第七章多传感器信息融合技术
多传感器信息融合技术研究

多传感器信息融合技术研究一、引言随着科技的发展,传感器技术也得到了极大的进步。
传感器的种类、数量和分布不断增加,但难以充分利用这些传感器的信息。
多传感器信息融合技术可以帮助我们更好地利用这些信息。
本文将介绍多传感器信息融合技术的基本概念、研究内容和研究方向。
二、多传感器信息融合技术的基本概念多传感器信息融合技术是指将多个传感器的信息进行整合,通过某些方法将这些信息联合起来,获取更加全面、准确、可靠的信息。
多传感器信息融合技术是一种综合性技术,它涉及统计学、概率论、模式识别、人工智能、控制理论等多个领域。
三、多传感器信息融合技术的研究内容多传感器信息融合技术的研究内容主要包括以下几个方面:1. 传感器数据处理与融合方法:将传感器采集到的数据进行初步处理,去除噪声、滤波等,然后将不同传感器采集到的数据进行融合,归纳得到全面的信息。
传感器数据处理与融合方法是多传感器信息融合技术中的核心环节,它对系统准确性和可靠性的提高有着至关重要的作用。
2. 融合算法的设计与实现:根据传感器所采集到的不同数据类型,选择不同的融合算法适用于多种不同的系统环境,如传感器网络环境、多机器人协作环境、多目标跟踪环境等。
融合算法的设计与实现是多传感器信息融合技术的关键。
3. 系统建模与仿真:多传感器信息融合技术需要建立一套系统学理论,在建模时考虑多个传感器之间的关系,并将融合后的数据用于精确建模和仿真系统分析。
4. 系统集成与实例研究:多传感器信息融合技术在各个领域都有着广泛应用,如军事、遥感、智慧交通、环保、医疗等。
集成不同领域的应用,针对实际问题进行研究,解决实际问题,以提升现实中的效益。
四、多传感器信息融合技术的研究方向1. 提高系统可靠性:研究新的传感器节点设计方案,探索新的分布式传感器布局方式,提高系统的可靠性和稳定性,为制定更为合理且全面的解决方案和策略提供坚实的基础。
2. 发展新的融合算法:研究新的融合算法,通过对已有算法进行改进和创新,提高系统处理和融合效率、准确率,进一步提升整个系统的性能。
多传感器融合

Outline
引言 多传感器信息融合基础理论 多传感器后融合技术 多传感器前融合技术 本章小结
引言
必然性
不同车载传感器的原理、功能各异,不同传感器在不同的场景下发挥着各自优势,其获 取的信息各不相同,不能相互替代。由于每个传感器的差异,仅通过增加单一传感器数量并 不能从根本上解决问题。实现自动驾驶,就需要多个传感器相互配合,共同构成自动驾驶汽 车的感知系统。
Low-level融合
特征级融合指在提取所采 集数据包含的特征向量之 后融合。特征向量用来体 现所监测物理量的属性, 在面向检测对象特征的融 合中,这些特征信息是指 采集图像中的目标或特别 区域,如边缘、人物、建 筑或车辆等信息,其结构 如右图所示。
Low-level融合
根据融合内容,特征级融合又分为目标状态信息融合和目 标特性融合两大类。其中,前者是先进行数据配准,以实 现对状态和参数相关估计,更加适用于目标追踪。后者是 借用传统模式识别技术,在特征预处理的前提下进行分类 组合。
AVOD
AVOD是一种融合激光雷达点云数据以及RGB图像信息的3D 目标检测算法,与MV3D不同的是,它的输入只有激光雷达 生成的BEV(Bird's Eye View) Map和相机采集的RGB图像, 舍弃了激光雷达FV(Front View)和BEV中的密度特征( Intensity Feature),其网络结构如图所示。
Low-level融合
Low-level融合体系结构是一种较 低信息层次上的融合,是集中式 融合结构。集中式融合结构将各 传感器获得的原始数据直接送到 数据融合中心,进行数据对准、 数据关联、预测等,在传感器端 不需要任何处理,可以实现实时 融合,其结构示意图如右图所示 。
多传感器信息融合技术概论

多传感器信息融合技术概论
一、概述
传感器信息融合技术(Sensor Fusion Technology),简称SFT,是
一种应用于智能传感器和其它各类传感器的信息整合技术,其主要的工作
原理是将多个传感器数据进行整合,并将其中的有效信息提取出来,得到
更准确、更完整的信息,形成综合的信息资源。
此外,通过SFT可以实现
多传感器的协同联动控制,提高信息的精确度,实现有效的信息流控制。
传感器信息融合技术应用于无人机等领域,可以发挥出更大的作用,
有效地克服了一般传感器周期性报警受干扰,通过多个传感器资源的信息
整合,将信息资源作为一个统一的信息资源,从多个角度面向这一统一信
息的识别,实现更为准确的目标检测、识别、跟踪。
二、原理及应用
1、原理
传感器信息融合技术是将传感器信息以及其它感测资源做综合整合,
使其相互结合,实现综合信息的获取和分析,从而得到更加准确、完整的
信息,从而达到更高的应用效果。
传感器信息融合技术在实际应用中,通常采用三阶段的流程:
(1)传感器信息采集。
此阶段是通过不同的传感器对目标进行感测,获取到关于目标的信息,包括位置、速度、距离等。
(2)信息整合。
多传感器信息融合技术ppt课件

15
五、信息融合方法的实际应用
未完待续......
16
14
5)其他内容,如空间信息融合、面向通用知识的融合、 信息融合中的智能数据库技术和精细化处理研究等。 6)确立具有普遍意义的信息融合模型标准和系统结构 标准。 7)将信息融合技术应用到更广泛的新领域。 8)改进融合算法以进一步提高融合系统的性能。 9)开发相应的软件和硬件,以满足具有大量数据且计 算复杂的多传感器融合的要求。
3混合型 混合型信息融合结构吸收了分散型和集中型信息融合结构的优 点,既有集中处理,又有分散处理,各传感器信息均可多次利用。 这一结构能得到比较理想的融合结果,适用于大型的多传感器信息 融合,但其结构复杂,计算量很大。
10
4反馈型 当系统对处理的实时性要求很高的时候,如果总是试图 强调以最高的精度去融合多传感器信息融合系统的信息,则 无论融合的速度多快都不可能满足要求,这时,利用信息的 相对稳定性和原始积累对融合信息进行反馈再处理将是一种 有效的途径。当多传感器系统对外部环境经过一段时间的感 知,传感系统的融合信息已能够表述环境中的大部分特征, 该信息对新的传感器原始信息融合具有很好的指导意义。
5
(一)、多传感器信息融合的融合层次
1像素层融合 它是最低层次的融合,是在采集到的传感器的原始信息层 次上(未经处理或只做很少的处理)进行融合,在各种传感器的 原始测报信息未经预处理之前就进行信息的综合和分析。其优 点是保持了尽可能多的战场信息;其缺点是处理的信息量大, 所需时间长,实时性差。
6
2特征层融合 属于融合的中间层次,兼顾了数据层和决策层的优点。 它利用从传感器的原始信息中提取的特征信息进行综合分析和 处理。也就是说,每种传感器提供从观测数据中提取的有代表 性的特征,这些特征融合成单一的特征向量,然后运用模式识 别的方法进行处理。这种方法对通信带宽的要求较低,但由于 数据的丢失使其准确性有所下降。
多传感器信息融合技术

概 述 传感器信息融合旳分类和构造 传感器信息融合旳一般措施 传感器信息融合旳实例
第一节 概 述
一、概念
传感器信息融合又称数据融合,是对多种信息旳获 取、表达及其内在联络进行综合处理和优化旳技术。传 感器信息融合技术从多信息旳视角进行处理及综合,得 到多种信息旳内在联络和规律,从而剔除无用旳和错误 旳信息,保存正确旳和有用旳成份,最终实现信息旳优 化。它也为智能信息处理技术旳研究提供了新旳观念。
三、优点
➢增长了系统旳生存能力 ➢扩展了空间覆盖范围 ➢扩展了时间覆盖范围 ➢提升了可信度 ➢降低了信息旳模糊度 ➢改善了探测性能 ➢提升了空间辨别率 ➢增长了测量空间旳维数
第二节 传感器信息融合分类和构造
一、传感器信息融合分类
1、组合:由多种传感器组合成平行或互补方式来取得多组数据输 出旳一种处理措施,是一种最基本旳方式,涉及旳问题有输出方式 旳协调、综合以及传感器旳选择。在硬件这一级上应用。 2、综合:信息优化处理中旳一种取得明确信息旳有效措施。 例:在虚拟现实技术中,使用两个分开设置旳摄像机同步拍摄到一 种物体旳不同侧面旳两幅图像,综合这两幅图像能够复原出一种精 确旳有立体感旳物体旳图像。 3、融合:当将传感器数据组之间进行有关或将传感器数据与系统 内部旳知识模型进行有关,而产生信息旳一种新旳体现式。 4、有关:经过处理传感器信息取得某些成果,不但需要单项信息 处理,而且需要经过有关来进行处理,得悉传感器数据组之间旳关 系,从而得到正确信息,剔除无用和错误旳信息。 有关处理旳目旳:对辨认、预测、学习和记忆等过程旳信息进行综 合和优化。
概率分布密度函数,则
p( f , d) p( f | d) p(d) p( f | d) p( f )
多传感器信息融合技术

多传感器信息融合的应用
地质科学方面( 地质科学方面(2/5)
遥感领域,是指利用卫星图像和航空图像进行地质研究,进行 公路、机场、山区的探测。目前,在该领域的主要问题仍是图 像的分类和译码问题,仍需进一步的研究。
多传感器信息融合技术
XXXX
主要内容
1 2 3 4
多传感器信息融合的概念
多传感器信息融合的基本框架
多传感器信息融合的应用
多传感器信息融合存在的问题
多传感器信息融合的概念
信息融合(InformationFusion)技术亦称为多传感器信 信息融合(InformationFusion)技术亦称为多传感器信 (InformationFusion) 息融合技术; 国内亦有人称为数据融合技术。 息融合技术 ; 国内亦有人称为数据融合技术 。 信息融 合是利用计算机技术对按时序获得的若干传感器的观 测信息在一定准则下加以自动分析、 优化综合, 测信息在一定准则下加以自动分析 、 优化综合 , 为完 成所需要的决策和估计任务而进行的信息处理过程。 成所需要的决策和估计任务而进行的信息处理过程。
参考文献
[1]简小刚,贾鸿盛,石来德.多传感器信息融合技术的研究进展.中国 工程机械学报,2009.6 [2]郭惠勇.多传感器信息融合技术的研究与进展.中国科学基金,2005 [3]吴雾,于涛,蔡希尧.多传感器数据融合技术及其应用.空间电子技 术,1994 [4]孙辉,赵峰,张峰云.多传感器数据融合技术及其应用.海洋测 绘,2009.9 [5]关宇,杨晓京,姜涛.农业机器人多传感器信息融合技术的研究进展. 安徽农业科学,2010 [6]张明路,戈新良,唐智强,刘兴荣.多传感器信息融合技术研究现状 和发展趋势.河北工业大学学报,2003.4 [7]曹辉,吴超仲,严新平.多传感器信息融合技术及其在驾驶模拟器中 的应用.交通与计算机,2004.4 [8]黄惠宁,刘源璋,梁昭阳.多传感器数据融合技术概述. SCIENCE & TECHNOLOGY INFORMATION,2010
毕业论文多传感器信息融合技术

毕业论文多传感器信息融合技术绪论随着现代信息技术的不断发展,各个领域的传感器技术逐渐成熟,传感器逐渐应用于国民经济的各个领域中。
传感器是一种将某些非电学量(如温度、压力、光线等)变成电学信号的装置,它们可以将测量的各种参数转换为模拟量或数字量传输给数据处理系统,然后形成预期的控制操作或策略,从而具有很高的测量精度和可靠性。
多传感器信息融合技术是指利用多种传感器测量同一参数进行数据分析和处理,进而提高测量的精度和可靠性的技术。
传感器数据融合系统能够对数据进行计算和处理,形成更完整和准确的数据。
随着科学技术的发展,传感器数量呈现爆炸式增长,多传感器信息融合技术成为了一种必不可少的工具。
多传感器信息融合技术的原理多传感器信息融合技术依靠传感器测量结果的精确度来保障信息融合精度,进而实现合成数据的准确性。
多传感器信息融合技术根据传感器的类型和数量将信号分为不同的信号源,通过提取各种传感器的测量结果,并将其融合在一起,进而形成一个更准确和完整的数据结果。
通过多传感器信息融合技术,可以改善单个传感器的一些不足和缺陷,避免由单个传感器引起的误差和偏差。
多传感器信息融合技术可以大大提高控制的精度和效率,优化决策等方面的性能。
多传感器信息融合技术的应用随着技术的不断发展,多传感器信息融合技术已经广泛应用于许多领域中。
以下是一些典型的应用场景。
1.医疗健康多传感器信息融合技术可以实时监测病人的健康状况,进而为疾病的治疗提供准确和及时的数据。
例如,利用多个传感器监测心脏和血压等指标的数据,形成全面准确的健康信息,帮助医生进行个性化治疗和药物管理。
2.智能交通多传感器信息融合技术可以通过对交通数据的收集和分析,提高交通管理的效率和精度。
例如,在路况检测中,利用车载传感器、GPS 等多种传感器获取车辆行驶信息,形成实时交通拥堵状况。
此外,传感器网络还能够监测路面破损、交通事故等,并及时提供处理方案,为交通管理提供更加智能化和精准化服务。
多传感器信息融合技术的原理和应用

一、概述随着物联网、智能交通系统、智能制造等领域的迅速发展,传感器技术的应用日益广泛。
多传感器信息融合技术作为其中一种重要技术,其原理和应用备受关注。
本文将针对多传感器信息融合技术的原理和应用进行深入探讨。
二、多传感器信息融合技术的原理1. 传感器信息融合概述传感器信息融合是利用多个传感器获得的信息,通过合理的融合算法和处理方法,得到比单个传感器更准确、更全面的信息。
传感器信息融合技术在多领域有着广泛的应用,如军事、航空航天、智能交通等。
2. 传感器融合的优势多传感器信息融合技术的优势主要表现在提高信息获取的准确性、可靠性和全面性等方面。
通过融合多个传感器的信息,可以弥补单个传感器信息不足的缺陷,提高信息的综合利用效率。
3. 传感器信息融合的原理传感器信息融合的原理主要包括数据融合和决策融合两个方面。
数据融合是将来自不同传感器的原始数据进行整合处理,得到更完整、更准确的信息;决策融合则是基于融合后的数据进行分析和判断,得出最终的决策结果。
4. 传感器信息融合的方法在实际应用中,常见的传感器信息融合方法包括卡尔曼滤波、粒子滤波、最大似然估计等。
这些方法在不同的应用场景下都能够有效地实现传感器信息的融合和提取。
三、多传感器信息融合技术的应用1. 智能交通系统中的应用在智能交通系统中,通过融合多个传感器的信息,如地磁传感器、摄像头、雷达等,可以实现对车辆、行人的实时监测和跟踪,提高交通管理的效率和精准度。
2. 智能制造领域中的应用在智能制造领域,通过融合各类传感器的信息,可以实现对生产过程的实时监测和控制,提高生产效率和产品质量。
3. 军事领域中的应用在军事领域,多传感器信息融合技术被广泛应用于目标探测、识别和追踪等方面,可以提高军事作战的效能和保障国家安全。
四、多传感器信息融合技术的发展趋势1. 传感器融合技术的发展随着传感器技术的不断发展和进步,传感器信息融合技术也在不断演进,新的传感器类型和融合算法不断涌现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在传感器数据进行融合之前,必须确保测量数据代表 同一实物,即要对传感器测量进行一致性检验。常用 以下距离公式来判断传感器测量信息的一致:
T
1 2
( x1
x2 )T
C 1 x1
x2
式中x1和x2为两个传感器测量信号,C为与两个传感 器相关联的方差阵,当距离T小于某个阈值时,两个 传感器测量值具有一致性。这种方法的实质是剔除 处于误差状态的传感器信息而保留“一致传感器” 数据计算融合值。
二、信息融合的结构
信息融合的结构分为串联和并联两种
C1,C2,…,Cn表示n个传感器
S1,S2,…,Sn表示来自各个传感器信息融合中心的数据
y1,y2,…,yn表示融合中心。
C1
Y1
S1
C2
Y2
C1 C2 … Cn
…
S2
Cn
Yn
Y
Sn (a) 串联
S (b) 并联
三、信息融合系统结构的实例
传感器信号
局部 处理器
传感器信号
局部 处理器
先验信息 修正信息
修正信息 先验信息
外部逻辑
中央 处理器
传感器故障 检测系统
一种雷达测量的信息融合结构
第三节 传感器信息融合的一般方法
嵌入约束法、证据组合法、人工神经网络法
一、嵌入约束法
由多种传感器所获得的客观环境(即被测对象)的多组数 据就是客观环境按照某种映射关系形成的像,信息融 合就是通过像求解原像,即对客观环境加以了解。用 数学语言描述就是,所有传感器的全部信息,也只能 描述环境的某些方面的特征,而具有这些特征的环境 却有很多,要使一组数据对应惟一的环境(即上述映射 为一一映射),就必须对映射的原像和映射本身加约束 条件,使问题能有惟一的解。 嵌入约束法最基本的方法:Bayes估计和卡尔曼滤波
3、在自动化领域
以各种控制理论为基础,信息融合技术采用模糊控制、 智能控制、进化计算等系统理论,结合生物、经济、社 会、军事等领域的知识,进行定性、定量分析。按照人 脑的功能和原理进行视觉、听觉、触觉、力觉、知觉、 注意、记忆、学习和更高级的认识过程,将空间、时间 的信息进行融合,对数据和信息进行自动解释,对环境 和态势给予判定。目前的控制技术,已从程序控制进入 了建立在信息融合基础上的智能控制。智能控制系统不 仅用于军事,还应用于工厂企业的生产过程控制和产供 销管理、城市建设规划、道路交通管理、商业管理、金 融管理与预测、地质矿产资源管理、环境监测与保护、 粮食作物生长监测、灾害性天气预报及防治等涉及宏观、 微观和社会的各行各业。
2.卡尔曼滤波(KF)
用于实时融合动态的低层次冗余传感器数据,该方法用 测量模型的统计特性,递推决定统计意义下最优融合数 据合计。如果系统具有线性动力学模型,且系统噪声和 传感器噪声可用高斯分布的白噪声模型来表示,KF为融 合数据提供惟一的统计意义下的最优估计,KF的递推特 性使系统数据处理不需大量的数据存储和计算。KF分为 分散卡尔曼滤波(DKF)和扩展卡尔曼滤波(EKF)。DKF可 实现多传感器数据融合完全分散化,其优点:每个传感 器节点失效不会导致整个系统失效。而EKF的优点:可 有效克服数据处理不稳定性或系统模型线性程度的误差 对融合过程产生的影响。
证据组合法是对完成某一任务的需要而处理多种传感器的 数据信息,完成某项智能任务,实际是做出某项行动决策。 它先对单个传感器数据信息每种可能决策的支持程度给出 度量(即数据信息作为证据对决策的支持程度),再寻找一 种证据组合方法或规则,在已知两个不同传感器数据(即 证据)对决策的分别支持程度时,通过反复运用组合规则, 最终得出全体数据信息的联合体对某决策总的支持程度。 得到最大证据支持决策,即信息融合的结果。
利用证据组合进行数据融合的关键在于:
选择合适的数学方法描述证据、决策和支持程度等概念 建立快速、可靠并且便于实现的通用证据组合算法结构
证据组合法较嵌入约束法优点: (1)对多种传感器数据间的物理关系不必准确了解,即无 须准确地建立多种传感器数据体的模型; (2)通用性好,可以建立一种独立于各类具体信息融合问 题背景形式的证据组合方法,有利于设计通用的信息融 合软、硬件产品; (3)人为的先验知识可以视同数据信息一样,赋予对决策 的支持程度,参与证据组合运算。 常用证据组合方法:
概率统计方法
Dempster-Shafer证据推理
1.概率统计方法
假设一组随机向量x1,x2,…,xn分别表示n个不同传 感器得到的数据信息,根据每一个数据xi可对所完成 的任务做出一决策di。xi的概率分布为pai(xi),ai为该分 布函数中的未知参数,若参数已知时,则xi的概率分 布就完全确定了。用非负函数L(ai,di)表示当分布参 数确定为ai时,第i个信息源采取决策dj时所造成的损 失函数。在实际问题中,ai是未知的,因此,当得到xi 时,并不能直接从损失函数中定出最优决策。
嵌入约束法传感器信息融合的最基本方法之一,
其缺点:需要对多源数据的整体物理规律有较好的了解, 才能准确地获得p(d|f),但需要预知先验分布p(f)。
二、证据组合法
证据组合法认为完成某项智能任务是依据有关环境某方面 的信息做出几种可能的决策,而多传感器数据信息在一定 程度上反映环境这方面的情况。因此,分析每一数据作为 支持某种决策证据的支持程度,并将不同传感器数据的支 持程度进行组合,即证据组合,分析得出现有组合证据支 持程度最大的决策作为信息融合的结果。
先由xi做出ai的一个估计,记为ai(xi),再由损失函数L [ai(xi),di]决定出损失最小的决策。其中利用xi估计ai的 估计量ai(xi) 有很多种方法。 概率统计方法适用于分布式传感器目标识别和跟踪信 息融合问题
2.Dempster-Shafer证据推理(简称D集,为集合F中的 某个元素即某个证据,首先引入信任函数B(f)∈[0,1]
1、在信息电子学领域
信息融合技术的实现和发展以信息电子学的原理、方法、 技术为基础。信息融合系统要采用多种传感器收集各种 信息,包括声、光、电、运动、视觉、触觉、力觉以及 语言文字等。信息融合技术中的分布式信息处理结构通 过无线网络、有线网络,智能网络,宽带智能综合数字 网络等汇集信息,传给融合中心进行融合。除了自然(物 理)信息外,信息融合技术还融合社会类信息,以语言文 字为代表,涉及到大规模汉语资料库、语言知识的获取 理论与方法、机器翻译、自然语言解释与处理技术等, 信息融合采用分形、混沌、模糊推理、人工神经网络等 数学和物理的理论及方法。它的发展方向是对非线性、 复杂环境因素的不同性质的信息进行综合、相关,从各 个不同的角度去观察、探测世界。
在嵌入约束法中,反映客观环境和传感器性能与原理的 各种约束条件主要体现在p(f|d) 中,而反映主观经验知 识的各种约束条件主要体现在p(f)中。
在传感器信息融合的实际应用过程中,通常的情况是在 某一时刻从多种传感器得到一组数据信息d,由这一组 数据给出当前环境的一个估计f。因此,实际中应用较多 的方法是寻找最大后验估计g,即
概率分布密度函数,则
p( f , d) p( f | d) p(d) p( f | d) p( f )
p(f|d)表示在已知d的条件下,f关于d的条件概率密度函数 p(f|d)表示在已知f 的条件下,d关于f的条件概率密度函数 p(d)和p(f)分别表示d和f的边缘分布密度函数
已知d时,要推断f,只须掌握p(f|d)即可,即
此时,最大后验概率也称为极大似然估计。
当传感器组的观测坐标一致时,可以用直接法对传感器 测量数据进行融合。在大多数情况下,多传感器从不同 的坐标框架对环境中同一物体进行描述,这时传感器测 量数据要以间接的方式采用Bayes估计进行数据融合。 间接法要解决的问题是求出与多个传感器读数相一致的 旋转矩阵R和平移矢量H。
1.Bayes估计
是融合静态环境中多传感器低层数据的一种常用方法。 其信息描述为概率分布,适用于具有可加高斯噪声的不 确定性信息。假定完成任务所需的有关环境的特征物用 向量f表示,通过传感器获得的数据信息用向量d来表示, d和f都可看作是随机向量。信息融合的任务就是由数据
d推导和估计环境f。假设p(f,d)为随机向量f和d的联合
第七章 多传感器信息融合技术
概 述 传感器信息融合的分类和结构 传感器信息融合的一般方法 传感器信息融合的实例
第一节 概 述
一、概念
传感器信息融合又称数据融合,是对多种信息的获 取、表示及其内在联系进行综合处理和优化的技术。传 感器信息融合技术从多信息的视角进行处理及综合,得 到各种信息的内在联系和规律,从而剔除无用的和错误 的信息,保留正确的和有用的成分,最终实现信息的优 化。它也为智能信息处理技术的研究提供了新的观念。
p( f | d) p(d | f ) p( f ) / p(d)
上式为概率论中的Bayes公式,是嵌入约束法的核心。
信息融合通过数据信息d做出对环境f的推断,即求解 p(f|d)。由Bayes公式知,只须知道p(f|d)和p(f)即可。因为 p(d)可看作是使p(f|d)•p(f)成为概率密度函数的归一化常 数,p(d|f)是在已知客观环境变量f的情况下,传感器得 到的d关于f的条件密度。当环境情况和传感器性能已知 时,p(f|d)由决定环境和传感器原理的物理规律完全确定。 而p(f)可通过先验知识的获取和积累,逐步渐近准确地 得到,因此,一般总能对p(f)有较好的近似描述。
2、在计算机科学领域
在计算机科学中,目前正开展着并行数据库、主动 数据库、多数据库的研究。信息融合要求系统能适 应变化的外部世界,因此,空间、时间数据库的概 念应运而生,为数据融合提供了保障。空间意味着 不同种类的数据来自于不同的空间地点,时间意味 着数据库能随时间的变化适应客观环境的相应变化。 信息融合处理过程要求有相应的数据库原理和结构, 以便融合随时间、空间变化了的数据。在信息融合 的思想下,提出的空间、时间数据库,是计算机科 学的一个重要的研究方向。