高考培优课程秋季数学讲义:三角函数-图像与性质【讲师版】

合集下载

高中数学——三角函数图像和性质讲义

高中数学——三角函数图像和性质讲义

【讲义课题】: 三角函数图像和性质 【考点及考试要求】1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈, 递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈, 递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。

4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。

途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。

高考数学一轮复习三角函数的图像与性质培优课件

高考数学一轮复习三角函数的图像与性质培优课件

π
3

2kπ6

π
, 2π +
6
6
,∴函数的递增区间为
π
0, 6
.
π
≤x≤2kπ+ (k∈Z).
6
(k∈Z).
考向2.由单调性求参数
典例突破
例 4.已知 ω>0,函数 f(x)=sin

.
π
+4

π

2
上是减少的,则 ω 的取值范围
答案:
1 5
,
2 4
π
π
解析:由2 <x<π,ω>0,得 2
3π ∴0<a≤ π ,∴a 的最大值为π .
≤ 4 ,
4
4
> 0,
π 3π
−4, 4
,
(2)由题意可知,[a,2]⊆
π
π
− ,
π
2π + 4
, 2π +

4
(k∈Z).
突破技巧1.三角函数定义域的求法
将求复杂函数的定义域问题转化为求解简单的三角函数不等式.
2.简单三角不等式的解法
(1)利用三角函数线求解.
(2)利用三角函数的图像求解.
1
y=tan -1的定义域为
.
(2)函数 y=lg(sin 2x)+ 9- 2 的定义域为
π
3
的递减区间是函数 y=sin 2 −
的递增区间.

π
2kπ-2
π
≤2x-3
π
≤2kπ+ 2 ,k∈Z,得
故所给函数的递减区间为 π −

三角函数图像和性质专题讲义

三角函数图像和性质专题讲义

三角函数图像和性质专题讲义1.正弦函数、余弦函数、正切函数的图象与性质π2.用“五点法”作图,就是令ωx+φ取下列5个特殊值:0, π2, π,3π2, 2π,通过列表,计算五点的坐标,描点得到图象.3.三角函数图象变换4[常用结论](1)对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. (2)与三角函数的奇偶性相关的结论若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z );若为奇函数,则有φ=k π(k ∈Z ).若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z );若为奇函数,则有φ=k π+π2(k ∈Z ).若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ). 题型一 三角函数的5大性质例1 已知函数f (x )=2cos x ·sin ⎪⎭⎫⎝⎛+3πx -3sin 2x +sin x cos x +1. (1)求函数f (x )的最小正周期;(2)当x ∈⎪⎭⎫⎝⎛20π,时,求函数f (x )的最大值及最小值;(3)写出函数f (x )的单调递增区间. (4)写出函数f (x )的对称轴和对称中心.(5)函数f (x )向右平移t 个单位为偶函数,求t 的最小正值。

[玩转跟踪]1.函数2()cos 3f x x π⎛⎫=+⎪⎝⎭的最小正周期为( )A .4π B .2πC .2π D .π2.已知函数()()()2sin 20f x x ϕϕπ=+<<,若将函数()f x 的图象向右平移6π个单位长度后,所得图象关于y 轴对称,则下列结论中正确的是( ) A .56πϕ= B .,012π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心 C .()2fϕ=-D .6x π=-是()f x 图象的一条对称轴3.已知函数21()2cos 22f x x x =-+. (1)求2()3f π的值及f (x )的对称轴; (2)将()f x 的图象向左平移6π个单位得到函数()g x 的图象,求()g x 的单调递增区间. 题型二 三角函数模型中“ω”范围的求法探究 例2 已知函数 f (x )=sin ⎪⎭⎫⎝⎛+6πωx (ω>0)在区间]32,4[ππ-上单调递增,则ω的取值范围为( ) A.]830(, B.]210(, C.]8321[, D.]2,83[ 例3 已知函数f (x )=cos ⎪⎭⎫⎝⎛+3πωx (ω>0)的一条对称轴x =π3,一个对称中心为点⎪⎭⎫⎝⎛0,12π,则ω有( ) A .最小值2 B .最大值2 C .最小值1D .最大值1例4 已知函数f (x )=2sin ωx 在区间]4,3[ππ-上的最小值为-2,则ω的取值范围是________.[玩转跟踪]1.若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间]23,32[ππ-上单调递增,则正数ω的最大值为( )A.18 B .16 C.14 D.13 2.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0),若f (x )在区间]2,0[π上是单调函数,且f (-π)=f (0)=-f )2(π,则ω的值为( )A.23 B .23或2 C.13 D .1或13 3.设函数f (x )=cos ⎪⎭⎫⎝⎛-6πωx (ω>0).若f (x )≤f )4(π对任意的实数x 都成立,则 ω的最小值为________. 题型三 三角函数的图像和图像变换 例5设函数,其中.已知.(Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值. [玩转跟踪]1.将函数y =3sin ⎪⎭⎫⎝⎛+32πx 的图象向右平移π2个单位长度,所得图象对应的函数( ) A .在区间]127,12[ππ上单调递减 B .在区间]127,12[ππ上单调递增C .在区间]3,6[ππ-上单调递减 D .在区间]3,6[ππ-上单调递增 2.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2()sin()sin()62f x x x ππωω=-+-03ω<<()06f π=ω()y f x =4π()y g x =()g x 3[,]44ππ-3将函数()3cos 213f x x π⎛⎫=+- ⎪⎝⎭的图象向左平移3π个单位长度,再向上平移1个单位长度,得到函数()g x 的图象,则下列关于函数()g x 的说法正确的是( ) A .最大值为3,图象关于直线12x π=对称 B .图象关于y 轴对称C .最小正周期为πD .图象关于点,04π⎛⎫⎪⎝⎭对称 题型四 由图象求y =A sin(ωx +φ)的解析式例6 (1)若函数y =A sin(ωx +φ)的部分图象如图所示,则y = .(2)已知函数f (x )=sin(ωx +φ) )2,0(πϕω<>的部分图象如图所示,则y =f ⎪⎭⎫ ⎝⎛+6πx 取得最小值时x 的集合为 .[玩转跟踪]1.函数f (x )=2sin(ωx +φ))2,0(πϕω<>的部分图象如图所示,则ω,φ的值分别是( ) A .2,-π3 B .2,-π6 C .4,-π6D .4,π32已知函数f (x )=A sin(ωx +φ)+B )2,0,0(πϕω<>>A 的部分图象如图所示,将函数f (x )的图象向左平移m (m >0)个单位长度后,得到函数g (x )的图象关于点)23,3(π对称,则m 的值可能为( )A.π6B.π2C.7π6D.7π12题型五 三角函数大题 例7 已知函数f (x )=23sin ⎪⎭⎫ ⎝⎛+42πx ·co ⎪⎭⎫⎝⎛+42πx -sin(x +π). (1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值. [玩转跟踪]1.已知函数4()cos f x x =-42sin cos sin x x x - (1)求()f x 的单调递增区间; (2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值及取最小值时的x 的集合. 2.设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4. (1)求ω的值;(2)求f (x )在区间[π,3π2]上的最大值和最小值.[玩转练习]1.函数y =2cos ⎪⎭⎫⎝⎛+62πx 的部分图象大致是( )2.已知函数f (x )=4sin(ωx +φ)(ω>0).在同一周期内,当x =π6时取最大值,当x =-π3时取最小值,则φ的值可能为( )A.π12B.π3C.13π6D.7π6 3.将曲线y =sin(2x +φ))2(πϕ<向右平移π6个单位长度后得到曲线y =f (x ),若函数f (x )的图象关于y 轴对称,则φ=( )A.π3 B .π6 C .-π3 D .-π6 4.已知曲线C 1:y =cos x ,C 2:y =sin ⎪⎭⎫⎝⎛-322πx ,则下列结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移7π12个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移7π12个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π6个单位长度,得到曲线C 25.(多选)已知函数f (x )=A sin ωx (A >0,ω>0)与g (x )=A2cos ωx 的部分图象如图所示,则( )A .A =1B .A =2C .ω=π3D .ω=3π6.(多选)函数f (x )=2sin ⎪⎭⎫⎝⎛-32πx 的图象为C ,如下结论正确的是( ) A .f (x )的最小正周期为π B .对任意的x ∈R ,都有f ⎪⎭⎫⎝⎛+6πx +f ⎪⎭⎫⎝⎛+-6πx =0 C .f (x )在)125,12(ππ-上是减函数D .由y =2sin 2x 的图象向右平移π3个单位长度可以得到图象C7.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是____________.8.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =2所得线段长为π2,则f )6(π的值是________.9.将函数y =cos x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到函数y =sin ⎪⎭⎫⎝⎛-6πx 的图象,则φ=____. 10.(一题两空)已知函数f (x )=2sin(ωx +φ))2,0(πϕω<>一部分图象如图所示,则ω=________,函数f (x )的单调递增区间为________.11.已知函数f (x )=A sin(ωx +φ))2,0,0(πϕω<>>A 的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间. 12.设函数f (x )=sin ⎪⎭⎫⎝⎛-6πωx +sin ⎪⎭⎫ ⎝⎛-2πωx ,其中0<ω<3,且f )6(π=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在]43,4[ππ-上的最小值.。

三角函数的图象与性质课件高三数学一轮复习

三角函数的图象与性质课件高三数学一轮复习
,所以 ≤



3

C.
3


≤ φ ≤ 2π

D.
3
≤φ≤


[解析] 因为 ∈ [− , ],所以�� + ∈ [− + , + ].
又 ≤ <
所以


+ ≤ ,



+ ≥ ,

解得

+<

,且函数

≤≤

,即



在[− , ]上单调递增,
φ = kπ +
π
2
k∈ .
③若y = Atan ωx + φ 为奇函数,则有φ = kπ k ∈ .
自测诊断
1.函数f x = 2sin
A.
π
2
1
x
2

π
4
的最小正周期为(
B.π
[解析] 由题意知,在 =
D )
C.2π






D.4π


中, = ,∴ =


=
π 3π
π π
A.
B. ,
C. − ,
D.
4 4
2 2



[解析] 因为 = + − = + = − ,




令 − ≤ ≤ + , ∈




,解得 − ≤ ≤ + , ∈ ,

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。

(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。

正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。

4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。

理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。

5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。

三角函数的定义、图像和性质

三角函数的定义、图像和性质
0 3
极值点:函数 在其周期内取 得最大值和最 小值的点,即 最值点的横坐 标
0 4
诱导公式
三角函数的诱导 公式是三角函数 性质的重要组成 部分,它可以帮 助我们简化复杂 的三角函数计算。
添加标题
诱导公式包括正 弦、余弦和正切 的诱导公式,它 们可以通过三角 函数的周期性和 对称性推导出来。
添加标题
奇偶性
奇函数:满足f(-x)=-f(x) 的函数
偶函数:满足f(-x)=f(x) 的函数
奇偶性的判断方法:根据 定义来判断
奇偶性在三角函数中的应 用:判断函数的图像对称

最值和零点
最大值和最小 值:三角函数 在其周期内可 以达到的最大 和最小值
0 1
零点:函数值 为零的点,即 解方程的根
0 2
周期性:三角 函数图像呈现 周期性变化, 每个周期内存 在一个最大值 和一个最小值
利用诱导公式, 我们可以将任意 角的三角函数转 化为锐角或0到 360度之间的角的 三角函数,从而
简化计算。
添加标题
诱导公式在三角 函数的图像和性 质中有着广泛的 应用,可以帮助 我们更好地理解 三角函数的性质
和图像。
添加标题
THANK YOU
汇报人:XX
三角函数的定义、 图像和性质
汇报人:XX
目录
01 三 角 函 数 的 定 义 02 三 角 函 数 的 图 像 03 三 角 函 数 的 性 质
01
三角函数的定义
正弦函数
定义:正弦函数是三角函数的一种,定义为y=sinx,x∈R。 图像:正弦函数的图像是一个周期函数,形状类似于波浪。 性质:正弦函数具有一些重要的性质,如奇偶性、周期性、单调性等。

高三数学一轮复习讲义三角函数图像与性质

高三数学一轮复习讲义三角函数图像与性质

课题:三角函数的图像与性质知识点一、正弦、余弦、正切函数的图像与性质函数性质sinx y =cosx y =tanx y =定义域RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ图像值域[]1,1-[]1,1-R 对称性对称轴:()Z k k x ∈+=2ππ对称中心:()()Z k k ∈0,π对称轴:()z k k x ∈=π 对称中心:(,0)2k ππ+无对称轴对称中心:()Z k k ∈⎪⎭⎫⎝⎛0,2π 周期 π2π2π奇偶性奇 偶奇单调性单调递增区间()Z k k k ∈⎥⎦⎤⎢⎣⎡+-22,22ππππ 单调递减区间()Z k k k ∈⎥⎦⎤⎢⎣⎡++232,22ππππ单调递增区间[]()Z k k k ∈-πππ2,2单调递减区间[]()Z k k k ∈+πππ2,2单调递增区间Z k k k ∈+-)2,2(ππππ最值当22ππ+=k X 时,y 的最大值:1;22ππ-=k X 时,y 的最小值:1,其中Z k ∈当πk x 2=时,y 的最大值:1;当ππ+=k x 2时,y 的最小值:1,其中Z k ∈无最大值,无最小值求解三角函数:sin ()y A x x ωϕ=+性质常用结论与技巧; (1)运用整体换元法求解单调区间与对称性:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.①令ωx +φ=k π+π2(k ∈Z),可求得对称轴方程;②令ωx +φ=k π(k ∈Z),可求得对称中心的横坐标;(2)周期性:函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|,注意y =Atan (ωx +φ)的周期T =π|ω|.(3)最值(或值域):求最值(或值域)时,一般要确定u =ωx +φ的范围,然后结合函数y =sin u 或y =cos u 的性质可得函数的最值(值域).【典型例题】【例1】函数cos()3y x π=-的单调增区间是( )A .42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ B .22,2()33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .32,2()88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦ D .52,2()66k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【例2】函数[]1sin ,2,223y x x πππ⎛⎫=+∈-⎪⎝⎭的单调递增区间是( )A .52,3ππ⎡⎤--⎢⎥⎣⎦ B .52,,233ππππ⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦和 C .5,33ππ⎡⎤-⎢⎥⎣⎦ D .,23ππ⎡⎤⎢⎥⎣⎦ 【例3】函数)62cos()(π+=x x f 的一条对称轴为( )A .6πB .125πC .32πD .32π-【例4】函数2()cos cos f x x x x =+([0,]x π∈)的单调递减区间为( )A .[0,]3πB .2[,]63ππC .5[,]36ππD .5[,]6ππ 【例5】函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是( )A. 1-B.C.D. 0 【例6】已知函数2()sin 2+sin 22cos 1.33=+-+-∈f x x x x x R ππ()(),(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间[,]44ππ-上的最大值和最小值.【举一反三】1.余弦函数cos()4y x π=+在下列哪个区间为减函数( )A .3,44ππ⎡⎤-⎢⎥⎣⎦B .[],0π-C .3,44ππ⎡⎤-⎢⎥⎣⎦ D .,22ππ⎡⎤-⎢⎥⎣⎦2.函数的最小正周期为( )A. B. C. D.3.下列函数中,周期为π,且在⎥⎦⎤⎢⎣⎡2,4ππ上为减函数的是( )A.)2sin(π+=x y B.)2cos(π+=x y C.)22cos(π+=x y D.)22sin(π+=x y4.已知函数2()3cos sin f x x x x =-,则()f x 的最小正周期为 ;单调减区间为 .5.若函数()()13cos ,36f x x x x ππ=+-≤≤,则()f x 的最大值为( )A.1B.2 3 31 6.已知函数()sin sin()6f x x x π=+.(1)求()f x 的最小正周期;(2)当[0,]2x π∈时,求()f x 的取值范围.【课堂巩固】1.已知函数))(32cos(3)(R x x x f ∈-=π,下列结论错误的是( )A .函数)(x f 的最小正周期为πB .函数)(x f 图象关于点)0,125(π对称 C. 函数)(x f 在区间]2,0[π上是减函数 D .函数)(x f 的图象关于直线6π=x 对称2.设函数()sin()3)f x x x ωϕωϕ=++(0ω>,||2πϕ<)的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减 B .()f x 在3(,)44ππ单调递减 C .()f x 在(0,)2π单调递增 D .()f x 在3(,)44ππ单调递增 3.函数3sin 6y x π⎛⎫=+⎪⎝⎭的单调递增区间为_________.4.函数x x y 2cos 32sin -=的图象的一条对称轴方程为( ) A .12π=x B .12π-=x C. 6π=x D .6π-=x5.函数的最小正周期是__________ .6.函数2sin 2y x ππ⎛⎫=+⎪⎝⎭的最小正周期是 . 7.已知函数3()2sin cos()32f x x x π=++. (Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)求函数()f x 在区间[0,]2π上的最大值及最小值.【课后练习】正确率:________1.当函数()取得最大值时,( )A. B. C. D.2.设函数()()()sin 30,2f x x x πωϕωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,且()()f x f x -=,则( ) A .()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 3.已知函数()()()2sin 20f x x θθπ=-+<<,14f π⎛⎫=-⎪⎝⎭则()f x 的一个单调递减区间是( ) A .5,1212ππ⎛⎫-⎪⎝⎭ B .7,1212ππ⎛⎫ ⎪⎝⎭ C .,63ππ⎛⎫- ⎪⎝⎭ D .5,1212ππ⎛⎫- ⎪⎝⎭4.函数()sin cos()6f x x x π=--的值域为( )A .33⎡⎢⎣⎦B .3,3⎡-⎣C .[]2,2-D .[]1,1-5.函数)2sin()(ϕ-=x A x f 的图象关于点)0,34(π成中心对称,则ϕ最小的ϕ的值为( ) A .3π B .6πC .3π-D .6π- 6.已知角ϕ的终边经过点(3,4)P -,函数()sin()(0)f x x ωϕω=+>图像的相邻两条对称轴之间的距离等于2π,则()4f π=( ) A .35- B .35C .45-D .457.设函数()sin(2)cos(2)44f x x x ππ=+++,则( )A 、()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B 、()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C 、()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D 、()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称8.函数sin 22y x x =的图象的一条对称轴方程为( ) A. π12x =B.π12x =-C.π6x =D.π6x =-9.已知函数2()cos cos f x x x x =+,x R ∈.(1)求4()3f π;(2)求函数()f x 的最小正周期与单调减区间.。

三角函数的图像和性质教学课件

三角函数的图像和性质教学课件

图像变化
当角度增加时,余 弦函数的值会减小, 图像会向中心靠拢; 当角度减小时,余 弦函数的值会增加, 图像会向外扩展。
图像周期
余弦函数的图像具 有周期性,周期为 360度。在一个周 期内,图像会重复 出现。
正切函数的图像
图像形状
01 正切函数的图像在直角坐标系中呈现出周期性和无界性,其形状类似于波浪线。
调性。
PART 04
三角函数的应用
在几何学中的应用
三角函数在几何学中有着广泛的应用, 例如在计算角度、长度、面积等方面。
三角函数可以帮助我们理解几何图形的 性质,例如在研究圆、椭圆、抛物线等 方面。
三角函数还可以用于解决一些几何问题, 例如在计算最短路径、最大面积等方面。
在物理学中 的应用
交流电
三角函数的基本性质
周期性
三角函数(如正弦函数和 余弦函数)具有明显的周 期性,这意味着它们的图 像会重复出现。
振幅和相位
振幅和相位是描述三角函 数的重要参数。振幅决定 了图像的最高点和最低点, 而相位决定了图像在垂直 方向上的位置。
奇偶性
三角函数中的正弦函数和 余弦函数具有不同的奇偶 性。正弦函数是奇函数, 而余弦函数是偶函数。
图像变化规律
02 正切函数的图像随着角度的变化而呈现周期性的变化,其变化规律是每隔180度重复一次。
图像与x轴交点
03 正切函数的图像与x轴的交点是无穷多个,且分布不均,主要集中在x轴的两侧。
其他三角函数的图像
正切函数图像在直角坐标系中呈现 出周期性和无界性,是三角函数中 较为特殊的一种。
余切函数图像与正切函数图像互为 反函数,在直角坐标系中呈现出对 称性和周期性。
工程学
在工程学中,三角函数可以用于解决各种实际问题,如结 构工程中的应力分析、机械工程中的振动分析等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学三角函数-图像与性质学生姓名授课日期教师姓名授课时长本讲义目的在于让同学从根本上了解三角函数的图像与性质,了解图像变换与解析式变换之间的对应关系,利用图像解决与三角函数有关的问题,并在此基础上发散思维,解决三角函数与其他知识融合的综合问题。

知识点一:由图像写解析式,突破识图难点;由性质写解析式,达到对条件的全面理解。

知识点二:通过解决图象与性质融合的新题目,既积累解题经验,又消除“怕新”“怕繁”的心理,提升思维品质与解题能力,适应各种变化。

知识点三:通过结合图象解决与三角函数有关的问题(如方程、不等式),发展用图象思考问题的能力。

知识点四:通过建立三角函数模型,体验建模的程序,发展应用意识和能力。

知识点五:通过解决三角函数与其他知识融合的综合问题,感悟知识之间的联系,体验解题过程的复杂性,发展综合运用能力。

【题目来源】【题目】已知定义域为R的函数f(x)=Asin(ωx+φ)(A>0,ω>0)的一段图象如图所示.(1)求f(x)的解析式;(2)若g(x)=cos3x,h(x)=f(x)•g(x),求函数h(x)的单调递增区间.【答案】【解析】:【知识点】由图像写解析式,突破识图难点;由性质写解析式,达到对条件的全面理解。

【适用场合】 当堂例题 【难度系数】3【题目来源】【题目】 求下列函数的最小正周期(1))23πsin(x y -=;(2))4π2πtan(+=x y ;x y 2cos )3(2=; (4)y =2sin 2x +2sin x cos x ;(5)y =|sin x |.【答案】π,2, 2π=T ,π,π 【解析】: (1)π|2|π2=-=T .(2)22ππ==T .(3)214cos 2124cos 1+=+=x x y ,所以2π=T . (4)1)4π2sin(212cos 2sin 2sin 22cos 12+-=+-=+-⨯=x x x x x y ,所以T =π.(5)y=|sin x|的图象为下图,可得,T=π.【知识点】三角函数的周期性【适用场合】当堂例题【难度系数】3【题目来源】【题目】(2000全国,5)函数y=-xc os x的部分图象是()【答案】D【解析】:因为函数y=-xcosx是奇函数,它的图象关于原点对称,所以排除A、C,当x∈(0,2π)时,y=-xcosx<0。

答案为D。

【知识点】通过解决图象与性质融合的新题目,既积累解题经验,又消除“怕新”“怕繁”的心理,提升思维品质与解题能力,适应各种变化。

【适用场合】当堂例题【难度系数】3【题目来源】【题目】已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,x∈R)在一个周期内的图象如图所示,求直线y=函数f (x )图象的所有交点的坐标。

【答案】【解析】:【知识点】主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。

【适用场合】 当堂例题 【难度系数】 3【题目来源】【题目】如下图弹簧挂着的小球作上下振动,时间t(s)与小球对于平衡位置(即静止时状态)的高度h(cm)之间的关系式是,t ∈[0,+∞). 画出这个函数在长度为一个周期的闭区间上的简图,回答下列问题.(1)小球开始振动的位置在哪里?(2)小球最高、最低点与平衡位置的距离分别为多少?(3)经过多长时间小球往复振动一次(即周期是多少)?(4)小球每1 s能往复振动多少次?【答案】1、h=2、2cm3、2π秒4、1 2π【解析】【知识点】通过建立三角函数模型,体验建模的程序,发展应用意识和能力。

【适用场合】当堂例题【难度系数】3[题目]如下图,单摆从某点开始来回摆动,离开平衡位置O的距离s cm和时间t s的函数关系式为)那么单摆来回摆动一次所需的时间为( )A.2π sB.π sC.0.5 sD.1 s【答案】D【解析】【知识点】通过建立三角函数模型,体验建模的程序,发展应用意识和能力。

【适用场合】当堂例题【难度系数】3【题目来源】【题目】要得到2()3y tan x π=-的图象,只要将y=tan2x 的图象( ) A.向左平移3π个单位 B.向右平移3π个单位 C.向左平移6π个单位 D.向右平移6π个单位【答案】D 【解析】【知识点】 三角函数的平移【适用场合】 当堂练习题 【难度系数】 2【题目来源】【题目】若A 、B 是锐角△ABC 的两个内角,则点P(cosB-sinA,sinB-cosA)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B 【解析】【知识点】 三角函数的应用【适用场合】 当堂练习题 【难度系数】 2【题目来源】【题目】如下图,表示电流强度I 与时间t 的关系为I=Asin(ωt+φ)(A>0,ω>0)在一个周期内的图象,则该函数的解析式为( ) A.I=300sin(50πt+3π) B.I=300sin(50πt-3π) C.I=300sin(100πt+3π) D.I=300sin(100πt-3π)【答案】C【解析】【知识点】由图像写解析式,突破识图难点;由性质写解析式,达到对条件的全面理解。

【适用场合】 当堂练习题 【难度系数】 3【题目来源】【题目】函数y =sin(x +ϕ)的图象(部分)如图所示,则和ϕ的取值是( )A .3π,1==ϕωB .3π,1-==ϕωC .6π,21==ϕωD .6π,21-==ϕω【答案】C 【解析】解:π)3π(3π24=--=T ,即ωπ2π4==T ,所以21=ω, 当3π-=x 时,0])3π(21sin[=+-⨯ω,所以Z ∈+=k k ,6ππω,选C【知识点】三角函数的应用 【适用场合】 随堂课后练习 【难度系数】3【题目来源】【题目】在△ABC 中.Sin 2A≤sin 2B+sin 2C-sinBsinC .则A 的取值范围是 ( ) A .06](,πB .[),6ππC .(0,]3πD .[,)3ππ【答案】C 【解析】由题意及正弦定理得a 2≤b 2+c 2-bcbc≤b 2+c 2-a2≥1又由余弦定理知2cosA=≥1cosA≥因为角A 为三角形内角,所以0<A≤,所以选C【知识点】求值题【适用场合】随堂课后练习【难度系数】3【题目来源】【题目】在△ABC中,内角A,B,C所对的边分别是a,b,c,已知8b=5c,C=2B,则cosC=()A. 7 25B. -7 25C. ±7 25D. 24 25【答案】A【解析】因为C=2B,所以sinC=2sinBcosB cosB=根据正弦定理有=,所以cosB=×=又cosC=cos(2B)=2cos2B-1,所以cosC=2cos2B-1=2×-1=,所以选A【知识点】三角函数的应用【适用场合】随堂课后练习【难度系数】3【题目来源】【题目】设当θ=x 时,函数()2=-f x sinx cosx 取得最大值,则θcos = ( )C. -5D.5【答案】 C 【解析】∵f(x)=sinx -2cosx=(sinx-cosx)令cos =,sin =-,则f(x)=(sinxcos -sin cosx)=,当=,即=时,取最大值,此时=,∴===.【知识点】 求值题 【适用场合】 随堂课后练习 【难度系数】3【题目来源】 【题目】函数y sin()cos()26ππ=+-x x 的最大值为( )A.4 B. 24+ C. 14+ D. 12+ 【答案】 B 【解析】∵sin(+x)cos(-x)=cosx(cos cosx+sin sinx)=cos 2x+sinxcosx=(1+cos2x)+sin2x=+cos2x+sin2x=+(cos2x+sin2x)=+sin(2x+)∴函数y=sin(+x)cos(-x)的最大值为【知识点】 求值题 【适用场合】 随堂课后练习 【难度系数】3 【题目来源】【题目】已知函数()(2)ϕ=+f x sin x ,其中ϕ为实数,若()|()|6π≤f x f 对x∈R 恒成立,且()()2ππ>f f ,则f(x)的单调递增区间是( ) A.() ,k [k ]36ππππ-+∈k Z B. () ,k [k ]2πππ+∈k ZC. ()2 ,k 3[k ]6ππππ++∈k Z D. ()[k 2 ,k ]2πππ-∈k Z【答案】 C 【解析】由函数解析式知,函数的周期为.又f(x)≤|f()|对x∈R 恒成立,所以函数的对称轴为x=+(k∈Z).因此函数的单调区间是[+,+]与[+,+](k∈Z).因为函数的对称轴为x=+(k∈Z),所以x=+=为一条对称轴,即f()=f()>f(),而,∈[+,+],所以[+,+]是函数的单调递减区间,即[+,+]是f(x)的单调递增区间.【知识点】 三角函数的单调性 【适用场合】 随堂课后练习 【难度系数】3【题目来源】【题目】设函数()()()ϕϕωω=+++f x sin x cos x ,|)0,|2(πϕω><的最小正周期为π,且f(-x)=f(x),则( )A.y=f(x) 在(0,)2π单调递减B. y=f(x)在(,43)ππ单调递减C. y=f(x)在(0,)2π单调递增D. y=f(x)在(3,44)ππ单调递增【答案】 A 【解析】∵函数f(x) 的最小正周期为π,∴=2∴f(x)=sin(2x++)又f(-x)=f(x),所以f(x)为偶函数,即x=0时,f(x)=,∴+=(k∈Z)又||〈 ,∴=∴f(x)=sin(2x++) =cos2x,不难知道,y=f(x) 在(0,)单调递减【知识点】 综合题【适用场合】随堂课后练习【难度系数】3A.1[25,4] B.1[23,4] C.[01,2] D.[0,2]【答案】A【解析】法一:赋值排除法=1时,令Z=x+=x+,当x∈(,) 时,Z∈[,],此时sinZ单调递减,符合题意,排除B,C=2时,令Z=x+=2x+,当x∈(,) 时,Z∈[,],此时sinZ单调递减不成立,不符合题意,排除D法二:直接法令Z=x+∵sinZ的单调递减区间为[,]( k∈Z),即≤Z≤( k∈Z), 解之得≤x≤(k∈Z)由题意知:≤且≥(k∈Z)即(k∈Z)∵,∴k<又>0,∴k=0,即【知识点】 三角函数的单调性 【适用场合】 随堂课后练习 【难度系数】3【题目来源】【题目】把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( )A .(1-y )sin x +2y -3=0B .(y -1)sin x +2y -3=0C .(y +1)sin x +2y +1=0D .-(y +1)sin x +2y +1=0【答案】C【解析】原方程整理为:y =x cos 21+,因为要将原曲线向右、向下分别移动2π个单位和1个单位,因此可得y =)2cos(21π-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.点评:本题考查了曲线平移的基本方法及三角函数中的诱导公式。

相关文档
最新文档