难点突破:立体图形的外接球与内切球问题

合集下载

如何求解立体几何形的内切球和外接球

如何求解立体几何形的内切球和外接球

如何求解立体几何形的内切球和外接球立体几何形的内切球和外接球是数学和几何学中常见的概念。

内切球是指一个球体正好与该立体几何形相切于内部的球,而外接球则是指一个球体正好与该几何形相切于外部的球。

解决这个问题需要一些几何知识和计算技巧。

一、立方体首先,让我们以立方体为例,来讨论如何求解其内切球和外接球。

立方体是一个六个面都是正方形的立体,所有的边长相等。

立方体的内切球和外接球的半径可以通过简单的计算得到。

1. 内切球内切球的半径等于立方体的半边长。

设立方体的边长为a,则内切球的半径r等于a/2。

这是因为内切球的半径与立方体的棱长之比为1:2。

2. 外接球外接球是一个球体,它与立方体的八个顶点相切。

设立方体的边长为a,则外接球的半径R等于立方体对角线的一半。

根据勾股定理,立方体的对角线的长度d等于a√3。

因此,外接球的半径R等于d/2,即R等于a√3/2。

二、圆柱体对于圆柱体来说,内切球和外接球的求解稍微复杂一些。

1. 内切球内切球的半径等于圆柱体的半径。

设圆柱的半径为r,高度为h,则内切球的半径r'等于r。

2. 外接球外接球是一个球体,它与圆柱体的底面相切。

设圆柱的半径为r,高度为h,则外接球的半径R等于圆柱体的斜高。

根据勾股定理,圆柱体的斜高等于√(h^2 + r^2)。

因此,外接球的半径R等于√(h^2 + r^2)。

三、球体球体的内切球和外接球的求解相对简单。

1. 内切球球体的内切球的半径等于球体的半径。

设球体的半径为R,内切球的半径r等于R。

2. 外接球外接球是一个球体,它与球体的表面相切。

设球体的半径为R,则外接球的半径R'等于2R。

结论:通过以上讨论,我们可以得出以下结论:1. 对于立方体来说,内切球的半径等于边长的一半,外接球的半径等于对角线长的一半。

2. 对于圆柱体来说,内切球的半径等于半径,外接球的半径等于斜高。

3. 对于球体来说,内切球的半径等于半径,外接球的半径等于半径的两倍。

高考必考重难点:立体几何的球(外切、内接)最核心方法汇总(教师版)

高考必考重难点:立体几何的球(外切、内接)最核心方法汇总(教师版)

内切球与外接球半径求法思路破解(方法汇总) 先砍10刀试试! (9).........1 .已知一个正方体的所有顶点都在一个球面上,若球的体积为9-,则正方体的棱长为22 .平面 截千^。

的球面所得圆的半径为 1,球心O 到平面 的距离为J2 ,则此球的体积 为3 .已知底面边长为1,侧棱长为 J 2的正四棱柱的各顶点均在同一个球面上,则该球的体积为___4 .若所有侧棱长均为 1的正四面体的内切球与外接球半径分别为 r.R,求它们的比值为5 .已知正六棱柱的12个顶点都在一个半径为 3的球面上,当正六棱柱的底面边长为 J 6时, 其高的值为6 .已知正四棱锥的侧棱与底面的边长都为 3/2,则这个四棱锥的外接球的表面积为47 . 一个二梭柱的底面为正二角形,且侧梭与底面垂直,一个体积为 -------- 的球体与梭柱的所3有面都相切,那么这个三棱柱的表面积为8 .在直三棱柱ABC AB 1C 1中,AB 4, AC 6,A -,AA 1 4,则直三棱柱 3ABC AB 1c l 的外接球的表面积 。

9 .正四棱锥S ABCD 的底面边长和各侧棱长都为 J2,点S 、A B 、C 、D 都在同一球 面上,则此球的体积为.的表面积10.正四棱锥OABCD 的体积殳反2 ,底面边长为 J 3,则以。

为球心,为OA 半径的球如果上述10道题你做的很不顺畅,那么下边的这些总结,可要收好了!有关于内切球、外接球的问题,应该说是一个比较困难的问题,几乎所有同学都会感到无从下手,这是正常的,因为这类问题需要强有力的想象力,同时方法性极强。

我们就这部分问题,尽量总结全面。

1. 内切球和外接球的基本定义;立体图形的内切球是指:与该立体图形的所有面都相切的球,注意是与所有面都相切,因此,很多立体图形是不存在内切球的。

基本性质是:球心到所有面的距离相等,且为内切球半径。

立体图形的外接球是指:立体图形的所有顶点都在球面上。

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。

1. 求立方体的外接球和内切球的半径。

外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。

2. 求正方体的外接球和内切球的半径。

外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。

3. 求圆柱体的外接球和内切球的半径。

外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。

4. 求圆锥的外接球和内切球的半径。

外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。

5. 求球的外接球和内切球的半径。

外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。

6. 求棱锥的外接球和内切球的半径。

外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。

7. 求棱柱的外接球和内切球的半径。

外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。

8. 求四面体的外接球和内切球的半径。

外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。

9. 求正六面体的外接球和内切球的半径。

外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。

10. 求正八面体的外接球和内切球的半径。

外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。

以上是关于立体几何中外接球和内切球的十个常见题型及其解答。

希望能对你有所帮助。

外接球和内切球问题总结归纳

外接球和内切球问题总结归纳

外接球和内切球问题总结归纳外接球和内切球问题总结归纳在几何学中,外接球和内切球问题是一个重要的概念。

它们不仅在数学领域有着重要的应用,同时也被广泛运用在物理学、工程学以及计算机科学等领域。

本文将对外接球和内切球问题进行深入探讨,从基础概念到应用实例,帮助读者全面理解这一主题。

一、外接球和内切球的定义1. 外接球外接球是指一个球与给定的多边形的所有顶点相切于球面的情况。

在数学中,外接球常常与三角形、四边形等几何图形相关联,其特点是与多边形的各个顶点相切,并且球心通常位于多边形的某个重要位置。

2. 内切球内切球则是指一个球完全被给定的多边形所包围,且球与多边形的边界相切。

在实际应用中,内切球往往能够最大化地利用多边形所包围的空间,因此在工程设计和优化问题中具有重要意义。

二、外接球和内切球的性质1. 外接球的性质外接球的半径通常与多边形的边或者角有着特定的关系。

以三角形为例,外接圆的半径等于三角形三条边的乘积除以其周长的两倍。

这一性质在计算三角形的外接圆时具有重要意义,同时也为几何问题的解决提供了基础。

2. 内切球的性质内切球的半径与多边形的边界有着紧密的联系。

以正方形为例,内切圆的半径等于正方形的边长的一半。

这一性质在优化问题中有着重要的应用,能够帮助设计者最大化地利用空间,提高效率和节约成本。

三、外接球和内切球的应用1. 工程设计外接球和内切球在工程设计中有着广泛的应用。

例如在建筑设计中,内切球可以帮助设计者合理利用建筑空间,提高使用效率;在机械设计中,外接球则可以帮助设计者确定零部件的匹配度和适用性。

2. 计算机科学外接球和内切球也在计算机科学领域有着重要的应用。

例如在计算机图形学中,外接球和内切球经常被用来描述物体的外形和几何特征,同时也可以用于物体的碰撞检测和三维建模。

个人观点和总结外接球和内切球作为一个基础的数学概念,在几何学、工程学和计算机科学等领域有着重要的应用。

通过对外接球和内切球的定义、性质和应用进行深入探讨,我们可以更好地理解其在实际问题中的作用和意义,进一步拓展其在更多领域的应用。

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型墙角模型是指三条线段两两垂直的几何体,通过公式(2R) = a + b + c,即2R = a^2 + b^2 + c^2,可以求出其外接球半径R。

例1:1)已知顶点都在同一球面上的正四棱柱的高为4,体积为16,求该球的表面积。

解:由V = ah = 16,得a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π,答案为C。

2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,求其外接球的表面积。

解:由2R = a + b + c = 3 + 3 + 3 = 9,得R = 9/4,S =4πR^2 = 9π。

3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA = 23,求正三棱锥S-ABC外接球的表面积。

解:由墙角模型的特点可知,正三棱锥的对棱互垂直。

连接AB、BC的中点D、E,连接AE、CD,交于H,则H是底面正三角形ABC的中心。

由AM⊥MN,SB//MN,可得AM⊥SB,AC⊥SB,故SB⊥平面SAC,SB⊥SA,SB⊥SC,即SB⊥SA,BC⊥SA,故SA⊥平面SBC,SA⊥SC。

因此,三棱锥S-ABC的三棱条侧棱两两互相垂直,由2R^2 = 23^2 + 23^2 + 23^2 = 36,得R^2 = 9,S = 36π。

类型二、棱台模型棱台模型是指上底面和下底面都是正多边形,且两底面中心连线与侧棱垂直的几何体。

通过勾股定理和相似三角形,可以求出其外接球半径R和内切球半径r。

例2:1)已知棱台的上底面和下底面都是正三角形,上底边长为3,下底边长为6,侧棱长为5,求其外接球半径R和内切球半径r。

解:由勾股定理可得棱台的高为4√3.设外接球半径为R,内切球半径为r,则有R/r = (a + b + c)/(a + b - c) = (3 + 6 +5)/(3 + 6 - 5) = 7,解得R = 7r。

立体几何中内切球和外接球问题

立体几何中内切球和外接球问题

立体几何中内切球和外接球问题题目:探索立体几何中的内切球和外接球问题在立体几何中,内切球和外接球问题是一个引人深思的话题。

通过对这个主题的深入探讨,我们可以更好地理解立体几何的原理和性质。

本文将围绕内切球和外接球问题展开讨论,从基本概念到数学推导,深入剖析这一有趣而重要的话题。

1. 内切球和外接球的定义在立体几何中,内切球和外接球分别是指一个球体在一个立体图形内部与其接触,以及一个球体在一个立体图形外部与其接触。

这两个概念可以应用在各种几何图形中,如圆柱体、圆锥体甚至更为复杂的多面体。

内切球和外接球不仅在几何形状中具有重要意义,还在工程学、艺术设计等领域有着广泛的应用价值。

2. 内切球和外接球的性质内切球和外接球在几何中具有许多有趣的性质。

内切球和外接球的半径之比有一定的规律,可以通过数学推导得出。

内切球和外接球的位置关系也有一定的特点,可以通过几何推理进行证明。

这些性质的深入理解有助于我们更好地应用立体几何知识解决实际问题。

3. 内切球和外接球的数学推导从数学角度来看,内切球和外接球问题涉及到许多重要的数学定理和方法。

通过数学推导,我们可以得到内切球和外接球的半径之比、位置关系等具体数学表达式。

这些推导过程需要运用到圆、球体的性质,以及立体几何的相关知识,是一个不可或缺的数学推理过程。

4. 个人观点和理解在我看来,内切球和外接球问题是立体几何中的一个精彩而复杂的主题。

通过对这个问题的探讨,我深刻地感受到数学的美妙和奥妙。

数学不仅是一门实用的科学,更是一个充满乐趣和挑战的学科。

通过不断地学习和探索,我们可以更好地理解立体几何的原理和应用,为我们的工程、设计和科学研究提供有力的支持。

内切球和外接球问题是立体几何中的一个重要而有趣的话题。

通过深入探讨这个主题,我们可以更好地理解立体几何的原理和应用,为我们的学习和工作带来更多的乐趣和启发。

希望本文的内容能够对您有所帮助,也希望您能够对立体几何有着更深入的理解和探索。

高中数学立体几何中的外接球与内切球问题

高中数学立体几何中的外接球与内切球问题

高中数学立体几何中的外接球与内切球问题
在高中数学的立体几何中,外接球与内切球问题是一个重要的探讨点。

这个问
题涉及到如何在一个给定的立体图形中,找到一个外切于该图形的球和一个内切于该图形的球。

首先,让我们来看外接球问题。

在立体几何中,给定一个多面体,如正方体或
正四面体,我们想找到一个球,使得该球恰好外接于该多面体的每一个面上。

所谓外接,即球与每一个面都有且只有一个公共点,这个点是每个面的外接圆心。

以正方体为例,我们可以观察到正方体的每一个面都是正方形,而正方形的外
接圆心恰好位于该正方形的中心点。

因此,我们可以得出结论:正方体的外接球的圆心与该正方体的每个面的外接圆心重合。

接下来,让我们来看内切球问题。

在立体几何中,给定一个多面体,如正方体
或正四面体,我们想找到一个球,使得该球恰好内切于该多面体的每一个面上。

所谓内切,即球与每一个面都有且只有一个公共点,这个点是每个面的内切圆心。

以正方体为例,我们可以观察到正方体的每一个面都是正方形,而正方形的内
切圆心恰好位于该正方形的中心点。

因此,我们可以得出结论:正方体的内切球的圆心与该正方体的每个面的内切圆心重合。

总结起来,对于任何一个给定的多面体,我们可以找到一个外接球和一个内切球。

外接球的圆心与每个面的外接圆心重合,而内切球的圆心与每个面的内切圆心重合。

这个问题在高中数学的立体几何中十分重要,理解了外接球和内切球的性质,可以帮助我们更好地理解和解决相关的几何问题。

立体几何中的外接球内切球棱切球问题

立体几何中的外接球内切球棱切球问题

立体几何中的外接球内切球棱切球问题1. 概述在立体几何中,外接球、内切球和棱切球是常见的几何问题。

它们在工程、建筑、数学等领域都有重要的应用。

本文将围绕外接球、内切球和棱切球展开讨论,探究它们的性质和相关问题。

2. 外接球的定义和性质外接球是指一个球与一个或多个其他物体外接,外接球的半径等于所外接物体相应部分的长度,在立体几何中有着重要的应用。

外接球的性质1)外接球的圆心在被外接物体向外伸出的法线上。

2)外接球的半径等于被外接物体的相应部分的长度。

3)对于凸体而言,外接球存在且唯一。

3. 内切球的定义和性质内切球是指一个球恰好与另一个物体相切,内切球在立体几何中也有着重要的应用。

内切球的性质1)内切球的圆心在被内切物体向内伸出的法线上。

2)对于凸体而言,内切球存在且唯一。

3)内切球在不同物体中的位置可能不同,但其存在性是唯一的。

4. 棱切球的定义和性质棱切球是指一个球与多个物体之间棱切的情况,在立体几何中也有着重要的应用。

棱切球的性质1)棱切球的圆心在被棱切物体所在的平面上。

2)对于凸体而言,棱切球存在且唯一。

3)棱切球在不同物体中的位置可能不同,但其存在性是唯一的。

5. 实际应用举例外接、内切和棱切球在实际应用中有着广泛的应用。

比如在建筑工程中,常常需要计算建筑物的外接球、内切球和棱切球,以确定其结构和稳定性。

在数学建模中,外接、内切和棱切球也常常出现,用于解决各种数学问题。

6. 结论外接球、内切球和棱切球是立体几何中重要的概念,它们的性质和应用涉及到广泛的领域。

对这些几何问题的深入研究和应用可以帮助我们更好地理解立体几何的性质,并且为实际问题的解决提供理论支持。

希望本文能够帮助读者更好地理解外接球、内切球和棱切球的相关问题,并且激发更多人对立体几何的兴趣和研究。

外接球、内切球和棱切球作为立体几何中的重要概念,其性质和应用不仅仅局限于几何学。

它们的相关问题还涉及到数学建模、工程设计、建筑结构等领域,对于实际问题的解决提供了理论支持和指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*创作编号:GB8878185555334563BT9125XW*创作者:凤呜大王*2019届高三数学第一轮复习教学案18:难点突破:立体图形的外接球与内切球问题一、基础知识与概念:1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆.大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心.2.球心和截面圆心的连线垂直于截面.3.球心到截面的距离d与球半径R及截面圆半径r的关系:222R d r=+.4.几何体的外接球:几何体的顶点都在球面上;几何体的内切球:球与几何体的各个面都相切.二、多面体的外接球(球包体)模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱)球包直柱球径公式:222hR r⎛⎫=+⎪⎝⎭,球包正方体球包长方体球包四棱柱球包三棱柱四棱锥r速算模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线)实例:正棱锥例:1.(2017年全国卷III第8题)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.34πC.2πD.4π【解析】模式辨识:“球包体”中的“垂底侧边棱(母线)”类型,1h=,1R=,底面半径为r,则由222hR r⎛⎫=+⎪⎝⎭222213124r r⎛⎫=+⇒=⎪⎝⎭,234V r hππ==.2.(2010年全国新课标卷第10题)设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为A .2a πB .273a πC .2113a πD .25a π【解析】“球包体”中的“垂底侧边棱”类型,h a =,r a =,222222724312h a a a R r ⎛⎫=+=+=⎪⎝⎭, 所以该球的表面积2227744123a a S R ππ==⨯=.答案B . 3.(2014年全国大纲卷第8题)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为A .814πB .16πC .9πD .274π【解析】模式辨识:“球包体”中的“顶点连心锥”,4h =,r ==,则221629284h r R h ++===,所以2818144164S R πππ==⨯=,答案:A . 4.(2013年全国卷I 第6题)如图,容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 A .35003cm π B .38663cm πC .313723cm πD .320483cm π创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*【解析】设水面与球的接触点(切点)为P ,球心为O ,则PO 垂直于正方体的上表面,依题意P 到正方体上表面的距离为2h =,球与正方体上表面相交圆的半径4r =,有:()2222R r R -+=,2454r R +⇒==,所以球的体积3450033V R ππ==. 三、定心大法:球心在过截面圆的圆心且垂直于截面圆所在平面的直线上.两圆定心法:如下图,过两个截面圆的圆心分别作相应截面圆的垂线,由两垂线的交点确定圆心.例2:1.已知边长为23的棱形ABCD 中,60∠=︒,现沿对角线BD 折起,使得二面角A BD C --为120︒,此时点A ,B ,C ,D 在同一个球面上,则该球的表面积为( )A .20πB .24πC .28πD .32π2.在矩形ABCD 中,4AB =,3BC =,沿AC 将矩形折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为___________.3.在边长为1的菱形ABCD 中,60BAD ∠=︒,沿对角线将菱形折成直二面角A BD C --,则三棱锥A BCD -的外接球的表面积为_____________.四、正多面体的内切球(体中球)锥体的内切球:R=____________.圆锥的内切球:R=边长为a的正方体:2aR=等边圆柱(母线a):R=2a.边长a的正八面体R=五、正多面体的“切边球”(与所有的棱都相切的球)例3:1.一个球的外切正方体的全面积为6,则球的体积为_________.2.某圆锥的截面为边长为2的正三角形,则该圆锥的内切球的表面积为_______.3.(2016年全国卷III第10题)在封闭的直三棱柱111ABC A B C-内有一个体积为V的球,若AB BC⊥,6AB=,8BC=,13AA=,则V的最大值是A.4πB.92πC.6πD.323π【解析】考查直三棱柱中截面的内切圆为球的大圆的情景,有()13681068222AAR R++=⨯⇒=>=,故当球半径为32时球的体积最大为344273382V Rπππ9==⨯=.答案B.练习:1.(2015年全国卷II第9题)已知A,B是球O的球面上两点,90AOB∠=︒,C为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为A .36πB .64πC .144πD .256π2.(2016年福建漳州市5月质检)三棱锥S ABC -中,SB ⊥平面ABC ,5SB =ABC ∆3S ABC -的外接球的表面积为()A .3πB .5πC .9πD .12π3.(2014年湖南卷)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( ) A .1B .2C .3D .44.(2013年辽宁卷理10)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为()A .3172B .10C .132D .3105.(2012年全国新课标卷第11题)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为A .26B .36C .23D .226.在正三棱锥P ABC -中,3PA PB PC ===PA 与底面ABC 所成的角为60︒,则该三棱锥外接球的体积为( )A .πB .3πC .4πD .43π7.已知底面边长为12的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A .323πB .4πC .2πD .43π 8.(2017年福建省质检).空间四边形ABCD 的四个顶点都在同一球面上,E 、F 分别是AB 、CD 的中点,且,EF AB EF CD ⊥⊥,若8,4AB CD EF ===,则该球的半径等于A .216B .6528C .652D 659.若三棱锥P ABC -的最长的棱2PA =,且各面均为直角三角形,则此三棱锥的外接球的体积是__________.10.(2008年高考浙江卷理14)已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积为____________.11.(2016年东北三省三校联考)三棱柱111ABC A B C -各顶点都在一个球面上,侧棱与底面垂直,120ACB ∠=︒,23CA CB ==,14AA =,则这个球的表面积为____________.12.在三棱柱111ABC A B C -中,侧棱1AA 垂直底面,90ACB ∠=︒,30BAC ∠=︒,1BC =,且三棱柱111ABC A B C -的体积为3,则三棱柱111ABC A B C -的外接球表面积为_________.13.在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是____________.14.在三棱锥A BCD -中,2AB CD ==,5AD BC ==7AC BD ==三棱锥A BCD -外接球的表面积为__________.15.(2017年天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.16.(2017年江苏卷)如图,在圆柱12O O 内有一个球,该球与圆柱的上、下底面及母线均相切,记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_____________.创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*。

相关文档
最新文档