可以利用其性质来推导出一些关系式。

例如,假设我们有一个三角形ABC,其内切圆的半径为r,圆心为O。

根据内切圆的性质,我们可以知道三角形的三个角都是圆心O的切点。

因此,我们可以利用三角函数的关系式来求解r。

2. 内切球题型内切球题型相对来说会更加复杂一些。

我们需要找到几何体的内切面以及球心的位置。

举个例子,假设我们有一个四面体ABCD的内切球。

我们可以通过连接四面体相对面的交点的连线找到内切球的球心。

然后,我们继续找到相应的内切面,通过求解距离或者长度的关系还可以进一步确定内切球的半径。

外接球和内切球的方法总结

外接球和内切球的方法总结

外接球和内切球的方法总结一、前言在数学中,球是一个非常重要的几何概念。

它的应用非常广泛,例如在物理学、工程学和计算机图形学中都有着重要的应用。

其中,外接球和内切球是两种常见的球,本文将对它们的求法进行总结。

二、外接球1. 定义外接球是指一个几何体(如三角形或四面体)最小的球,能够包含住这个几何体。

例如,在三角形ABC中,外接圆就是能够通过三个点A、B、C的圆。

2. 求法(1)对于三角形ABC:a. 首先求出三角形ABC的垂心H(即三条高线交点),并求出AH、BH、CH的长度。

b. 然后根据勾股定理得到$\cos A=\dfrac{b^2+c^2-a^2}{2bc}$等式。

c. 最后根据公式$R=\dfrac{abc}{4\Delta}$计算出外接圆半径R。

(2)对于四面体ABCD:a. 首先求出四面体ABCD所在平面的法向量N。

b. 然后求出四个顶点A、B、C、D到平面N的距离hA, hB, hC, hD。

c. 最后根据公式$R=\dfrac{hA+hB+hC+hD}{4}$计算出外接球半径R。

三、内切球1. 定义内切球是指一个几何体(如三角形或四面体)最大的球,能够被这个几何体所包含。

例如,在三角形ABC中,内切圆就是与三边相切的圆。

2. 求法(1)对于三角形ABC:a. 首先求出三角形ABC的半周长s=$\dfrac{a+b+c}{2}$。

b. 然后根据海伦公式$\Delta=\sqrt{s(s-a)(s-b)(s-c)}$计算出三角形面积$\Delta$。

c. 最后根据公式$r=\dfrac{\Delta}{s}$计算出内切圆半径r。

(2)对于四面体ABCD:a. 首先求出四面体ABCD所在平面的法向量N。

b. 然后求出四个顶点A、B、C、D到平面N的距离hA, hB, hC, hD。

c. 最后根据公式$r=\dfrac{3V}{4\pi(hA+hB+hC+hD)}$计算出内切球半径r,其中V为四面体体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解决几何体的外接球与内切球,就这6个题型!
一、外接球的问题
简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径尺或确定球心0的位置问题,其中球心的确定是关键.
(一)由球的定义确定球心
在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.
由上述性质,可以得到确定简单多面体外接球的球心的如下结论.
结论1:正方体或长方体的外接球的球心其体对角线的中点.
结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.
结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.
结论4:正棱锥的外接球的球心在其高上,具体位置可通过计算找到.
结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.(二)构造正方体或长方体确定球心
长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体
或长方体的途径与方法.
途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造
正方体.
途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体.途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体.
途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.
(三)由性质确定球心
利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.
二、内切球问题
若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。

2、正多面体的内切球和外接球的球心重合。

3、正棱锥的内切球和外接球球心都在高线上,但不重合。

4、基本方法:构造三角形利用相似比和勾股定理。

5、体积分割是求内切球半径的通用做法。

相关文档
最新文档