自动避障循迹小车毕业论文
智能循迹避障小车设计毕业论文

void bizhang()
{
en1=1;
en2=1;
goback();
mid_red=0;
baojing();
goback();
for(i=0;i<8;i++)
{
en1=1;
en2=1;
delay(150);
en1=0;
en2=0;
delay(50);
}
stop();
delay(10);
turgoahead();
delay(150);
en1=0;
en2=0;
delay(50);
}
else if((left_red==0)&(right_red==1))
{
en1=0;
en2=1;
P0_0=!P0_0;
turnleft();
delay(150);
en1=1;
en2=0;
针对本设计特点——多开关量输入的复杂程序控制系统,需要擅长处理多开关量的标准单片机,而不能用精简I/O口和程序存储器的小体积单片机,D/A、A/D功能也不必选用。根据这些分析,我选定了P89C51RA单片机作为本设计的主控装置,51单片机具有功能强大的位操作指令,I/O口均可按位寻址,程序空间多达8K,对于本设计也绰绰有余,更可贵的是51单片机价格非常低廉。
《2024年自循迹智能小车控制系统的设计与实现》范文

《自循迹智能小车控制系统的设计与实现》篇一一、引言随着人工智能与自动控制技术的快速发展,智能小车已经广泛应用于各种领域,如物流配送、环境监测、智能家居等。
本文将详细介绍一种自循迹智能小车控制系统的设计与实现过程,该系统能够根据预设路径实现自主循迹、避障及精确控制。
二、系统设计(一)系统概述自循迹智能小车控制系统主要由控制系统硬件、传感器模块、电机驱动模块等组成。
其中,控制系统硬件采用高性能单片机或微处理器作为主控芯片,实现对小车的控制。
传感器模块包括超声波测距传感器、红外线测距传感器等,用于感知周围环境并实时传输数据给主控芯片。
电机驱动模块负责驱动小车行驶。
(二)硬件设计1. 主控芯片:采用高性能单片机或微处理器,具备高精度计算能力、实时响应和良好的可扩展性。
2. 传感器模块:包括超声波测距传感器和红外线测距传感器。
超声波测距传感器用于测量小车与障碍物之间的距离,红外线测距传感器用于检测小车行驶路径上的标志线。
3. 电机驱动模块:采用直流电机和电机驱动器,实现对小车的精确控制。
4. 电源模块:为整个系统提供稳定的电源供应。
(三)软件设计1. 控制系统软件采用模块化设计,包括主控程序、传感器数据处理程序、电机控制程序等。
2. 主控程序负责整个系统的协调与控制,根据传感器数据实时调整小车的行驶状态。
3. 传感器数据处理程序负责对传感器数据进行处理和分析,包括距离测量、方向判断等。
4. 电机控制程序根据主控程序的指令,控制电机的运转,实现小车的精确控制。
(四)系统实现根据设计需求,通过电路设计与焊接、传感器模块的安装与调试、电机驱动模块的安装与调试等步骤,完成自循迹智能小车控制系统的硬件实现。
在软件方面,编写各模块的程序代码,并进行调试与优化,确保系统能够正常运行并实现预期功能。
三、系统功能实现及测试(一)自循迹功能实现自循迹功能通过红外线测距传感器实现。
当小车行驶时,红外线测距传感器不断检测地面上的标志线,并根据检测结果调整小车的行驶方向,使小车始终沿着预设路径行驶。
智能循迹避障小车论文

自动化专业导论智能循迹避障小车学生姓名:学号:指导教师:目录摘要引言第一章绪论1.1智能小车的背景1.2智能小车的现状第二章设计方案2.1设计任务2.2方案及轨道选择2.3智能小车元件介绍第三章硬件设计3.1总体设计3.2驱动电路3.3信号检测模块3.4主控线路第四章软件设计4.1主程序模块4.2电机驱动程序4.3循迹模块4.4避障模块第五章制作安装与调试作品总结致谢摘要利用红外对管检测黑线与障碍物,并以STC89C52单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。
其中小车驱动由L298N驱动电路完成,速度由单片机输出的PWM波控制。
关键词:智能小车;STC89C52单片机;L298N;红外对管引言2004年1月3日和1月24日肩负着人类探测火星使命的“勇气”号和“机遇”号在火星不同区域着陆,并于2004年4月5日和2004年4月26 日相继通过所有“考核标准”。
火星车能够在火星上自主行驶:当火星车发现值得探测的目标,它会驱动六个轮子向目标行驶;在检测到前进方向上的障碍后,火星车会去寻找可能的最佳路径。
据悉,中国的登月计划分三步进行:第一步,发射太空实验室和寻找贵重元素的月球轨道飞行器;第二步,实现太空机器人登月;第三步,载人登月。
随着“神舟”系列飞船和“嫦娥”月球探测卫星的成功发射,第一步接近成熟;第二步中太空机器人登月计划中的太空机器人应该能在月球上自主行驶,进行相关探测。
因此对于我国来说,类似于美国“勇气”号和“机遇”号火星车的智能车技术研究也显得迫在眉睫。
目前,城市交通的安全问题己引起各国政府有关部门的高度重视和全民的关注,专家、学者在分析城市交通事故的原因时,普遍认为事故原因主要包括:人员素质、运输车辆、道路环境和管理法规等四个方面,而车辆性能的提高即研发高性能的智能汽车是其中很重要的一个环节。
美国研究认为,包括智能汽车研究在内的智能运输系统对国家社会经济和交通运输有着巨大的影响,其意义和价值在于:大量减少公路交通堵塞和拥挤,降低汽车的油耗,可使城市交通堵塞和拥挤造成的损失分别减少25%-40%左右,大大提高了公路交通的安全性及运输效率,促进了交通运输业的繁荣发展。
毕业论文智能循迹避障小车解析

方案二:使用51单片机作为整个智能车系统的核心。用其控制智能小车,既可以实现预期的性能指标,又能很好的操作改善小车的运行环境,且简单易上手。对于我们的控制系统,核心主要在于如何实现小车的自动控制,对于这点,单片机就拥有很强的优势——控制简单、方便、快捷,单片机足以应对我们设计需求[5]。51单片机算术运算功能强,软件编程灵活、自由度大,功耗低、体积小、技术成熟,且价格低廉。
关键词:智能小车;AT89C51;光电传感器;L298N
Design of smart car for Automatic tracking,obstacle avoidance
Student:XXX(Faculty Adviser:XXX)
(College of electrical and Information Engineering, Huainan Normal University)
Keywords:Smart car; AT89C51; Photoelectric sensor; L298N
1
1.1
从工业革命开始,人们就开始了机器人的研究发展,近一个世纪机器人在机械领域,电力电子,冶金,交通,航空航天,国防事业等多方面得到了迅猛的发展。智能化机器人的不断发展,使得人们的生活方式也得到了不断的改善。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。
2
2.1
本次设计的智能小车实现的基本功能如下:
循迹小车毕业论文

循迹小车毕业论文循迹小车毕业论文引言:在如今科技高速发展的时代,机器人技术逐渐走入人们的生活,成为了一种热门的研究领域。
其中,循迹小车作为机器人的一种,具有广泛的应用前景。
本文将围绕循迹小车展开讨论,探索其原理、设计以及未来发展。
一、循迹小车的原理循迹小车是一种能够根据特定轨迹行驶的机器人。
它通过搭载的传感器,如红外线传感器或摄像头,实时感知周围环境,并根据预设的循迹算法进行行驶。
该算法能够分析传感器所接收到的信号,并判断车辆应该如何转向,从而保持在特定轨迹上行驶。
二、循迹小车的设计1. 传感器设计循迹小车的传感器设计是关键之一。
红外线传感器是常用的传感器之一,它能够通过接收反射的红外线信号,判断车辆是否偏离轨迹。
除此之外,摄像头也是一种常见的传感器选择,它能够实时捕捉车辆周围的图像,并通过图像处理算法判断车辆的位置和方向。
2. 控制系统设计循迹小车的控制系统设计是确保车辆按照预设轨迹行驶的核心。
控制系统通常由微控制器、电机驱动器和电源组成。
微控制器负责接收传感器的信号,并根据循迹算法控制电机驱动器实现车辆的转向和速度调整。
电源则提供所需的电能。
3. 车体结构设计循迹小车的车体结构设计需要考虑到载重能力、稳定性和机动性。
车体通常由轮子、底盘和支撑结构组成。
轮子的选择要考虑到摩擦力和抓地力,底盘的设计要考虑到重心的稳定性,支撑结构的设计则要保证车体的整体稳定性。
三、循迹小车的应用循迹小车作为一种机器人技术,有着广泛的应用前景。
1. 工业领域循迹小车在工业领域可以应用于自动化生产线上,实现物料的自动搬运和分拣。
它能够减轻人力负担,提高生产效率。
2. 物流领域循迹小车在物流领域可以应用于仓储管理,实现货物的自动存储和取出。
它能够提高物流效率,减少人为错误。
3. 教育领域循迹小车在教育领域可以应用于机器人教育和编程教育。
学生可以通过操控循迹小车,学习机器人技术和编程知识。
四、循迹小车的未来发展随着科技的不断进步,循迹小车也将不断发展和创新。
智能避障小车毕业论文

智能避障小车毕业论文智能避障小车毕业论文引言:随着科技的不断进步,智能机器人在各个领域的应用越来越广泛。
智能避障小车作为机器人领域的重要研究方向之一,具有广阔的发展前景。
本篇论文将围绕智能避障小车展开讨论,并探讨其在未来的应用前景。
1. 智能避障小车的背景和意义智能避障小车是一种能够通过传感器感知周围环境并避免障碍物的机器人。
它的研究和应用对于提高自动化程度、减少人力资源浪费具有重要意义。
智能避障小车可以应用于工业生产线、仓储物流、军事侦察等领域,为人们的生产和生活带来巨大的便利。
2. 智能避障小车的技术原理智能避障小车主要依靠传感器和控制系统实现。
传感器可以通过激光、红外线、超声波等方式感知周围环境,将感知到的数据传输给控制系统。
控制系统根据传感器的数据分析判断,控制小车的运动方向和速度,以避开障碍物。
其中,路径规划、障碍物检测和避障算法是智能避障小车的核心技术。
3. 智能避障小车的关键技术挑战智能避障小车的研究面临着一些技术挑战。
首先,传感器的准确性和稳定性对于小车的运行至关重要,需要解决传感器误差和干扰问题。
其次,路径规划算法需要考虑到环境的复杂性和实时性,以确保小车能够快速、准确地避开障碍物。
此外,障碍物检测算法的高效性和鲁棒性也是需要解决的难题。
4. 智能避障小车的应用前景智能避障小车在工业生产、物流仓储、军事侦察等领域具有广泛的应用前景。
在工业生产中,智能避障小车可以替代人工搬运,提高生产效率和安全性。
在物流仓储领域,智能避障小车可以实现自动化仓储和物流运输,减少人力资源浪费。
在军事侦察中,智能避障小车可以代替士兵进行侦察任务,提高作战效果和保障士兵的安全。
结论:智能避障小车作为机器人领域的重要研究方向,具有广阔的发展前景。
通过不断改进传感器技术、控制系统和算法,智能避障小车将在各个领域发挥重要作用,为人们的生产和生活带来更多的便利。
未来,我们可以期待智能避障小车的更加智能化、高效化和多功能化的发展。
避障小车毕业论文

避障小车毕业论文避障小车的研究与设计摘要避障小车是一种可以自主避开障碍物的智能小车,其具有重要的应用价值。
本文从机器人控制原理、图像处理技术以及硬件设计等方面出发,对避障小车的设计及其实现方法进行了详细论述。
在硬件设计方面,本文采用了单片机控制器进行控制,采用了基于超声波和红外线的避障传感器,以及直流电机进行驱动。
在软件系统设计方面,本文采用了C语言进行编写,针对避障小车实现了避障、控制、传感器数据处理等功能。
通过实验验证,本文的避障小车能够比较准确地避开障碍物,具有一定的实用价值。
关键词:机器人控制原理、图像处理、硬件设计、软件设计、避障小车AbstractThe obstacle-avoiding robot car is an intelligent car that can autonomously avoid obstacles, with significant application value. This paper elaborates on the design and implementation methods of the obstacle-avoiding small car from the aspects of robot control principle, image processing technology, and hardware design. Interms of hardware design, this paper uses a single-chip microcontroller for control, obstacle-avoiding sensors based on ultrasonic and infrared, and DC motors for driving. In the software system design aspect, this paper uses C language for writing, and realizes the functions of obstacle avoidance, control, and sensor data processing for the obstacle-avoiding small car. Through experiments, the obstacle-avoiding small car in this paper can accurately avoid obstacles and has practical value.Keywords: robot control principle, image processing, hardware design, software design, obstacle-avoiding car引言随着人工智能的发展,智能小车在日常生活和工业环境中得到了广泛的应用。
基于单片机的智能寻迹避障小车设计.-毕业论文

基于单片机的智能循迹避障小车设计目录基于单片机的智能循迹避障小车 (1)摘要 (1)Abstract (2)1绪论 (3)1.1研究背景 (3)1.2研究现状 (4)1.3研究目的 (4)1.4研究内容 (4)2系统总体方案及各模块设计 (5)2.1总体方案设计 (5)2.2各模块方案论证 (6)2.2.1供电模块的设计 (6)2.2.2循迹部分设计 (6)2.2.3速度检测模块设计 (7)2.2.4避障模块设计 (8)2.2.5驱动电机选择 (9)2.2.6电机驱动器件 (9)2.2.7核心控制器 (10)3硬件设计 (11)3.1单片机控制电路 (11)3.2电机驱动电路 (13)3.3速度检测模块电路 (14)3.4PWM调速原理 (15)3.5循迹检测电路 (15)3.6障碍物检测电路 (17)3.7液晶显示电路 (18)4软件设计 (19)4.1系统控制流程图 (19)4.2驱动单元的实现 (20)4.2.1循迹算法设计 (20)4.2.2避障驱动设计 (21)4.2.3速度检测及控制设计 (21)4.3路径规划设计 (23)4.4小车位置设计 (24)5调试 (26)6结论 (28)参考文献 (29)致谢 (30)附录 ···············································································错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动避障循迹小车毕业论文自动避障循迹小车毕业论文目录1 绪论 (1)1.1智能小车的研究与意义 (1)1.2智能小车的现状 (3)1.2.1国外移动机器人研究 (3)1.2.2国移动机器人的状况 (4)1.2.3小车避障现状综诉 (4)1.2.4智能小车的现状 (4)1.3论文研究容与主要结构 (5)1.3.1基于单片机控制的智能循迹避障小车 (5)1.3.2文章主要结构 (5)2 方案选型设计 (6)2.1车体设计 (6)2.2电机驱动设计 (6)2.2.1电机选择 (6)2.2.2驱动选择 (7)2.2.3H桥式电路工作原理 (9)2.2.4PWM调速技术 (9)2.3循迹模块 (9)2.3.1光电传感器的工作原理 (9)2.3.2光电传感器的分类和工作方式 (9)2.3.3光电传感器的选择 (10)2.4避障模块 (11)2.4.1超声波测距的原理 (11)2.4.2超声波传感器的分类 (12)2.4.3超声波测距特点 (12)2.4.4超声波模块选择 (13)2.5显示模块 (14)2.5.1数码管的结构及工作原理 (14) 2.5.2数码管的选择 (15)2.6控制系统模块 (15)2.6.1单片机的发展 (15)2.6.2AT89C52单片机的简单介绍 (17)2.7电源模块 (17)3 硬件设计 (18)3.1总体设计 (18)3.1.1小车总体概述 (18)3.1.2小车总体设计框图 (19)3.2驱动电路设计 (19)3.3信号检测模块电路设计 (21)3.3.1循迹模块信号检测电路 (21)3.3.2壁障模块和显示信号检测电路 (22) 3.4显示模块电路设计 (24)3.5主控电路设计 (27)3.5.1单片机最小系统设计 (27)3.5.2主控电路图 (30)4 软件设计 (31)4.1主程序设计 (31)4.1.1主程序框图 (31)4.1.2主程序流程图 (32)4.2循迹模块程序设计 (33)4.3显示模块程序设计 (33)4.4避障模块程序设计 (34)5 制作安装与调试 (35)5.1小车的安装 (35)5.2小车的调试 (35)5.3智能小车的功能 (36)结论 (37)参考文献 (38)附录: (40)中文译文 (44)致谢 (52)1 绪论1.1智能小车的研究与意义移动机器人是机器人领域的一个分支,他的研究始于60年代末期,斯坦福研究院(SRI)的Nits Nilssen和Charles Rosen 等人,在1966年至1972年间研制出了名为Shake的自主移动机器人[1]。
进入20世纪80年代以后,人们的研究方向逐渐转移到了面向实际应用的室移动机器人的研究,并逐步形成了自主式移动机器人AMR (Indoor Autonomous Mobile Robot)概念。
美国国防高级研究计划局(DARPA)专门立项,制定了地面天人作战平台的战略计划。
从此在全世界掀开了全面研究室外移动机器人的序幕,如DARPA的“战略计算机”计划中的自主地面车辆(ALV)计划(1983—1990),能源部制定的为期十年的机器人和智能系统计划(RIPS)(1986—1995),以及后来的太空机器人计划;日本通产省组织的极限环境下作业的机器人计划;欧洲尤里卡中的机器人计划等。
初期的研究,主要从学术角度研究室外机器人的体系结构和信息处理,并建立试验系统进行验证。
虽然由于80年代对机器人的智能行为期望过高,导致室外机器人的研究未达到预期的效果,但却带动了相应技术的发展,为探讨人类研制智能机器人的途径积累了经验。
同时,也推动了其他国家对移动机器人的研究与开发[2]。
智能小车作为移动机器人的典型代表,目前国外的许多大学都在积极投入人力、财力进行开发。
主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。
但很现实的状况是,国不论是在机械还是电气领域,与国外的差距还是很明显的,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。
智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它可以分为三大组成部分:传感器检测部分、执行部分、CPU。
机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。
可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避[3]。
在移动机器人中,传感器起着举足轻重的作用。
视觉、激光、红外、超声传感器等都在实际系统中得到了广泛的应用。
其中,超声波传感器以其信息处理简单、速度快和价格低,被广泛用作移动机器人的测距传感器,以实现避障、定位、环境建模和导航等功能[4]。
考虑实际情况,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器和超声波传感器来充当。
智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。
单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大[5]。
考虑到实际情况,本文选择第二种方案。
CPU使用STC89C52单片机,配合软件编程实现。
单片机在现今社会的应用领域越来越广泛,无论是生活,生产上,单片机的身影无处不在。
ATMEL公司的STC89C52单片机可以广泛的应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。
STC89C52可以说是单片机领域的主流产品,其应用如此广泛,所以有必要学习和应用该单片机,以满足实际产品开发的需求,也是适应社会智能化、自动化的趋势[6]。
以89C52为控制核心,利用超声波传感器检测道路上的障碍,控制智能小车的自动避障,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,自动寻迹和寻光功能。
89C52是一款八位单片机,它的易用性和多功能性受到了广大使用者的好评。
它是第三代单片机的代表。
第三代单片机包括了Intel公司发展MCS-51系列的新一代产品,如8xC152﹑80C51FA/FB﹑80C51GA/GB﹑8xC451﹑8xC452,还包括了Philips ﹑Siemens﹑ADM﹑Fujutsu﹑OKI﹑Harria-Metra﹑ATMEL等公司以80C51为核心推出的大量各具特色﹑与80C51兼容的单片机。
新一代的单片机的最主要的技术特点是向外部接口电路扩展,以实现Microcomputer完善的控制功能为己任,将一些外部接口功能单元如A/D﹑PWM﹑PCA(可编程计数器阵列)﹑WDT(监视定时器)﹑高速I/O口﹑计数器的捕获/比较逻辑等。
这一代单片机中,在总线方面最重要的进展是为单片机配置了芯片间的串行总线,为单片机应用系统设计提供了更加灵活的方式。
Philips 公司还为这一代单片机80C51系列8xC592单片机引入了具有较强功能的设备间网络系统总线----CAN(Controller Area Network BUS)[5]。
该设计的实际意义是通过构建智能小车系统,培养设计并实现自动控制系统的能力。
在实践的过程中,熟悉以单片机为核心控制芯片,设计小车的检测、驱动和显示等外围电路,采用算法实现小车的智能控制。
灵活的运用所学的相关学科的理论知识,结合实际电路设计的具体实现方法,达到理论和实际的统一。
在此过程中,加深对理论知识的理解和认识。
且该设计具有实际意义,可以应用于考古、机器人、娱乐等许多方面。
尤其是在玩具机器人研究方面具有很好的发展前景。
所以本设计与实际相结合,现实意义很强境感知、规划决策、自动行驶等功能于一体的综合系统——它集中地运用了计算机、传感、信息、通讯、导航、人工智能及自动控制等技术——是典型的高新技术综合体[3]。
1.2智能小车的现状1.2.1国外移动机器人研究到20世纪90年代,以研制高水平的环境信息传感器和信息处理技术,适应性强的移动机器人控制技术,真实环境下的规划技术为标志,展开了移动机器人更高层次的研究。
随着技术的进步,移动机器入开始在更现实的基础上,开拓各个应用领域,向实用化前进[2]。
如1997年牛津大学机器人研究小组采用分布式滤波及局部智能控制代理的系统模式,利用卡尔曼滤波方法融合来自摄像机、激光测距、声纳的数据信息,设计出了在已知或未知的工厂环境下工作的移动机器人。
美国国家航空和宇宙航行局(nasa)资助研制的八足行走机器人。
丹蒂Ⅱ”,作为能实现远程探险的高性能移动机器人,于1994年在斯珀火山的火山口迸行了成功的表演。
美国nasa研制的火星探测机器人“sojourner”于1997年登上火星,验证了自主移动机器人在火星表面运动和进行科学试验的可行性。
2003年,美国nasa又派出两个火星着陆器,这两个着陆器上各带勇气号和机遇号火星漫游者,到火星上采集数据.在任务期间,“勇气”创造了日行27.5米的纪录,打破了“sojourner”97年创下的日行7米的记录;“机遇”号也己成功地在火星上进行了多种科学实验。
后来,美国宇航局又在研究另一种新型的火星探测器一火星科学实验室(MSL),是一种适用于所有地形的多用途机器人,乃执行任务。
德国研制了一种轮椅机器人,并在乌尔姆市中心车站的客流高峰期的环境中和1998年汉诺威工业商品展览会大厅环境中进行了超过36小时的考验,所表出的性能是其它现存的轮椅机器人和移动机器人所不可比的。
另外,自从1996年成功地举行了第一次世界机器人足球赛以来,现在一年一度的世界机器人足球赛已经吸引了越来越多的团体参加,极大地推进了多移动机器人技术的。