定积分的概念和基本性质
第5.1节 定积分的概念及性质

§5.1 定积分的概念及性质一、定积分的定义5.1.1 定积分: 设)(x f 是定义在],[b a 上的有界函数,在],[b a 上任取一组分点b x x x x x a n i i =<<<<<<=−L L 110,这些分点将],[b a 分为n 个小区间],[10x x ,],[21x x ,…,],[1n n x x −记每个小区间的长度为:),,2,1(1n i x x x i i i L =−=∆−,并记},,,max{21n x x x ∆∆∆=L λ再任取点),,2,1(],[1n i x x i i i L =∈−ξ,作和式:∑=∆ni i i x f 1)(ξ,若和式的极限∑=→∆ni i i x f 1)(lim ξλ存在,则称)(x f 在区间],[b a 上可积,并称该极限为)(x f 在区间],[b a 上的定积分,记为∫b adx x f )(,即∑∫=→∆=ni i i bax f dx x f 1)(lim )(ξλ其中)(x f 称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间。
注:(1)定积分∫b adx x f )(表示一个常数值,它与被积函数)(x f 和积分区间],[b a 有关;(2)定积分的本质是一个和式的极限,该极限与区间的划分以及点i ξ的取法无关;5.1.2 函数可积的条件:(1)若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积; (2)若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积; (3)若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上可积; (4)有界不一定可积,可积一定有界,无界函数一定不可积。
5.1.3 定积分的几何意义:∫b adx x f )(表示以)(x f y =为曲边,以b x a x ==,为侧边,x 轴上区间],[b a 为底边的曲边梯形面积的代数和。
掌握定积分概念及基本性质

供需关系研究
通过定积分,可以研究市 场供需关系的变化。
投资回报分析
在金融领域,定积分可以 用来分析投资回报率的变 化。
05
掌握定积分的重要性
在数学中的地位
连接微积分两大核心概念
定积分与微积分息息相关,是微积分理论体系的重要组成部分, 掌握了定积分,就等于掌握了微积分的一半。
深化对极限概念的理解
定积分与极限概念紧密相连,掌握定积分有助于更深入地理解极限 的内涵和应用。
详细描述
牛顿-莱布尼兹公式是计算定积分的核心公式,它表示为∫baf(t)dt=F(b)-F(a),其中∫baf(t)dt表示函数f(t) 在区间[a, b]上的定积分,F(x)表示f(t)的原函数,即满足F'(x)=f(x)的函数。该公式通过选取合适的分割和 近似方式,将定积分转化为一系列小矩形面积之和,最后求和得到定积分的值。
为后续课程奠定基础
定积分是学习复变函数、实变函数等后续课程的基础,对于数学专 业的学生来说至关重要。
在其他学科中的应用价值
物理学中的应用
在物理学中,定积分常用于计算 面积分,例如在计算电磁场、引
力场等物理量的分布时。
工程学科中的应用
在工程学科中,定积分常用于解 决与几何形状、物理量分布等有 关的实际问题,如机械工程、土
定积分的几何意义
定积分的几何意义是函数图像与x轴所夹的面积。具体来说,将定积分表示的函 数图像与x轴围成的面积,即为定积分的值。
定积分的几何意义还可以理解为曲线与x轴所夹的“曲边梯形”的面积。这个曲 边梯形的高就是函数值,底就是x轴上的区间。
定积分的物理意义
定积分的物理意义是表示某个物理量在某个时间段或某个 区间内的累积效应。例如,物体的质量分布不均匀,其质 心位置可以通过对质量分布函数进行定积分来求解。
定积分的概念分析

定积分的概念分析定积分是微积分学中的重要概念之一,是对函数在一个闭区间上的加和运算。
它在物理学、经济学和工程学等领域有广泛的应用。
本文将对定积分的概念进行分析,并介绍一些相关性质和应用。
一、定积分的定义在介绍定积分的具体定义之前,先引入一些必要的概念。
设函数f(x)在闭区间[a,b]上连续,则将[a,b]等分为n个小区间,每个小区间的宽度为Δx。
在每个小区间上任取一个点ξi,并设Δx的极限为0,这时ξi变成了[a,b]上的任意一点x。
那么,将每个小区间上的函数值f(ξi)与对应小区间宽度Δx的乘积相加,即可得到一个加和运算,这个加和运算就是函数f(x)在闭区间[a,b]上的定积分,记作∫[a,b]f(x)dx。
定积分可以理解为一个求和的动作,将函数在一个区间上的无穷多个微小部分的面积或者长度,加和成一个整体。
二、定积分的几何意义几何上,定积分可以理解为曲线与坐标轴之间的有符号面积。
具体而言,设函数f(x)在闭区间[a,b]上非负,那么函数f(x)的图像与x轴之间的面积就等于定积分∫[a,b]f(x)dx。
如果函数f(x)在闭区间[a,b]上存在有负值的部分,那么对应的面积就具有有符号性,即正值部分与负值部分相互抵消。
三、定积分的性质1. 积分的线性性质:对于任意两个函数f(x)和g(x),以及实数a和b,有∫[a,b](af(x) + bg(x))dx = a∫[a,b]f(x)dx + b∫[a,b]g(x)dx。
2. 积分的次序性:对于任意两个实数a和b,当a < b时,有∫[a,b]f(x)dx = -∫[b,a]f(x)dx。
3. 积分的区间可加性:对于任意三个实数a、b和c,当a < b < c 时,有∫[a,c]f(x)dx = ∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
4. 积分的常数性质:当f(x)在闭区间[a,b]上连续时,有∫[a,b]dx = b - a。
初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质定积分作为数学中的一个重要概念,是初中数学学习中必须掌握的内容之一。
本文将从定积分的基本概念和性质两个方面进行归纳,帮助初中生更好地理解和掌握这一知识点。
1. 定积分的基本概念定积分是对函数在一定区间上的积分,可以理解为曲线与x轴所夹的面积。
具体而言,定积分可以表示为∫ab f(x)dx,其中a和b分别表示积分的下限和上限,f(x)表示被积函数。
定积分的计算方法有多种,常见的有几何法和定积分的运算法则。
几何法是通过图形的面积进行计算,而定积分的运算法则则利用不定积分求解。
2. 定积分的性质定积分具有以下几个性质:(1)可加性:对于函数f(x)和g(x),定积分具有可加性,即∫ab[f(x) + g(x)] dx = ∫ab f(x) dx + ∫ab g(x) dx。
(2)线性性:对于任意实数k,定积分具有线性性质,即∫ab kf(x) dx = k∫ab f(x) dx。
(3)区间可加性:对于函数f(x)在区间[a, b]上的定积分,可以将该区间分割成若干小区间,然后进行分别计算再求和,即∫ab f(x) dx =∑(i=1 to n) ∫xi-1 xi f(x) dx,其中[xi-1, xi]表示分割后的小区间。
(4)定积分的性质与原函数相关:如果函数F(x)在区间[a, b]上是函数f(x)的原函数,则∫ab f(x) dx = F(b) - F(a)。
(5)无关紧要的加法常数:定积分无关紧要的加法常数,即∫abf(x) dx = ∫ab [f(x) + C] dx,其中C为任意常数。
3. 定积分的应用定积分不仅仅在数学理论中有重要应用,还广泛应用于物理、经济学等实际问题中。
以下是一些常见的应用场景:(1)面积计算:定积分可以用来计算曲线与x轴所夹的面积,从而解决几何学中的面积问题。
(2)求解平均值:对于某些变量随时间变化的过程,可以通过定积分计算平均值,如平均速度、平均密度等。
定积分的概念和性质

a
性质1 函数的和(差)的定积分等于它们的定 积分的和(差)。即
∫ [ f ( x) ± g ( x)]dx = ∫
a
b
b
a
f ( x ) dx ± ∫ g ( x ) dx
a
b
• 证
∫ [ f ( x) ± g ( x)]dx = lim ∑ [ f (ξ ) ± g (ξ )]∆x λ
a →0 i =1 n i i
y y=f(x)
0
a=x0 x1 x2 x3 xi −1
xi
xn −1 x = b n
x
(2)取近似:将这些细长条近似地看作一个个小矩形
在第 i个小曲边梯形的底 [ x i −1 , x i ]上任取一点 ξ i x i −1 ≤ ξ ≤ x i ), ( 它所对应的函数值是 f (ξ i ).用相应的宽为 ∆x i , 长为 f (ξ i )的小矩形 面积来近似代替这个小 曲边梯形的面积,即 ∆Ai ≈ f (ξ i ) ∆x i
• 证
b
a
kf ( x)dx = k ∫ f ( x)dx
a
b
(k为常数)
∫
b
a
kf ( x)dx = lim ∑ kf (ξ i )∆xi
λ →0
i =1 n b
n
= k lim ∑ f (ξ i )∆xi = ∫ f ( x)dx
λ →0
i =1 a
• 性质3 (定积分的区间可加性) 若a < c < b,则
f (ξ i ) ∆ x i .
f(ξ) i
0
a=x0 x1
x2 xi −1ξixi
xn −1 x = b n
x
5.1 定积分的概念与性质

lim ( )Δ =
→0
=1
则称这个极限为函数()在区间[, ]上的定积分,记为
න ()d
第一节 定积分的概念与性质
定积分
第五章
即
积分上限
定积分
积分和
න ()d = = lim ( )Δ
积分下限
→0
=1
被积被
积分积
[, ]积分区间 函 变 表
[, ]
[, ]
( − )≤ න ()d ≤( − ) ( < )
证
∵ ≤()≤,
∴ න d≤ න ()d≤ න d ,
( − )≤ න () d≤( − ).
第一节 定积分的概念与性质
此性质可用于
估计积分值的
第五章
8. 定积分中值定理
如果 () 在区间[, ]上连续, 则至少存在一点 ∈ [, ], 使
න ()d = ( )( − )
证
设()在[, ]上的最小值与最大值分别为 , ,
1
න ()d≤
则由性质7可得 ≤
−
根据闭区间上连续函数介值定理, ∃ ∈ [, ], 使
= lim ( )
=
lim ( ) ⋅
→∞
− →∞
故它是有限个数的平均值概念的推广.
第一节 定积分的概念与性质
把区间[, ]分成个小区间,
[0 , 1 ], [1 , 2 ], ⋯ , [−1 , ], ⋯ , [−1 , ]
各个小区间的长度依次为
定积分的基本概念与性质

定积分的基本概念与性质定积分是微积分的重要概念之一,它在数学和物理学等领域中有着广泛的应用。
本文将介绍定积分的基本概念、计算方法以及一些重要性质。
一、定积分的基本概念定积分是指在给定区间上某一函数的积分运算。
具体来说,设函数f(x)在区间[a, b]上有定义,将区间[a, b]划分成n个小区间,每个小区间的长度为Δx。
在每个小区间上取一个样本点ξi,并计算出该点的函数值f(ξi)。
然后,将每个小区间的函数值与对应的Δx乘积相加,得到Σf(ξi)Δx。
当其中的Δx趋近于0且取样本点数n趋向于无穷大时,得到的极限值即为函数f(x)在区间[a, b]上的定积分,记为∫[a, b]f(x)dx。
二、定积分的计算计算定积分可以利用定积分的性质以及一些基本积分公式。
其中,常用的计算方法有:几何法、分部积分法、换元积分法等。
几何法是通过对定积分的几何意义进行理解来进行计算。
例如,计算函数f(x)=x在区间[a, b]上的定积分,可以将其表示为对应曲线下方的面积。
根据不同曲线形状,可以将区间划分成不同的几何图形,计算各个图形的面积,并将其相加得到结果。
分部积分法是利用积分运算的乘法规则,将待求的定积分转化为另一个不定积分的形式。
通过选择适当的u(x)和v(x),利用公式∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx,可以将原定积分转化为带有初等函数的不定积分。
换元积分法是通过引入新的变量进行变换,使得求解定积分问题简化。
假设有一个函数f(g(x)),利用链式法则可以得到d[f(g(x))]/dx =f'(g(x))*g'(x)。
通过令u=g(x),则有du=g'(x)dx,可以将定积分∫f(g(x))g'(x)dx 转换为∫f(u)du,此时就可以利用基本的不定积分公式进行计算。
三、定积分的性质定积分具有一些重要的性质,下面将介绍其中的几个性质。
第五章 积分 5-1 定积分的概念与基本性质

b
b
|
a
f (x)d
x|
|
a
f (x)|d
x.
证明 由于 | f (x) | f (x) | f (x) |, 应用性质 3
b
b
b
a | f (x)|d x | a f (x) d x a | f (x)|d x,
43
4
1
1
1
2
7 1 sin 2
1 sin 2 x 1 sin 2
, 3
3
4
所以
21
3
4
4 7
d
x
3
4
dx 1 sin 2
x
3
4
2 3
d
x
.
18
《高等数学》课件 (第五章第一节)
推论 2 设 f R [a, b], 且在 [a, b] 上 f (x) 0, 则
b
a f ( x) d x 0.
性质 2 (积分对区间的可加性) 设 a c b, f R [a, b], 则 f R [a, c], f R [c, b],
且
b
c
b
f (x) d x f (x) d x f (x) d x.
a
a
c
一般, 当上式中三个积分都存在时, 无论 a, b, c 之间具有怎样 的大小关系, 等式都成立.
当 f (x) R [a, b] 时, 可在积分的定义中, 对 [a, b] 作特殊的分
划, 并取特殊的 i [x i 1, x i] , 计算和式. 如等分区间 [a, b], 并取 点 i 为 [x i 1, x i] 的右端点 x i 或左端点 x i 1 或中点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数,求此物体在时间区间 [a, b] 内运动所走距离 s 。
解:(1) 用分点 t=ti (ti1<ti , i=1, 2, , n1) 把[a, b]分割成 n 个小的 时间段,第i个时间段为 [ti1, ti],长度记为ti =ti ti1。
(2) 在第 i ( i=1, 2, , n) 个时间段 [ti1, ti]上任取一时刻 ti,用
取极限
得到整体量的精确值;
9
4.3.1 定积分的定义
定义 4.3.1:
将
区间任意分成 n 份,分点依次为
在每一个小区间[xi-1 , xi]上任取一点ci, 作乘积
f (ci )xi (xi = xi xi1) (i = 1,2,, n)
n
= f (ci )xi i =1
无论区间的分法如何, ci在[xi-1, xi]上的取法如何,如果 当最大区间长度 = m1iaxn {xi}
...
1 n
( n 1)2
n
(
i(nni 1)2)2
S
x
3 n 2n
... ... O 1 2
i 1 i
n 1 1
nn
nn
n
(4)取极限 取Sn的极限,得曲边三角形面积:
SS==lliimm nn
SSnn==
lliimm
nn
11 33
((11
11))((11 nn
11 )) 22nn
===111。 。 333
f ( ) = 1
b
f (x)dx
(b a) a
27
课本例题: 例5:不计算积分,试比较下面两个积分的大小
/2 xdx与
/2
sin xdx
0
0
28
b x
y = f(x)
17
函数f(x)在区间[a, b]上的定积分表示为直线x=a, x=b, y=0所围成的几个曲边梯形的面积代数和。
b
a f (x)dx = S1 S2 S3
S1
a
S2
S3
b
18
课本例题: 例3:利用定积分几何意义验证:
1 1 x2 dx =
1
2
例4:在区间[a, b]上,若f(x)>0, f’(x)>0, 利用定积分
b
b
b
a f (x) dx a f (x)dx a f (x) dx
26
4.3.2 定积分的基本性质
性质8:定积分中值定理
设f(x) 在区间[a, b]上连续,则在[a, b]内至少有一点ξ (a ≦ ξ ≦b), 使得下式成立:
b
a f (x)dx = f ( )(b a)
同时, 我们称下式为f(x)在[a, b]上的平均值
n
f (f(ic)i)xxii。
i =1
定积分的相关名称:
积分号 积分上限
b
I = a f (x) dx
积分变量
积分下限 被积函数
f (x) dx —称为被积表达式. [a, b] —称为积分区间
12
注意: 定积分与不定积分的区别
定积分和不定积分是两个完全不同的概念. 不定积分是微分的逆运算 而定积分是一种特殊的和的极限
SS== lliimm nn
SSnn==
lliimm
nn
11 33
((11
11))((11 nn
11 )) 22nn
===111。 。 333
5
例: 求曲线 y=x2、直线 x=1和 x轴所围成的曲边三角形的面积。
分割 近似 求和 取极限
把整体的问题分成局部的问题 在局部上“以直代曲”, 求出 局部的近似值; 得到整体的一个近似值;
=
lim
0
n i =1
v(ti ) ti
O
... ... a =t0 t1
ti1 ti ti
tn1 tn= b t
8
实例一:求曲边梯形的面积 实例二:求物体作变速直线运动所经过的路程
分割 近似替代
求和
把整体的问题分成局部的问题
在局部上“以直代曲”或以 “不变代变”求出局部的近似 值; 得到整体的一个近似值;
v(ti)ti近似替代物体在第i个时间段所走距离: siv(ti)ti 。
(3) 将物体在各时间段所走距离的近似值求和,并作为物体在区
间[a,
b]内所走距离
s
的近似值:S
n
v(t i ) ti
i =1
(4) 记=max{t1,t2,,tn},取极限0,则物体在时间区间
[a,
b]内运动的距离:
S
几何意义验证:
b
f (a)(b a) a f (x)dx f (b)(b a)
19
4.3.2 定积分的基本性质
性质1:
有限个可积函数代数和的积分等于各函数积分的代数和, 即若fi(x) (i = 1, 2, …, n)在[a, b]内可积,则有
b
[
a
f1(x)
f2 ( x)
fn (x)]dx
(2)近似 第 i个小曲边梯形面积:
si
1 n
(i
1)2 n
(i = 1,2, ... , n)
y
(3)求和 小矩形面积的总和:
y=x2
Sn
=
0
1 n
1 n
(1)2 n
1 n
(2)2 n
...
1 n
( n 1)2 n
1) = 1 (1 1 )(1 1 ) 。 3 n 2n
(i 1)2 n
b
当a = b时,
b
f (x)dx = 0.
a
15
当
f(x)0
时,积分
b
f
(x)dx
a
在几何上表示由 y=f (x)、
x = a, x = b及 x 轴所围成的曲边梯形的面积。
lim b f (x)dyx,S即= b
a
a
nn
f
(x)dx
=lim
0 i0=1
f (f(ic)i)xxii。
y=x2
(3)求和 小矩形面积的总和:
Sn
=
1 n
0
1 n
( 1 )2 n
1 n
( 2 )2 n
...
1 n
( n 1)2 n
n 1) = 1 (1 1 )(1 1 ) 。 3 n 2n
O
1
2 ...
i 1
S
x
i ... n 1 1
nn
nn
n
(4)取极限 取Sn的极限,得曲边三角形面积:
S
x
S Sn
... ... O 1 2
i 1 i
n 1 1
Байду номын сангаас
nn
nn
n
(4)取极限
取Sn的极限,得曲边三角形面积:
SS==lliimm nn
SSnn==
lliimm
nn
11((11 33
11))((11 nn
11 )) 22nn
===111。。 333
3
(1)分割
将区间[0,1]分成n个相等的小区间。 直线 x = i (i = 1,2,..., n 1)把曲边三角形分成n个小曲边梯形。
(2) 在第i个小区间[xi1, xi]上任取一点i ,用第i个小矩形的面积近似替代
第i个小曲边梯形的面积:Ai f ( i ) xi (i = 1, 2, , n)
(3) 将全部小矩形面积求和后作为
y
曲边梯形面积 S 的近似值。即有
n
S f(i)xi。
i =1
(4) 记=maxx1, x2, xn,为得到
(1) 由连续曲线y=f(x) (f(x)0) ,直线x=a、x=b及x
轴所围成的曲边梯形的面积为
b
S=
f (x)dx;
a
(2) 设物体运动的速度v=v(t),则此物体在时间区
间[a, b]内运动的距离s为
b
s=
v(t)dt。
a
14
规定:
当a b时,
b
f (x)dx =
a
f (x)dx;
a
22
4.3.2 定积分的基本性质
性质4:积分的可加性定理
交换积分上下限,积分值变号,即
b
a
a f (x)dx = b f (x)dx
特别地,若a=b,则
a
a
a
a f (x)dx = a f (x)dx a f (x)dx = 0
23
4.3.2 定积分的基本性质
性质5:
设f(x)和g(x)在[a, b]上皆可积,且满足条件f(x) ≦g(x),则
i =1
y=f (x)
Oa
b
a f (x)d x
x
b
16
f (x) 0时, f (x) 0,设以y = f (x)为曲边的曲边
梯形面积为S , 则
n
n
S
= lim 0
[ f
i =1
(ci )]xi
=
lim 0
[ f
i =1
(ci )]xi
b
y
= a f (x)dx
a
从而有
O
S
b
a f (x)dx = S
n
S = s1 s2 ... s i ... s n1 s n
(2)近似 第 i个小曲边梯形面积:
y
si
1 n
(i
1)2 n
(i = 1, 2, ... , n)
y=x2