2020高考数学二轮专题复习 立体几何(理)

合集下载

2020年高考数学(理)重难点专练03 空间向量与立体几何(解析版)

2020年高考数学(理)重难点专练03  空间向量与立体几何(解析版)

2020年高考数学(理)重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B 【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C.5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D .2【答案】A 【解析】 【分析】取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R .【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB ==PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==,所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P .由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u uu v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =【解析】 【分析】(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥, 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩令1x =,得1,y z =⎧⎪⎨=⎪⎩所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,0,,(0,22F E ⎛⎫ ⎪ ⎪⎝⎭, 设(01)FQ FE λλ=u u u r u u u r &剟,整理得1),2,22Q λλλ⎛⎫-+ ⎪ ⎪⎝⎭,则1,22BQ λλ⎛+=-- ⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u ur u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==. 【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值 为5.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴ 【解析】 【分析】(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角. 在Rt PCD V中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,02C ⎫⎪⎪⎝⎭,(0,2,0)D,1,14M ⎫-⎪⎪⎝⎭所以3,,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩,令11y =,则1,1)n =u r.设平面CDM 的一个法向量为()2222,,n x y z =u ur,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E ,()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r ,所以12BC FP =u u u u r u u u r,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r . 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。

2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1­ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­PA ­C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M ­PA ­C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G ­xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A ­MA 1­N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A ­MA 1­N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O ­xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC ­A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A ­B 1D ­A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A ­B 1D ­A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ­ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ­ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ­ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G ­xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D ­AF ­E 与二面角C ­BE ­F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E ­BC ­A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G ­xyz .由(1)知∠DEF 为二面角D ­AF ­E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C ­BE ­F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E ­BC ­A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H ­xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H ­xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B ­D ′A ­C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A ­PE ­C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A ­EP ­C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A ­EP ­C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz . 当三棱锥M ­ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ­ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A ­xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。

2020新课标Ⅱ年高考数学总复习专题立体几何分项练习含解析理8

2020新课标Ⅱ年高考数学总复习专题立体几何分项练习含解析理8

专题10 立体几何一.基础题组1. 【2013课标全国Ⅱ,理4】已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l ⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】:D【解析】因为m⊥α,l⊥m,lα,所以l∥α.同理可得l∥β.又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D.2. 【2012全国,理4】已知正四棱柱ABCD-A1B1C1D1中,AB=2,122CC ,E为CC1的中点,则直线AC1与平面BED的距离为( )A.2 B.3 C.2 D.1【答案】 D又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.3. 【2011新课标,理6】在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )(正视图)(俯视图)【答案】D 【解析】4. 【2006全国2,理4】过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为 A.163B.169 C.83 D.329【答案】:A5. 【2006全国2,理7】如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α,β所成的角分别为4π和6π.过A ,B 分别作两平面交线的垂线,垂足为A ′,B ′,则AB ∶A ′B ′等于 A.2∶1B.3∶1C.3∶2D.4∶3【答案】:A6. 【2005全国3,理4】设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为( ) A .16VB .14VC .13VD .12V【答案】C【解析】连接11,BA BC ,在侧面平行四边形11AAC C 中,∵1PA QC =, ∴ 四边形APQC 的面积1S =四边形11PQA C 的面积2S , 记B 到面11AAC C 的距离为h ,∴113B APQC V S h -=,11213B PQAC V S h -=, ∴11B APQC B PQA C V V --=,∵11113B A B C V V -=,∴11233B APQC B PQA C V V V V V --+=-=,∴3B APQC V V -=. 7. 【2005全国2,理2】正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是( )(A) 三角形 (B) 四边形(C) 五边形(D) 六边形【答案】D8. 【2015高考新课标2,理6】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D【解析】由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱【考点定位】三视图.9. 【2017课标II ,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π 【答案】B 【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .【考点】 三视图、组合体的体积【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.二.能力题组1. 【2014新课标,理6】如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A. 1727 B.59 C.1027D.13【答案】C2. 【2010全国2,理9】已知正四棱锥S—ABCD中,SA=3它的高为( )A.3.2 D.3【答案】:C3. 【2011新课标,理15】已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC =23,则棱锥O­ABCD的体积为__________.【答案】83【解析】4. 【2015高考新课标2,理9】已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36π B.64π C.144π D.256π【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144SR ππ==,故选C .BOAC【考点定位】外接球表面积和椎体的体积.5. 【2016高考新课标2理数】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20(B )24(C )28(D )32【答案】C【考点】三视图,空间几何体的表面积 【名师点睛】由三视图还原几何体的方法:6.【2016高考新课标2理数】α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有 .(填写所有正确命题的编号)【答案】②③④【考点】空间中的线面关系【名师点睛】求解本题时应注意在空间中考虑线、面位置关系.7.【2017课标II,理10】已知直三棱柱111ABC A B C-中,120ABC∠=︒,2AB=,11BC CC==,则异面直线1AB与1BC所成角的余弦值为A.3B.15C.10D.3【答案】C【解析】试题分析:如图所示,补成直四棱柱1111ABCD A B C D-,则所求角为21111,2,21221cos603,5 BC D BC BD C D AB∠==+-⨯⨯⨯︒===Q,易得22211C D BD BC=+,因此111210cos55BCBC DC D∠===,故选C.【考点】异面直线所成的角、余弦定理、补形的应用【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,]2,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围. 三.拔高题组1. 【2014新课标,理11】直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C. 30D.2【答案】C2. 【2013课标全国Ⅱ,理7】一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).【答案】:A3. 【2010全国2,理11】与正方体ABCD—A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点( )A.有且只有1个 B.有且只有2个C.有且只有3个 D.有无数个【答案】:D【解析】经验证线段B1D上的点B,D,中点,四等分点均满足题意,故由排除法知应有无数个点.4. 【2005全国2,理12】将半径为1的4个钢球完全装入形状为正四面体的容器里.这个正四面体的高的最小值为()326+(B)262(C)2644326+【答案】C【解析】由题意知,底面放三个钢球,上再落一个钢球时体积最小,于是把钢球的球心连接,则又可得到一个棱长为2的小正四面体,26,且由正四面体的性质可知:正四面体的中心到底面的距离是高的14,且小正四面体的中心和正四面体容器的中心应该是重合的,∴小正四面体的中心到底面的距离是26164⨯=,正四面体的中心到底面的距离是61+(1即小钢球的半径),所以可知正四棱锥的高的最小值为626(1)44+⨯=+,故选 C . 5. 【2012全国,理16】三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为__________.【答案】:666. 【2010全国2,理16】已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,AB =4,若OM =ON =3,则两圆圆心的距离MN =________.【答案】:3【解析】:∵|OM |=|ON |=3,∴圆M 与圆N 2243-7.取AB 中点C ,连结MC 、NC ,则MC ⊥AB ,NC ⊥AB , |MC |=|NC |22(7)2-3,易知OM 、CN 共面且OM ⊥MC ,ON ⊥NC ,|OC |223(3)+3,sin ∠OCM 233 ∴|MN |=2|MC |·sin∠OCM =33=3.7. 【2005全国2,理20】(本小题满分12分)如图,四棱锥P ABCD=,E、F分-中,底面ABCD为矩形,PD⊥底面ABCD,AD PD别为CD、PB的中点.(Ⅰ) 求证:EF⊥平面PAB;(Ⅱ) 设2=,求AC与平面AEF所成的角的大小.AB BC∵PB、FA为平面PAB内的相交直线∴EF⊥平面PAB方法二以D为坐标原点,DA的长为单位,建立如图所示的直角坐标系。

2020高考数学(文理通用)大二轮课件:专题五立体几何第3讲

2020高考数学(文理通用)大二轮课件:专题五立体几何第3讲
以 D 为坐标原点,D→A的方向为 x 轴正方向,|D→A|为单位长度,建立如图所示 的空间直角坐标系 D-xyz,
则 C(0,1,0),B(1,1,0),C1(0,1,2),E(1,0,1),C→B=(1,0,0),C→E=(1,-1,1), CC1=(0,0,2).
设平面 EBC 的法向量为 n=(x1,y1,z1), 则CC→→BE··nn==00,,即xx11=-0y1,+z1=0,
第一部分
专题强化突破
专题五 立体几何
第三讲 用空间向量的方法解立体几何问题(理)
高考考点
考点解读
利用空间向量证明平 1.建立空间直角坐标系,利用向量的知识证明平行与垂直
行与垂直关系
2.考查向量的数量积与向量垂直的关系以及建立空间直
角坐标系的方法
利用空间向量求线线 以具体几何体为命题背景,直接求角或已知角求相关量
• (3)线面平行 • l∥α⇔a⊥μ⇔a·μ=_0____a⇔1a3+__b1_b_3+_c_1c_3=__0___________.
• (4)线面垂直 • l⊥α⇔a∥μ⇔a=
a1=ka3,b1=kb3,c=kc3
• k(5μ)⇔面_面_平__行__________a_3_=_ka_4_,_b_3=_k_b_4,__c3_=_k_c4.
4.(2019·北京卷,16)如图,在四棱锥 P-ABCD 中, PA⊥平面 ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2, BC=3.E 为 PD 的中点,点 F 在 PC 上,且PPCF=13.
(1)求证:CD⊥平面 PAD. (2)求二面角 F-AE-P 的余弦值. (3)设点 G 在 PB 上,且PPGB=23.判断直线 AG 是否在平面 AEF 内,说明理由.

高考数学二轮三轮总复习专题课件 专题4第14讲 空间向量与立体几何 理 北师大

高考数学二轮三轮总复习专题课件 专题4第14讲 空间向量与立体几何 理 北师大

第14讲 │ 主干知识整合
2.夹角计算公式 (1)线线角:直线与直线所成的角为 θ,如两直线的方向向量 分别为 a,b,则 cosθ=|cos〈a,b〉|; (2)线面角:直线与平面所成的角为 θ,如直线的方向向量为 a,平面的法向量为 n,则 sinθ=|cos〈a,n〉|; (3)面面角:两相交平面所成的角为 θ,两平面的法向量分别 为 n1 和 n2,则 cosθ=|cos〈n1,n2〉|,其特殊情况是两个半平面 所成的角即二面角,也可以用这个公式解决,但要判定二面角的 平面角是锐角还是钝角的情况以决定 cosθ=|cos〈n1,n2〉|还是 cosθ=-|cos〈n1,n2〉|.
于是 cos〈A→C,A→1B1〉=|AA→→CC|·|AA→→11BB11|=3×42
= 2
32.
所以异面直线 AC 与 A1B1 所成角的余弦值为 32.
第14讲 │ 要点热点探究
(2)易知A→A1=(0,2 2,0),A→1C1=(- 2,- 2, 5). 设平面 AA1C1 的法向量 m=(x,y,z),
第14讲 │ 要点热点探究
► 探究点二 利用空间向量求空间角和距离 例 2 [2011·天津卷] 如图 14-3 所示,在三棱柱 ABC-A1B1C1 中,
H 是正方形 AA1B1B 的中心,AA1=2 2,C1H⊥平面 AA1B1B,且 C1H = 5.
(1)求异面直线 AC 与 A1B1 所成角的余弦值; (2)求二面角 A-A1C1-B1 的正弦值; (3)设 N 为棱 B1C1 的中点,点 M 在平面 AA1B1B 内,且 MN⊥平 面 A1B1C1,求线段 BM 的长.
图 14-1
第14讲 │ 要点热点探究
【分析】 建立空间直角坐标系后,使用向量的共线定理证明 E→F∥A→B即可证明第一问,第二问根据向量的垂直关系证明线线 垂直,进而证明线面垂直,得出面面垂直,第三问使用平面法向 量的方法求解.

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1­ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD­A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ­ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ­ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E ­BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E ­BCD =V D ­BCE =V A ­BCE =V E ­ABC .由(1)知,DE ∥平面ABC ,所以V E ­ABC =V D ­ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC ­A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ­ABCDEF 中,G 为PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD ­A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD ­A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1­ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ­ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ­ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ­ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D ­GAC V P ­GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。

专题 立体几何中的截面与交线问题(课件)-高考数学二轮专题复习

专题 立体几何中的截面与交线问题(课件)-高考数学二轮专题复习

解: 正方体 ABCD A1B1C1D1 的棱长为 2,球O 与该正方体的各个面相切, 则球 O 的半径为 1,如图,
设 E 、 F 、 G 分别为球 O 与平面 ABCD 、平面 BB1C1C 、 AA1B1B 的切点, 则等边三角形 EFG 为平面 ACB1 截此球所得的截面圆的内接三角形,
所以,由点 P,Q, R 确定的平面 即为截面 PQSRTM ,其为六边形.
故选:D.
如图,在棱长为 2 的正方体 ABCD-A1B1C1D1 中,E,F 分别是棱 AA1, CC1 的中点,过 BE 的平面 α 与直线 A1F 平行,则平面 α 截该正方体所得截面的面 积为( B )
A. 5 C.4
典型例题讲解:
例题 2.已知正方体 ABCD ABCD 棱长为 2,M,N,P 分别是棱 AA、AB 、BC 的中点,
则平面 MNP 截正方体所得的多边形的周长为( )
A. 2 2 6
B. 4 2
C.6 2
D.2 21
【详解】过直线 MN 与射线 BA, BB 分别交于 I , J ,作射线 JP 交CC, BC 于G, H , 连接 IH 交 AD,CD 于 E, F ,如下图示:
23
3
故一个面上的交线长 l 2 2 3 4 3 ,
33 9
则 6 个面的交线长为 4 3 6 8 3 ,
9
3
故答案为: 8 3 .
3
9
则过点 G 的平面截球 O 所得截面圆的最小半径 r2 R2 OG2 3 11 16 ,
99
所以截面面积的最小值为 r2
16 ,最大值为 R2
9
3
,
故选:D.
典型例题讲解:
例题 5.正方体 ABCD A1B1C1D1 棱长为 2,以其体对角线的交点O 为球心,

高考数学二轮复习专题二立体几何微点深化立体几何中的轨迹与折

高考数学二轮复习专题二立体几何微点深化立体几何中的轨迹与折

微点深化立体几何中的轨迹与折叠问题1.运动变化中的轨迹问题的实质是寻求运动变化过程中的所有情况,发现动点的运动规律.2.将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.热点一以立体图形为载体的轨迹问题【例1】 (1)已知在平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,E为CC1的中点,P在对角面BB1D1D所在平面内运动,若EP与AC成30°角,则点P的轨迹为( )A.圆B.抛物线C.双曲线D.椭圆(2)(2018·宁波期中)已知正方体ABCD-A1B1C1D1的棱长为1,点P是平面AC内的动点,若点P到直线A1D1的距离等于点P到直线CD的距离,则动点P的轨迹所在的曲线是( ) A.抛物线 B.双曲线 C.椭圆 D.直线解析(1)因为在平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,所以该平面六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,则EF∥AC,因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面,故选A.(2)如图,以A为原点,AB为x轴、AD为y轴,建立平面直角坐标系.设P(x,y),作PE⊥AD于E、PF⊥A1D1于F,连接EF,易知|PF|2=|PE|2+|EF|2=x2+1,又作PN⊥CD于N,则|PN|=|y-1|.依题意|PF|=|PN|,即x2+1=|y-1|,化简得x2-y2+2y=0,故动点P的轨迹为双曲线,选B.答案(1)A (2)B探究提高研究立体几何中点的轨迹问题一般先将问题平面化,将问题转化为两平面或曲线的交线,或者直接用平面解析几何知识如圆锥曲线的定义或建系去处理.【题组训练1】(1)(2018·绍兴质检)如图,若三棱锥ABCD的侧面ABC内一动点P到底面BCD的距离与到点A的距离之比为正常数λ,且动点P的轨迹是抛物线,则二面角ABCD的平面角的余弦值为( )A.λB.1-λ2C.1λD.1-1λ2 解析 由题意知,动点P 的轨迹是以点A 为焦点,直线BC 为准线的抛物线,设点P 在底面BCD 内的投影为点H ,二面角ABCD 的平面角的大小为θ,点P 到直线BC 的距离为d ,则|PH ||PA |=λ,由抛物线的定义,得|PA |=d ,则sin θ=|PH |d =λ|PA |d=λ,则cos θ=1-sin 2θ=1-λ2,故选B.答案 B(2)如图,在正方体ABCD-A1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A.直线B.圆C.双曲线D.抛物线 解析 点P 到直线C 1D 1的距离即为点P 到点C 1的距离,所以在平面BB 1C 1C中,点P 到定点C 1的距离与到定直线BC 的距离相等,由抛物线的定义可知,动点P 的轨迹所在的曲线是抛物线,故选D.答案 D(3)如图,定点A 和B 都在平面α内,定点P α,PB ⊥α,C 是α内异于A 和B 的动点,且PC ⊥AC .那么,动点C 在平面α内的轨迹是( )A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点解析 由PB ⊥α,可得PB ⊥AC ,又PC ⊥AC ,所以AC ⊥平面PBC ,则可得AC ⊥BC ,由于定点A 和B 都在平面α内,动点C 满足AC ⊥BC 的轨迹是在平面α内以AB 为直径的圆,而C 是α内异于A 和B 的动点,所以动点C 在平面α内的轨迹是在平面α内以AB 为直径的圆(去掉两个A 、B ).故选B.答案 B热点二 立体几何中的折叠问题【例2】 (1)(2018·浙江名校协作体联考)已知矩形ABCD ,AB =1,BC = 2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC 与直线BD 垂直B.存在某个位置,使得直线AB 与直线CD 垂直C.存在某个位置,使得直线AD 与直线BC 垂直D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直解析 若AB ⊥CD ,BC ⊥CD ,则可得CD ⊥平面ACB ,因此有CD ⊥AC .因为AB =1,BC =AD =2,CD =1,所以AC =1,所以存在某个位置,使得AB ⊥CD .答案 B(2)(2018·北京海淀区调考)如图,在矩形ABCD 中,AB =1,BC =2,E 为BC 的中点,F 为线段AD 上的一点,且AF =32.现将四边形ABEF 沿直线EF 翻折,使翻折后的二面角A ′EFC 的余弦值为23.①求证:A ′C ⊥EF ;②求直线A ′D 与平面ECDF 所成角的大小.①证明 连接AC 交EF 于点M ,由平面几何的知识可得AC =5,EF =52以及AM MC =FM ME =32, 则AM =355,MC =255,MF =3510. 故AM 2+MF 2=AF 2,则AC ⊥EF ,于是A ′M ⊥EF ,CM ⊥EF ,又A ′M ∩CM =M ,故EF ⊥平面A ′MC ,又A ′C 平面A ′MC ,故A ′C ⊥EF .②解 由①知,二面角A ′EFC 的平面角就是∠A ′MC ,即cos∠A ′MC =23. 根据余弦定理,得 A ′C =A ′M 2+MC 2-2A ′M ·MC cos∠A ′MC =1.因为A ′C 2+MC 2=95=A ′M 2,所以A ′C ⊥MC . 而由(1)知A ′C ⊥EF ,且MC ∩EF =M ,所以A ′C ⊥平面ECDF .因此,∠A ′DC 就是直线A ′D 与平面ECDF 所成的角.由于A ′C =CD =1,所以∠A ′DC =∠CA ′D =π4, 故直线A ′D 与平面ECDF 所成的角为π4. 探究提高 立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【题组训练2】(1)(2018·诸暨调研)如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,沿AE ,AF ,EF 把正方形折成一个四面体,使B ,C ,D 三点重合,重合后的点记为P ,P 点在△AEF 内的射影为O ,则下列说法正确的是( )A.O 是△AEF 的垂心B.O 是△AEF 的内心C.O 是△AEF 的外心D.O 是△AEF 的重心解析 由题意可知PA ,PE ,PF 两两垂直,所以PA ⊥平面PEF ,从而PA ⊥EF ,而PO ⊥平面AEF ,则PO ⊥EF ,因为PO ∩PA =P ,所以EF ⊥平面PAO ,∴EF ⊥AO ,同理可知AE ⊥FO ,AF ⊥EO ,∴O 为△AEF 的垂心.答案 A(2)(2018·杭州一模)如图,△ABC 是等腰直角三角形,AB =AC ,∠BCD =90°,且BC =3CD =3.将△ABC 沿BC 的边翻折,设点A 在平面BCD 上的射影为点M ,若点M 在△BCD 内部(含边界),则点M 的轨迹的最大长度等于__________;在翻折过程中,当点M 位于线段BD 上时,直线AB 和CD所成的角的余弦值等于__________.解析 由题意可得点A 的射影M 的轨迹为△BCD 的中位线,其长度为12CD=32; 当点M 位于线段BD 上时,AM ⊥平面BCD ,取BC 中点为N ,AC 中点为P ,∴∠MNP 或其补角即为直线AB 和CD 所成的角,则由中位线可得MN =12CD =32,PN =12AB =324, 又MP 为Rt△AMC 斜边AC 的中线,故MP =12AC =324,∴在△MNP 中,由余弦定理可得cos∠MNP =⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫3242-⎝ ⎛⎭⎪⎫32422×32×324=66. 答案 32 66(3)(2018·浙江三市质检)如图,在等腰三角形ABC 中,AB =AC ,∠A =120°,M 为线段BC 的中点,D 为线段BC 上一点,且BD =BA ,沿直线AD 将△ADC 翻折至△ADC ′,使AC ′⊥BD .①证明:平面AMC ′⊥平面ABD ;②求直线C ′D 与平面ABD 所成的角的正弦值.①证明 因为△ABC 为等腰三角形,M 为BC 的中点,所以AM⊥BD ,又因为AC ′⊥BD ,AM ∩AC ′=A ,所以BD ⊥平面AMC ′,因为BD 平面ABD ,所以平面AMC ′⊥平面ABD .②解 在平面AC ′M 中,过C ′作C ′F ⊥AM 交AM 于点F ,连接FD .由①知,C ′F ⊥平面ABD ,所以∠C ′DF 为直线C ′D 与平面ABD 所成的角.设AM =1,则AB =AC =AC ′=2,BC =23,MD =2-3,DC =DC ′=23-2,AD =6- 2. 在Rt△C ′MD 中,MC ′2=DC ′2-MD 2=(23-2)2-(2-3)2=9-4 3.设AF =x ,在Rt△C ′FA 和Rt △C ′FM 中,AC ′2-AF 2=MC ′2-MF 2,即4-x 2=9-43-(x -1)2,解得x =23-2,即AF =23-2.精美句子1、善思则能“从无字句处读书”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何(理)【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、空间两条直线的三种位置关系,并会判定。

3、平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线平行及角相等的方法。

4、异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范围,会求异面直线的所成角。

5.理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6.了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.7.空间平行与垂直关系的论证.8. 掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题,进一步掌握异面直线所成角的求解方法,熟练解决有关问题.9.理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转化法、向量法).对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离.【考点预测】在2020年高考中立体几何命题有如下特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质、三视图多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.【要点梳理】1.三视图:正俯视图长对正、正侧视图高平齐、俯侧视图宽相等.2.直观图:已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3.体积与表面积公式:(1)柱体的体积公式:V =柱Sh ;锥体的体积公式: V =锥13Sh ; 台体的体积公式: V =棱台1()3h S SS S ''++;球的体积公式: V =球343r π. (2)球的表面积公式: 24S R π=球.4.有关球与正方体、长方体、圆柱、圆锥、圆台的结合体问题,要抓住球的直径与这些几何体的有关元素的关系.5.平行与垂直关系的证明,熟练判定与性质定理.6.利用空间向量解决空间角与空间距离。

【考点在线】考点一 三视图例1.(2020年高考海南卷文科第8题)在一个几何体的三视图中,正视图和俯视图如右图,【解析】由主视图和府视图可知,原几何体是由后面是半个圆锥,前面是三棱锥的组合体,所以,左视图是D.【名师点睛】本题考查三视图的基础知识.【备考提示】三视图是高考的热点之一,年年必考,所以必须熟练立体几何中的有关定理是解答好本题的关键.练习1: (2020年高考江西卷文科9)将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )【解析】左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案.考点二 表面积与体积例2..(2020年高考安徽卷文科8)一个空间几何体得三视图如图所示,则该几何体的表面积为( )【答案】C【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242⨯+⨯=,四个侧面的面积为(44221724817++=+48817+故选C.【名师点睛】本题考查三视图的识别以及空间多面体表面积的求法.【备考提示】:表面积与体积的求解也是高考的热点之一,年年必考,大多以三视图为载体,在选择与填空题中考查,难度不大,也可能在解答题的一个问号上.练习2:(2020年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 【答案】D【解析】有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+(). 考点三 球的组合体 例3. (2020年高考辽宁卷文科10)己知球的直径SC=4,A ,B 是该球球面上的两点.AB=2,45ASC ∠=o , 则棱锥S ABC -的体积为( )(A)3 (B) 23 (C) 43 (D) 53 【答案】C【解析】取SC 的中点D,则D 为球心,则AD=BD=DS=2。

因为∠ASC=∠BSC=45°,所以∠SDB=∠SDA=900,即AD ⊥SC,BD ⊥SC,⊿ABD 是等边三角形,故棱锥S-ABC 的体积等于棱锥S-ABD 和棱锥C-ABD 的体积和,即21343243⋅⋅⋅=.【名师点睛】本小题考查三棱锥的外接球体积的求解,关键是找出球的半径.【备考提示】:球的组合体,在高考中,经常考查球与长方体、正方体、三棱锥、四棱锥、圆锥、圆柱等的组合,熟练这些几何体与其外接球的半径的关系是解决此类问题的关键.练习3:(2020年高考海南卷文科16)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周3正视图 侧视图 俯视图图1都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 【答案】13【解析】设圆锥的底面半径为r ,球半径为R ,则223416r R ππ=⨯,解得3r R =,所以对应球心距为12R ,故小圆锥的高为1122R R R -=,大圆锥的高为32R ,所以之比为13. 考点四 空间中平行与垂直关系的证明例 4. (2020年高考山东卷文科19)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60°. (Ⅰ)证明:1AA BD ⊥;(Ⅱ)证明:11CC A BD ∥平面.【解析】(Ⅰ)证明:因为AB=2AD ,所以设AD=a,则AB=2a,又因为BAD=∠60°,所以在ABD ∆中,由余弦定理得:2222(2)22cos 603BD a a a a a =+-⨯⨯=o ,所以3a ,所以222AD BD AB +=,故BD ⊥AD,又因为1D D ⊥平面ABCD ,所以1D D ⊥BD,又因为1AD D D D ⋂=, 所以BD ⊥平面11ADD A ,故1AA BD ⊥.(2)连结AC,设AC ⋂BD=0, 连结1A O ,由底面ABCD 是平行四边形得:O 是AC 的中点,由四棱台1111ABCD A B C D -知:平面ABCD ∥平面1111A B C D ,因为这两个平面同时都和平面11ACA C相交,交线分别为AC 、11A C ,故11AC AC P ,又因为AB=2a,BC=a, ABC=120∠o ,所以可由余弦定理计算得AC=7a ,又因为A 1B 1=2a, B 1C 1=3a , 111A B C =120∠o ,所以可由余弦定理计算得A 1C 1=72a ,所以A 1C 1∥OC 且A 1C 1=OC ,故四边形OCC 1A 1是平行四边形,所以CC 1∥A 1O ,又CC 1⊄平面A 1BD ,A 1O ⊂平面A 1BD ,所以11CC A BD ∥平面.【名师点睛】本题以四棱台为载体,考查空间中平行与垂直关系的论证,考查空间想象能力、逻辑思维能力,分析问题与解决问题的能力.【备考提示】:熟练课本中有关平行与垂直的定理是解答好本类题的关键.练习4. (2020年高考江苏卷16)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点.求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面PAD.【解析】证明: (1)因为E 、F 分别是AP 、AD 的中点,所以EF ∥PD,又因为EF ⊄平面PCD,PD ⊂平面PCD,所以直线EF ∥平面PCD ;(2)设AB=AD=2a ,则AF=a ,又因为∠BAD=60°,所以在ABF ∆中,由余弦定理得:3a ,所以22224AF BF a AB +==,所以BF ⊥AF ,因为平面PAD ⊥平面ABCD ,交线为AD ,BF ⊂平面ABCD ,所以BF ⊥平面PAD ,因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD.考点五 空间角与距离的求解例5. (2020年高考浙江卷理科20).如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-β为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

【解析】法一:(Ⅰ)证明:如图,以O 为原点,以射线OP 为x 轴的正半轴,建立空间直角坐标系o xyz -,则(0,0,0)O ,(0,3,0)A -,(4,2,0)B ,(4,2,0)C -,(0,0,4)P ,(0,3,4)AP =u u u r ,(8,0,0)BC =-u u u r 由此可得0AP BC ⋅=u u u r u u u r ,所以AP BC ⊥u u u r u u u r ,即AP BC ⊥(Ⅱ)解:设,1PM PA λλ=≠u u u u r u u u r ,则(0,3,4)PM λ=--u u u u r ,BM BP PM BP PA λ=+=+u u u u r u u u r u u u u r u u u r u u u r (4,2,4)=--(0,3,4)λ+--(4,23,44)λλ=--+-,(4,5,0)AC =-u u u r ,(8,0,0)BC =-u u u r设平面BMC 的法向量1111(,,)n x y z =u r ,平面APC 的法向量2222(,,)n x y z =u u r由1200BM n BC n ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u r u u u r u u r 得11114(23)(44)080x y z x λλ--++-=⎧⎨-=⎩ 即11102344x z y λλ=⎧⎪+⎨=⎪-⎩ ,可取123(0,1,)44n λλ+=-u r 由2200AP n AC n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u r u u u r u u r 即2222340450y z x y +=⎧⎨-+=⎩得22225434x y z y ⎧=⎪⎪⎨⎪=-⎪⎩ 可取2(5,4,3)n =-u u r ,由120n n ⋅=u r u u r 得2343044λλ+-⋅=-解得45λ= ,故3AM = 综上所述,存在点M 符合题意,3AM =法二(Ⅰ)证明:,AB AC D BC =为中点,,AD BC ∴⊥又,PO ABC ⊥平面PO BC ∴⊥因为PO AD O ∴=I 所以BC ⊥平面PAD 故BC PA ⊥(Ⅱ)如图,在平面PAB 内作,BM AP M ⊥于连结CM,由(Ⅰ)知P ⊥BC A,得P ⊥A 平面BMC ,又P ⊂A 平面PAC,所以平面BMC ⊥平面PAC,在Rt ADB V 中,22241AB AD BD =+=得AB =在Rt POD V 中,222PD PO OD =+,在Rt PDB V 中,222PB PD BD =+所以222236PB PO OD BD =++=得6PB =, 在Rt POA V 中,22225PA AO OP =+=得5PA =又2221cos 23PA PB AB BPA PA PB +-∠==⋅ 从而cos 2PM PB BPA =∠=,所以3AM PA PM =-=综上所述,存在点M 符合题意,3AM =.【名师点睛】本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力.【备考提示】:空间角与距离是高考的一个热点,年年必考,熟练三种角及距离的求法,是解答本类题目的关键.练习5. (2020年高考全国卷理科16)己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 .【答案】3【解析】延长CB 、FE 交于M ,连结AM ,过B 作BN ⊥AM 于N ,连结EN ,则∠ENB 为平面AEF 与平面ABC 所成的二面角,AM=2AB ,1223,,tan 232AB EB BN AB Rt EBN ENB BN AB ∴=∠===V 在中. 【易错专区】问题:三视图与表面积、体积例.(2020年高考陕西卷文科5)某几何体的三视图如图所示,则它的体积是( )(A )283π-(B )83π- (C )82π- (D )23π 【答案】A【解析】由三视图可知该几何体为立方体与圆锥,立方体棱长为2,圆锥底面半径为1、高为2,所以体积为3212123π-⋅⨯⨯=283π-故选A. 【名师点睛】:本小题以三视图为载体考查空间几何体的体积的求解.【备考提示】:由三视图准确判断几何体的形状以及找出几何体各个边长是解答此类问题的关键所在.【考题回放】1.(2020年高考浙江卷理科4)下列命题中错误的是( )(A )如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β(B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面(D )如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β【答案】 D【解析】两个平面垂直,两个平面上的所有直线都不是垂直了,比如α平面垂直β平面,垂线为AB ,直线CD 属于α,与AB 交与E 点,角度为60°,不垂直平面β,故选D.2. (2020年高考山东卷理科11)下图是长和宽分别相等的两个矩形.给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是( )(A)3 (B)2 (C)1 (D)0【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.3.(2020年高考浙江卷理科3)若某几何体的三视图如图所示,则这个几何体的直观图可以是( )【解析】:A ,B 与正视图不符,C 与俯视图不符,故选D .4.(2020年高考辽宁卷理科8)如图,四棱锥S-ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是( )(A) AC ⊥SB(B) AB ∥平面SCD(C) SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角(D)AB 与SC 所成的角等于DC 与SA 所成的角【答案】D【解析】对于A:因为SD ⊥平面ABCD ,所以DS ⊥AC.因为四边形ABCD 为正方形,所以AC ⊥BD ,故AC ⊥平面ABD,因为SB ⊂平面ABD,所以AC ⊥SB ,正确.对于B :因为AB//CD,所以AB//平面SCD.对于C:设AC BD O =I .因为AC ⊥平面ABD ,所以SA 和SC 在平面SBD 内的射影为SO ,则∠ASO 和∠CSO 就是SA 与平面SBD 所成的角和SC 与平面SBD 所成的角,二者相等,正确.故选D.5.(2020年高考江西卷理科8)已知1α,2α,3α是三个相互平行的平面.平面1α,2α之间的距离为1d ,平面2α,3α之间的距离为2d .直线l 与1α,2α,3α分别相交于1P ,2P ,3P ,那么“12P P =23P P ”是“12d d =”的( ) A.充分不必要条件 B.必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C【解析】过点1P 作平面2α的垂线g,交平面2α,3α分别于点A 、B 两点,由两个平面平行的性质可知2P A ∥3P B ,所以121122PP d PP d =,故选C. 6.(2020年高考重庆卷理科9)高为4的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( ) (A(B(C )1 (D【答案】C【解析】设底面中心为G ,球心为O,则易得2AG =,于是2OG =,用一个与ABCD 所在平面距离等于4的平面去截球,S 便为其中一个交点,此平面的中心设为H,则OH ==,故222718SH =-=⎝⎭,故1SG === 7.(2020年高考四川卷理科3)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13l l ⇒P (B )12l l ⊥,23l l P ⇒13l l ⊥(C)233l l l P P ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面【答案】B【解析】若1223,,l l l l ⊥⊥则13,l l 有三种位置关系,可能平行、相交或异面,故A 不对.虽然123////l l l ,或123,,l l l 共点,但是123,,l l l 可能共面,也可能不共面,故C 、D 也不正确.8.(2020年高考全国卷理科6)已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1,AB AC BD ===则D 到平面ABC 的距离等于( )(A )23(B )33 (C )63 (D )1【答案】C【解析】如图,作DE BC ⊥于E ,由l αβ--为直二面角,AC l ⊥,得AC ⊥平面β,进而AC DE ⊥,又BC DE ⊥,BC AC C =I ,于是DE ⊥平面ABC 。

相关文档
最新文档