高考数学知识点总结(文科)
高考文科数学必考知识点

高考文科数学必考知识点高考文科数学必考知识点主要包括数与代数、函数与方程、几何与空间、统计与概率四个模块,下面将对每个模块的重点内容进行详细介绍。
一、数与代数1. 整式与分式整式是只包含有限个非负整数次幂的代数式,如2x²+3x-1;分式是由多项式除以非零多项式得到的表达式,如(2x²+3x-1)/(x+2)。
必考知识点包括整式的加减乘除运算、分式的约分和等值变形。
2. 方程与不等式方程是含有未知数的等式,如2x+3=7;不等式是含有未知数的不等式,如2x+3>7。
必考知识点包括一元一次方程及其应用、一元二次方程及其应用、一元一次不等式及其应用。
3. 指数与对数指数是用来表示乘法的重复操作,如2³=2×2×2;对数是指数运算的逆运算,如log₂8=3。
必考知识点包括指数与幂、对数的定义和性质。
4. 等比数列与等差数列等差数列是指相邻两项之差相等的数列,如1, 3, 5, 7, ...;等比数列是指相邻两项之比相等的数列,如2, 4, 8, 16, ...。
必考知识点包括等差数列与等比数列的通项公式、求和公式及其应用。
二、函数与方程1. 函数函数是一个映射关系,将一个集合的每个元素都对应到另一个集合中的唯一元素,如y=x ²。
必考知识点包括函数的定义、函数的图像、函数的性质以及常见的基本函数。
2. 二次函数二次函数是一个以x的二次多项式形式表示的函数,如y=ax²+bx+c。
必考知识点包括二次函数的图像、二次函数的最值、零点及其应用。
3. 指数函数与对数函数指数函数是以变量为指数的函数,如y=2ˣ;对数函数是指数函数的逆运算,如y=log₂x。
必考知识点包括指数函数与对数函数的图像、性质和应用。
4. 三角函数三角函数是描述角度与边长之间关系的函数,如y=sin(x)。
必考知识点包括三角函数的图像、周期性、相关性质以及应用。
2024年高考数学知识点及公式整理汇总.doc

2024年高考数学知识点及公式整理汇总高中数学重点知识点全总结1、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。
)3、函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)4、反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)5、反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;6、函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)1、抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
2、对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
3、向量——既有大小又有方向的量。
在此规定下向量可以在平面(或空间)平行移动而不改变。
4、并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。
1、三类角的求法:①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:3、怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
高考文科数学所有知识点总结

高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A (2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ AB B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集 U A ð{|,}x x U x A ∈∉且1()U A A =∅ð 2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )()()()U U U A B A B =痧?()()()U U U A B A B =痧?叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数yxo 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =x a y =xy(0,1)O 1y =定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2bm f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2bM f a=- ③若2b q a ->,则()M f q =x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2bf a-x>O-=f (p)f (q)()2bf a-x>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q)()2bf a-x<O-=f (p)f(q)()2bf a-x<O-=f (p)f(q)()2bf a-①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高考文科数学总知识点

高考文科数学总知识点高考文科数学是高中毕业生参加高考时必须考察的科目之一,它的考察对象包括数学的基本概念、运算规则、解题方法等等。
下面是高考文科数学的总知识点。
1.数与代数1.1 数的性质与运算1.2 代数运算与因式分解1.3 一元一次方程与一元一次不等式1.4 二次根式与二次方程1.5 高次方程与不等式1.6 数列的概念与性质2.函数2.1 函数的性质与图像2.2 一次函数与二次函数2.3 指数函数与对数函数2.4 三角函数3.几何3.1 点、直线和平面3.2 各种角的概念与性质3.3 三角形的概念与性质3.4 四边形的概念与性质3.5 圆的概念与性质3.6 空间几何4.概率与统计4.1 随机事件与概率4.2 统计的基本概念和方法4.3 相关系数与回归直线5.数学推理与证明5.1 几何证明5.2 数学归纳法5.3 数论证明以上是高考文科数学的总知识点,通过对这些知识点的掌握,考生能够在高考中取得较好的成绩。
高考数学的重点在于对基本概念的理解和解题能力的培养,所以考生在备考过程中要注重理论的学习和题目的练习。
同时,考生还要注重方法的灵活运用,多思考、多总结,提高解题的效率和准确性。
为了高效地备考数学,考生可以采取以下方法:首先,理论学习要扎实。
要充分理解并掌握每一个知识点,掌握其内在的联系和运用方法。
其次,进行大量的习题训练。
通过大量的练习,逐步提高解题的技巧和速度。
再次,注重错题的总结和订正。
对于做错的题目,要找出错因,加以总结和订正,避免同样的错误再次出现。
最后,要有计划地进行复习。
将所有的知识点进行系统的梳理,进行有针对性的复习,强化薄弱环节。
总之,高考文科数学是一门理论与实践相结合的学科,需要灵活运用所学知识进行解题。
通过系统的学习和大量的练习,考生一定能够取得令人满意的成绩。
希望大家都能在高考中取得优异的成绩,实现自己的理想!。
广东省高考文科数学知识点总结

广东省高考文科数学知识点总结一、函数与方程1.一元二次方程及其图象:二次函数、平移、对称、判别式和解的性质、解的个数与情况分类。
2.初等函数:常函数、一次函数、幂函数、指数函数、对数函数、三角函数的定义、性质与图象。
3.函数的运算:函数的加、减、乘、除及复合运算。
4.反函数:反函数的存在条件、求法及性质。
5.函数的图象:函数与图象的关系、简单函数的图象与性质。
6.函数与方程组:二元一次方程组的解法,一元二次方程的解法、特殊解的性质。
7.应用题:实际问题与数学模型。
二、三角函数1.角度与弧度:角度的定义、正、余、割、余弦、正切、余切与弧度的关系。
2.常用角的三角函数值:30°、45°、60°的正弦、余弦和正切值,0°、90°、180°、270°的三角函数值。
3.三角函数的性质:奇偶性、周期性、界值性质。
4.三角函数的图象:正弦函数、余弦函数和正切函数的图象。
5.三角函数的计算:三角函数的和差化积、积化和差、倍角公式、半角公式。
6.解三角形:解直角三角形、一般三角形的问题。
三、数列与数列的应用1.等差数列:通项公式、前n项和公式,等差数列的性质和运算。
2.等比数列:通项公式、前n项和公式,等比数列的性质和运算。
3.数列的运算:数列的加、减、乘、除和复合运算。
4.应用题:数列的应用问题。
四、排列与组合1.排列:全排列、不重复排列、重复排列。
2.基本计数原理:乘法原理、加法原理、容斥原理。
3.组合:组合的定义、性质与证明。
4.二项式展开:二项式定理的证明与应用。
五、概率与统计1.基本概念与定义:概率的定义、概率的性质、事件的关系。
2.条件概率与独立性:条件概率的定义与性质,独立事件的定义与证明。
3.排列与组合中的概率:每种情况的概率,计数的方法。
4.统计与数据分析:频数分布表、条形统计图、带标记的折线统计图。
5.统计指标与描述性统计学:均值、中位数、众数、极差、标准差、方差等。
高考文科数学总复习知识点

高考文科数学总复习知识点高三文科数学总复集合:集合的元素具有确定性、互异性和无序性特征。
常用的数集包括自然数集(或非负整数集)记为N,正整数集记为N或N+,整数集记为Z,实数集记为R,有理数集记为Q。
集合还有重要的等价关系,即A∩B=A当且仅当A∪B=B当且仅当A是B的子集。
一个由n个元素组成的集合有2个不同的子集,其中有2n-1个非空子集,也有2n-1个真子集。
函数:函数单调性的证明可以通过取值、作差、变形、定号和得出结论等步骤完成。
常用的结论包括:若f(x)为增(减)函数,则-f(x)为减(增)函数;增+增=增,减+减=减;复合函数的单调性是“同增异减”;奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
函数的奇偶性定义为f(-x)=f(x)时为偶函数,f(-x)=-f(x)时为奇函数。
需要注意的是,函数为奇偶函数的前提是定义域在数轴上关于原点对称;奇函数的图像关于原点对称,偶函数的图像关于y轴对称;若奇函数f(x)在x=0处有意义,则f(0)=0.基本初等函数:指数函数的一般形式为x=a^n,其中n>1且n为自然数。
负数没有偶次方根,任何次方根都是正数,当n是奇数时,a^n=a,当n是偶数时,a^n=|a|。
对数的定义为若a=N,则b=log_a N,其中a为对数的底数,b为以a为底的N的对数,N为真数。
需要注意的是,负数和零没有对数,log_a 1=0且log_a a=1(a>0且a≠1)。
对数的运算法则包括log_a (MN)=log_a M+log_a N,log_a (M/N)=log_a M-log_a N,log_a M^n=nlog_a M,换底公式为log_a b=log_c b/log_c a。
指数函数和对数函数是互逆的,即a^log_a N=N。
b=(a。
a≠1,c。
c≠1,b>),利用换底公式推导以下结论:logc a = 1n(1) loga bn = loga b (2) loga b = logb am改写为:假设b=(a。
高考文科数学40个必考点一览表(课标版)

20
基本不等式及应用
三种用法:直接用、变形用、凑配用
一正二定三相等
观察发现使用基本不等式的时机
21
线性规划问题的求解
四种目标函数最优解、无数多种最优解情形
理解目标函数中Z的几何意义、合理地将相关不等式问题转化为规划问题
含参讨论、根据几何意义转化求解
22
一元二次不等式的解法及应用
对称轴、开口、横轴交点个数与△
对称(轴)性、开口、横轴交点个数与△、单调性
含参讨论、轴与区间的关系
23
不等式恒成立问题的求解
恒成立问题与存在性问题中的变(式)量与最值的关系,
存在性、恒成立问题的转化与求解
存在性与恒成立问题转化为ቤተ መጻሕፍቲ ባይዱ值的过程
24
绝对值不等式的解法及应用
分区间和几何意义去绝对值、绝对值的常数放缩、分段函数及图像、图像的交点两侧函数值(式)的大小关系
特殊的锥、柱体与球的内接与外切关系、球半径的计算
三种锥体、直棱柱与球体的相关运算
割补法,等体积转化法、垂径定理的推广及应用
29
直线与圆
直线方程求法及几种形式及互相转化,根据相关参数或位置关系求解直线与圆方程、从圆方程中提取相关参数、参数方程
直线方程、圆标准方程、相切与相交问题
与切线方程、弦长相关问题的解答
34
抽样方法
简单随机抽样、系统抽样、分层抽样、等可能性
分层抽样
每个个体被抽到的概率=抽样比=n/N
35
用样本估计总体
用样本的数字特征估计总体的数字特征、频率与概率的区别与联系
常见数字特征的计(估)算与使用、两图一表的制作与使用
常见数字特征的计(估)算与使用、两图一表的制作与使用
高考文科数学重要考点大全

高考文科数学重要考点大全高考文科数学相对比理科数学而言会简单许多,想必很多人都想知道高考文科数学的核心知识点。
接下来是小编为大家整理的高考文科数学重要考点大全,希望大家喜欢!高考文科数学重要考点大全一考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。
重点考查集合间关系的理解和认识。
近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。
在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。
简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。
导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量一般是2道小题,1道综合解答题。
小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点总结(文科)1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭1013 3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔==I Y (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa Y5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
)8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334Y Y 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0 义域是_____________。
[](答:,)a a -11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? ()).(1x f x e x f x ,求如:+=+令,则t x t =+≥10∴x t =-21∴f t et t()=+--2121()∴f x e x x x()=+-≥-2121012. 反函数存在的条件是什么? (一一对应函数)求反函数的步骤掌握了吗?(①反解x ;②互换x 、y ;③注明定义域)()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性; 14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?[](,,则(外层)(内层)y f u u x y f x ===()()()ϕϕ[][]当内、外层函数单调性相同时为增函数,否则为减函数。
)f x f x ϕϕ()()()如:求的单调区间y x x =-+log 1222(设,由则u x x u x =-+><<22002 ()且,,如图:log 12211u u x ↓=--+当,时,,又,∴x u u y ∈↑↓↓(]log 0112当,时,,又,∴x u u y ∈↓↓↑[)log 1212∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。
(在个别点上导数等于a b f x f x '()()≥0零,不影响函数的单调性),反之也对,若呢?f x '()≤0[)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013() 值是( ) A. 0B. 1C. 2D. 3(令f x x a x a x a '()=-=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪≥333302则或x ax a ≤-≥33由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
()若是奇函数且定义域中有原点,则。
2f(x)f(0)0=如:若·为奇函数,则实数f x a a a x x()=+-+=2221(∵为奇函数,,又,∴f x x R R f ()()∈∈=000即·,∴)a a a 22210100+-+==又如:为定义在,上的奇函数,当,时,,f x x f x xx()()()()-∈=+1101241()求在,上的解析式。
f x ()-11()()(令,,则,,x x f x xx ∈--∈-=+--1001241()又为奇函数,∴f x f x x x xx()()=-+=-+--241214()又,∴,,)f f x x x x xxxx ()()()0024110024101==-+∈-=+∈⎧⎨⎪⎪⎩⎪⎪17. 你熟悉周期函数的定义吗?()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()() 函数,T 是一个周期。
)()如:若,则f x a f x +=-()(答:是周期函数,为的一个周期)f x T a f x ()()=2 ()又如:若图象有两条对称轴,f x x a x b ()==⇔ 即,f a x f a x f b x f b x ()()()()+=-+=- 则是周期函数,为一个周期f x a b ()2- 如:18. 你掌握常用的图象变换了吗? f x f x y ()()与的图象关于轴对称- f x f x x ()()与的图象关于轴对称- f x f x ()()与的图象关于原点对称-- f x f x y x ()()与的图象关于直线对称-=1 f x f a x x a ()()与的图象关于直线对称2-= f x f a x a ()()()与的图象关于点,对称--20 将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00上移个单位下移个单位b b b b y f x a by f x a b()()()()>−→−−−−−−−−>=++=+-00注意如下“翻折”变换:f x f x f x f x ()()()(||)−→−−→−()如:f x x ()log =+21()作出及的图象y x y x =+=+log log 221119. 你熟练掌握常用函数的图象和性质了吗? ()()一次函数:10y kx b k =+≠ ()()()反比例函数:推广为是中心,200y k x k y b k x ak O a b =≠=+-≠'() 的双曲线。
()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a=++≠=+⎛⎝ ⎫⎭⎪+-顶点坐标为,,对称轴--⎛⎝ ⎫⎭⎪=-b aac b a x ba 24422开口方向:,向上,函数a y ac b a>=-0442mina y acb a<=-0442,向下,max应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴∆的两个交点,也是二次不等式ax bx c 200++><()②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
y=log 2x★④一元二次方程根的分布问题。
如:二次方程的两根都大于ax bx c k b a k f k 20020++=⇔≥->>⎧⎨⎪⎪⎩⎪⎪∆()一根大于,一根小于k k f k ⇔<()0 ()()指数函数:,401y a a a x =>≠ ()()对数函数,501y x a a a =>≠log 由图象记性质!(注意底数的限定!)()()“对勾函数”60y x kxk =+> 利用它的单调性求最值与利用均值不等式求最值的区别是什么?20. 你在基本运算上常出现错误吗? 指数运算:,a a a a a pp1010=≠=≠-(()) aaa aaa m nmn m nmn=≥=>-((010)),()对数运算:·,log log log a a a M N M N M N =+>>00 log log log log log aa a a n a M N M N M nM =-=,1对数恒等式:a x a xlog =对数换底公式:log log log log log a c c a n a b b a b nmb m =⇒=21. 如何解抽象函数问题? (赋值法、结构变换法)如:(),满足,证明为奇函数。
1x R f x f x y f x f y f x ∈+=+()()()()() (先令再令,……)x y f y x ==⇒==-000()(),满足,证明是偶函数。
2x R f x f xy f x f y f x ∈=+()()()()() [](先令·x y t f t t f t t ==-⇒--=()()() ∴f t f t f t f t ()()()()-+-=+ ∴……)f t f t ()()-=()[]()证明单调性:……32212f x f x x x ()=-+=a x(a>1)22. 掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。