高中数学§建立概率模型课件

合集下载

高一数学北师大版必修3第三章3.2.2建立概率模型

高一数学北师大版必修3第三章3.2.2建立概率模型

安边中学高一年级下学期数学学科导学稿执笔人:邹英总第课时备课组长签字:包级领导签字:学生:上课时间:7周集体备课个人空间一、课题:3.2.2.建立概率模型二、学习目标1.理解从不同的角度考虑可以建立不同的概率模型;2.能够建立概率模型来解决简单的实际问题。

三、教学过程【自主预习】阅读教材134-137页一般地,在解决实际问题中的古典概型时,对同一个古典概型,把什么看作一个________(即一次试验的结果)是人为规定的,也就是从不同的______去考虑,只要满足以下两点:①试验中所有可能出现的基本事件只有______个,每次试验只出现其中的一个结果;②每个试验结果出现的可能性______.就可以将问题转化为不同的________来解决,所得可能结果越____,那么问题的解决就变得越______.【合作探究】合作探究、概率模型的构建例1、任取一个正整数,求该数的平方的末位数字是1的概率。

合作探究、构建不同的概率模型解决问题例2、袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任意取出两球,求下列事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球一个是白球,另一个是红球.- 1 -【检测训练】1、一个口袋中有形状、大小都相同的6个小球,其中有2个白球、2个红球和2个黄球。

从中一次随机摸出2个球,试求:(1)2个球都是红球的概率;(2)2个球同色的概率;(3)“恰有1个球是白球的概率”是“2个球都是白球的概率”的多少倍?2、在分别写有1,2,…,9的9张卡片中任意抽取一张,则抽得卡片上的数字能被3整除的概率是( ).A.19B.16C.23D.133、有红心1,2,3和黑桃4,5这5张扑克,将牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红心的概率为( ).A.35B.25C.15D.454、甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( ).A.12B.13C.14D.155、20名高一学生,25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是______,抽到高二学生的概率是______,抽到高三学生的概率是______.6、100个人依次抓阄,决定1件奖品的归属,求最后一个人中奖的概率.反思栏- 2 -- 3 -。

3.2.2建立概率模型 课件(北师大版必修3)

3.2.2建立概率模型 课件(北师大版必修3)

2.连续抛掷3枚硬币,观察落地后这3枚硬币出现正面还是反面. (1)写出这个试验的基本事件; (2)求“至少有两枚正面向上”这一事件的概率; (3)求“恰有一枚正面向上”这一事件的概率.
知能巩固提高
一、选择题(每题5分,共15分)
1.甲、乙、丙三名同学站成一排,甲站在中间的概率是
( )
1 2 (A)1 (B) (C)1 (D) 3 3 2 6 【解析】选B.就甲的位置而言有三种可能,甲在中间只有一种,
片,若从两盒中各任取一张卡片,求所取卡片上的两数之和
等于6的概率. 甲的解法:因为两数之和可为0,1,2,„,10,共包含11个基本 1 事件,所以所求概率为 . 11 乙的解法:从两盒中各任取一张卡片,共有36种取法,其中
和为6的情况共有5种:(1,5)(5,1),(2,4),(4,2),(3,3), 5 因此所求概率为 . 36 试问哪一种解法正确?为什么?
二、填空题(每题5分,共10分)
4.从集合{2,4,6,8}中任取两个数,分别作为对数的底数和真
数,则形成的对数值大于2的概率为__________.
【解析】从集合中任取两个数的所有结果为
共12种,而形成的对数大于2的有两个log26和log28,故其概 2 1 率为 . 12 6 1 答案: 6
故其概率为
1 . 3
2.一栋楼有6单元,小王与小李都住在此栋楼内,则他们住在 此楼同一单元的概率为( )
(A)1 (B) 1 (C) 1 (D) 1 2 12 6 36 【解析】选C.由题知将小王和小李所住单元号记为(x,y)可 知有36种结果,即n=36,住在同一单元有6种,即m=6,故其概 率为
课程目标设置
主题探究导学
典型例题精析

数学建模—概率模型 ppt课件

数学建模—概率模型 ppt课件

数学建模—概率模型
v3统计图(examp05-03) v箱线图(判断对称性) v频率直方图(最常用) v经验分布函数图 v正态概率图(+越集中在参考线附近,越近似正态分布)
v4分布检验 vChi2gof,jbtest,kstest,kstest2,lillietest等 vChi2gof卡方拟合优度检验,检验样本是否符合指定分布。它把观测数据分 组,每组包含5个以上的观测值,根据分组结果计算卡方统计量,当样本够 多时,该统计量近似服从卡方分布。 vjbtest,利用峰度和偏度检验。
3 单因素一元方差分析步骤
( example07_01.m 判断不同院系成绩均值是否相等)
数据预处理
正态性检验 lillietest (p>0.05接受)
方差齐性检验 vartestn (p>0.05接受)
方差分析
anoval (p=0 有显著差别)
多重比较:两两比较,找出存在显著差异的学院,multcompare
构造观测值矩阵,每一列对应因素A的一个水平,每一行对应因素B的一个
水平
方差分析
anova2 得到方差分析表
方差分析表把数据差异分为三部分(或四部分): 列均值之间的差异引起的变差 列均值之间的差异引起的变差 行列交互作用引起的变差 (随机误差) 后续可以进行多重比较,multcompare,找出哪种组合是最优的
Computer Science | Software Engineering & Information System
数学建模—概率模型
目的:用一个函数近似表示变量之间的不确定关系。 1 一元线性回归分析 做出散点图,估计趋势;计算相关系数矩阵; regress函数,可以得到回归系数和置信区间,做残差分析,剔除异常点,重 新做回归分析 Regstats 多重线性或广义回归分析,它带有交互式图形用户界面,可以处 理带有常数项、线性项、交叉项、平方项等模型 robustfit函数:稳健回归(加权最小二乘法)

概率的两种模型(高三数学精品课件)

概率的两种模型(高三数学精品课件)

19世纪法国著名数学家拉普拉斯说:“对于生活中的大 部分,最重要的问题实际上只是概率问题。你可以说几 乎我们所掌握的所有知识都是不确定的,只有一小部分 我们能确定地了解。甚至数学科学本身,归纳法、类推 法和发现真理的首要手段都是建立在概率论的基础之上。 因此,整个人类知识系统是与这一理论相联系的……”
5
题型一 古典概型问题
设计游戏1:
一个不透明的箱子中有6个除了颜色不同无其他区别的小球, 其中4个蓝球,2位红球。
试设计一时训练 1:
9.在长为 1 的线段上任取两点,则这两点之间的距离小于 1 的概率为( ) 2
A、 1 B、 1 C、 3 D、 7
题型三 古典概型与几何概型的综合问题
已知关于x的一元二次方程9x2+6ax-b2+4=0,a,b∈R. (1)若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数 中任取的一个数,求已知方程有两个不相等实根的概率;
(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任 取的一个数,求已知方程有实数根的概率.
第 36 练 概率的两类模型
火眼真睛(区分古典概型和几何概型)
1、古典概型(classical probability model)
一次试验中可能出现的每一 个基本结果称为基本事件
(elementary event).
(1)所有基本事件只有有限个; (2)每个基本事件的发生都是等可能的。
满足上面两个条件的随机实验的概率模 型称为古典概型
2、古典概型的概率计算公式
P( A) m n
其中n是试验中所有基本事件的个数,m是事件A 包含的基本事件的个数(m n).
利用几何概型求概率:
1.几何概型适用条件: (1)基本事件有无限多个(无限性); (2)事件都是等可能发生的(等可能性). 2.适用情况:

数学建模-概率模型

数学建模-概率模型

确定性现象的特征
条件完全决定结果
随机现象
在一定条件下可能出现也可能不出现的现象.
实例1 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况.
结果有可能出现正面也可能出现反面.
实例2 明天的天气可
特征: 条件不能完全决定结果
能是晴 , 也可能是多云
或雨.
说明 1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性, 但在大量试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科. 如何来研究随机现象?
P( A)
m n
A
所包含样本点的个数 样本点总数
.
古典概型的基本模型:摸球模型
(1) 无放回地摸球
(2) 有放回地摸球
例1 某接待站在某一周曾接待过 12次来访,已知 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的.
解 假设接待站的接待时间没有
规定,且各来访者在一周的任一天
0.0000003 .
小概率事件在实际中几乎是不可能发生的 , 从 而可知接待时间是有规定的.
例2 假设每人的生日在一年 365 天中的任一天 是等可能的 , 即都等于 1/365 ,求 64 个人中至少 有2人生日相同的概率.
解 64 个人生日各不相同的概率为
p1
365
364
(365 36564
2. 假设遗传基因是由两个基因A和B控制的,则有 三种可能基因型:AA、AB和BB。
例如:金鱼草是由两个基因决定它开花的颜色,AA 型开红花,AB型开粉花,而BB型开白花。这里AA型 和AB型表示了同一外部特征,此时可以认为基因A 支配了基因B,也可以说基因B对基因A是隐性的。

高一数学几何概率模型说课课件

高一数学几何概率模型说课课件

复习回顾 新课铺垫
创设情景 引入新课
归纳探索 形成概念
例题分析 推广应用
回顾小结 提高认识
布置作业 能力升华
问题1:家润多商场进行有奖销售活动,购物满500元可 问题 :家润多商场进行有奖销售活动,购物满 元可
设计意图:通过试验发现指针可能停在转 设计意图: 1)若你是商家,你怎样设定电视机中奖区域? 若你是商家, 若你是商家 你怎样设定电视机中奖区域? 盘的任何位置, 盘的任何位置,从而得出基本事件有无限 个且等可能, 你希望抽到什么? 个且等可能, 你希望抽到什么?抽到每 2)你若作为顾客,并发现电视机中奖概率与扇 )你若作为顾客, 一种奖品的概率相同吗?为什么?若转盘改成 为什么? 一种奖品的概率相同吗,探究出结论。让学生初 形圆弧长度有关,探究出结论。 形圆弧长度有关 为什么 若转盘改成2 呢? 步感受几何概型的特点, 步感受几何概型的特点,并激发学生探究 热情。 热情。 3)抽中电视机的概率能用古典概型的方法来 )
数学3(必修) 数学3(必修) 3(必修
第三章概率
几何概型
长沙市稻田中学 孙密莲
一.教学内容的分析
几 何 概 型
二.教学目标的确定 三.教法学法的选择 四.教学过程的设计 五.教学板书的设计 六.教学评价的说明
一 教 学 内 容 的 分 析
1.从教材的地位和作用来看 从教材的地位和作用来看
本课选自人教A版(必修3)第三章《概率》 本课选自人教 版 必修 )第三章《概率》 中3.3几何概型的第一课时,是在学习古典概型情 几何概型的第一课时, 几何概型的第一课时 况下教学的。它是对古典概型内容的进一步拓展, 况下教学的。它是对古典概型内容的进一步拓展, 使等可能事件的概念从有限向无限延伸,此节内 使等可能事件的概念从有限向无限延伸, 容也是新课本中增加的,反映了《新课标》对数 容也是新课本中增加的,反映了《新课标》 学知识在实际应用方面的重视.同时也暗示了它 学知识在实际应用方面的重视. 在概率论中的重要作用,以及在高考中的题型的 在概率论中的重要作用, 转变。 转变。

3.2.2建立概率模型课件ppt(北师大版必修三)

3.2.2建立概率模型课件ppt(北师大版必修三)
(2)解决古典概型的问题的关键是分清基本事件的个数与 事件A中所包含的结果数,因此要注意以下三个方面:① 本试验是否具有等可能性;②本试验的基本事件有多少 个;③事件A是什么.只有清楚了这三方面的问题,解题 时才不易出错.
课前探究学习 课堂讲练互动
(3)在计算基本事件的总数时,由于分不清“有序”和“无序”,

随机选取两个小球,记事件A为“两个小球上的数为
相邻整数”,可能结果为(1,2),(2,3),(3,4),(4,5), (5,6),(6,7),(7,8),(8,9),(9,10),(2,1),(3, 2),(4,3),(5,4),(6,5),(7,6),(8,7),(9,8), (10,9)共18种.
2.2 建立概率模型
【课标要求】 1.根据需要会建立合理的概率模型,解决一些实际问 题. 2.理解概率模型的特点及应用. 【核心扫描】 1.会利用所学知识建立合理的概率模型.(重点) 2.本节常与统计知识结合命题.
3.古典概率模型的实际应用.(难点)
课前探究学习
课堂讲互动
自学导引
建立概率模型 1.
(1)在建立概率模型时,把什么看作是一个基本事件(即一 个试验结果)是人为规定的.我们只要求:每次试验有 一个并且只有 _____________一个基本事件出现.只要基本事件的个数 等可能的 有限的 是_______,并且它们的发生是_________,就是一个古典
概型.
(2)从不同的角度去考虑一个实际问题,可以将问题转化为 古典概型 古典概型 不同的_________来解决,而所得到的_________的所有可 越简单 能结果越少,问题的解决就变得_______.
课前探究学习 课堂讲练互动
题型二
建立概率模型

《建立概率模型》课件(北师大版必修3)

《建立概率模型》课件(北师大版必修3)

问题导入:
1.单选题是标准化考试中常用的题型. 如果考生不会做,他从4个备选答案中 随机地选择一个作答,他答对的概率 1/4 是____.
2. 从集合 {1,2,3,4,5} 的所有子集 中任取一个, 这个集合恰是集合 8/32 {1,2,3} 的子集的概率是____.
3.抛掷两枚均匀的骰子,出现数字之积 为偶数与出现数字之积为奇数的概率 27/36 9/36 分别是_____、______.
2 1
模型2 利用试验结果的对称性,因为是计算“第二个人摸 到红球”的概率,我们可以只考虑前两个人摸球的情 况,
2 1 1 2 2
1
1 2 1
1 2 2 2
2 1 1
这个模型的所有可能结果数为12,第二个摸到红球的结果有6种:
P(A)=6/12=0.5
模型3 只考虑球的颜色,4个人按顺序摸出一个 球所有可能结果
(2)100个人依次抓阄决定1件奖品的归属,求最 后一个人中奖的概率.
分析:只考虑最后一个抓阄的情况,他可能抓到 100个阄中的任何一个,而他抓到有奖的阄的结 果只有一种,因此,最后一个人中奖的概率为 1/100.
小结: 一般来说,在建立概率模型时把什么 看作是基本事件,即试验结果是人为规定 的,也就是说,对于同一个随机试验,可以根 据需要,建立满足我们要求的概率模型。
3.2.2 建立概率模型
温故知新:
1.古典概型的概念 1)试验的所有可能结果(即基本事件)只有有限个,每次 试验只出现其中的一个结果; 2)每一个结果出现的可能 性相同。 2.古典概型的概率公式
m( A包 含 的 基 本 事 件 数 ) P( A) n( 基 本 事 件 总 数 )
3.列表法.
一般来说,在建立概率模型时把什么看作是 基本事件,即试验结果是人为规定的,也就是说,对 于同一个随机试验,可以根据需要,建立满足我们 要求的概率模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【解】 (1)法一:采用列举法 分别记白球为1、2、3号,黑球为4、5号,有以下 基本事件:(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4) (3,5)(4,5)共10个. 法二:采用列表法 设5只球的编号为:a、b、c、d、e,其中a,b,c 为白球,d,e为黑球.
(2)由于 11 个球共有 3 种颜色,因此共有 3 个基本 事件,分别记为 A:“摸到白球”,B:“摸到黑球”, C:“摸到红球”,又因为所有球大小相同,所以 摸一次球每个球被摸中的可能性均为111,而白球有 5 个,故摸一次球摸中白球的可能性为151,同理可 知摸中黑球、红球的可能性均为131,显然这三个基 本事件出现的可能性不相等,所以以颜色为基本事 件建立的概率模型不是古典概型.
2.怎样计算古典概型的基本事件总数? 提示:计算古典概型中基本事件的总数时,通常利 用列举法.列举法就是把所有的基本事件一一列举 出来,再逐个数出. 例如:把从4个球中任取两个看成一次试验,那么 这次试验共有多少个基本事件?为了表述方便,对 这四个球编号为1,2,3,4.把每次取出的两个球的号码 写在一个括号内,则有:(1,2),(1,3),(1,4),(2,3), (2,4),(3,4),所以共有6个基本事件.
知新益能
1.古典概型 具有以下两个特征的随机试验的数学模型称为古典 概型(古典的概率模型). (1)_有__限___ 性:即试验的所有可能结果只有有限个, 每次试验只出现其中的一个结果; (2)_等__可__能__ 性:即每一个试验结果出现的可能性相 同.
2.随机事件 A 的概率 对于古典概型,通常试验中的某一事件 A 是由_几__个__ _基__本__事__件__组成,如果试验的_所__有__可__能__结__果__(基本事 件)数为 n,随机事件 A 包含的_基__本__事__件__数__为 m,
那么事件 A 的概率规定为 P(A)= 事件A包含的可能结果数 m _试 __验__的__所__有__可_能__结__果__数___=__n_.
3.树状图:是进行_列__举__的一种常用方法.
问题探究
1.什么是基本事件?其具有什么特点? 提示:(1)基本事件的定义 一次试验中,可能出现的每一个基本结果称为一 个基本事件.例如:投掷硬币出现2种结果叫2个 基本事件,通常试验中的某一事件A由n个基本事 件组成. (2)基本事件的特点 ①任何两个基本事件是不可能同时发生的; ②任何事件都可表示成基本事件的和.
温故夯基
1.从事件发生的可能性上来分,可分为_必__然__事__件__、 _不__可__能__事__件__、_随__机__事__件__. 2.任一事件的概率的取值范围为__[0_,_1_]. 3.对于给定的随机事件A,在每次试验中是否发生 是不可预知的,但是在大量重复试验后,随着试验 次数的增加,事件A发生的频率fn(A)会逐渐稳定在 区间[0,1]中的某个常数上,这个常数称为事件A的 _概__率__,记为P(A).因此可以用_频__率__f_n_(A__) 来估计概 率P(A).
列表如下:
a a b (b,a) c (c,a) d (d,a) e (e,a)
b (a,b)
(c,b) (d,b) (e,b)
c (a,c) (b,c)
(d,c) (e,c)
d (a,d) (b,d) (c,d)
(e,d)
e (a,e) (b,e) (c,e) (d,e)
由于每次取两个球,每次所取两个球不相同,而摸 (b,a)与(a,b)是相同的事件,故共有10个基本事件. (2)法一中“两只都是白球”包括(1,2)(1,3)(2,3)三种. 法二中,包括(a,b),(b,c),(c,a)三种. 【名师点评】 求基本事件个数常用列举法、列表 法、树图法来解决,并且注意以下几个方面:①用 列举法时要注意不重不漏;②用列表法时注意顺序 问题;③树图法若是有顺序问题时,只做一个树图 然后乘以元素个数.
课堂互动讲练
考点突破
基本事件数的计算 一次试验连同其可能出现的一种结果称为一个基 本事件,一次试验中只能出现一个基本事件.
例1 一只口袋内装有大小相同的5只球,其中3只 白球,2只黑球,从中一次摸出两只球. (1)共有多少个基本事件? (2)两只都是白球包含几个基本事件? 【思路点拨】 先列出摸出两球的所有基本事件, 再数出均为白球的基本事件数.
§2 古典概型 2.1 古典概型的特征和概率计算公式
2.2 建立概率模型
学习目标 1.通过实例理解古典概型的两个特征及古典概型 的定义. 2.掌握古典概型的概率计算公式. 3.能建立概率模型解决一些实际问题,理解概率 模型的特点及应用.
课前自主学案
2.2

立 概
课堂互动讲练



知能优化训练
课前习, 第一次甲传给其他三人中的一人(假设每个人得到球 的概率相同),第二次由拿球者再传给其他三人中的 一人,这样共传了三次. (1)共有多少个基本事件? (2)第三次仍传回到甲包含几个基本事件?
解:本题可用树状图进行解决,如图可知:
(1)共有27个基本事件. (2)第三次球传回到甲的手中包含6个基本事件.
【思路点拨】 要判断试验是否为古典概型,只 需看该试验中所有可能的结果是否为有限个;每 个结果出现的可能性是否相同. 【解】 (1)由于共有11个球,且每个球有不同的 编号,故共有11种不同的摸法,又因为所有球大 小相同,因此每个球被摸中的可能性相等,故以 球的编号为基本事件建立的概率模型是古典概型.
古典概型的判定
判断一个事件是否为古典概型,关键看它是否具 备古典概型的两个特征:(1)在一次试验中,可能 出现的结果只有有限个,即有限性;(2)试验中每 个基本事件发生的可能性是均等的,即等可能性.
例2 袋中有大小相同的5个白球,3个黑球和3个 红球,每球有一个区别于其他球的编号,从中摸出 一个球. (1)有多少种不同的摸法?如果把每个球的编号看 作一个基本事件建立概率模型,该模型是不是古典 概型? (2)若以球的颜色为基本事件,有多少个基本事件? 以这些基本事件建立概率模型,该模型是不是古典 概型?
相关文档
最新文档