高二数学排列及排列数

合集下载

排列数 课件 -2022-2023学年高二下学期数学人教A版(2019)选择性必修第三册

排列数 课件 -2022-2023学年高二下学期数学人教A版(2019)选择性必修第三册
有序,无变化就是无序.
m
符号 An 中的A是英文
arrangement(排列)
的第一个字母
排列数:
我们把从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,
m
叫做从n个不同元素中取出m个元素的排列数,用符号 An 表示.
m
n
A
取出元素数
元素总数
排列的第一个字母
m,n所满足的条件是:
(1) m∈N*,n∈N* ;
全排列数:
1. 全排列:从n个不同素中取出n个元素的一个排列称为n个不同 元素的
一个全排列 .
全排列数为: Ann n( n 1)( n 2) 2 1 n!
2.阶乘:正整数1到n的连乘积 1×2×···×n称为n的阶乘,用 n!表示, 即
Ann n !
规定:0 ! 1.
小结:
1. 排列数公式:A n( n 1)( n 2) ( n m 1). ( m , n N 且m n)
m
n
*
2. 全排列数: Ann n( n 1)( n 2) 2 1
3.阶乘:正整数1到n的连乘积 1×2×···×n称为n的阶乘,用 n!表示, 即
∴不同的排法共有 A44 A31 A31 A33 78 种.
解2:甲站排头有 A44 种排法,乙站排尾有 A44 种排法.
3
但两种情况都包含了 “甲站排头, 且乙站排尾” 的情况,有A3 种排法.
5
4
3
∴ 不同的排法有 A5 2 A4 A3 78 种排法.
例题 证明:Anm mAnm 1 Anm1 .
解1:分两步完成:(特殊位置法)

高中数学排列组合

高中数学排列组合

1、排列定义
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志.
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
思考 上述问题1,2 的共同特点是什么?你能将它 们推广到一般情形吗?
一般地,从n个不同的元素中取出m(m n)个元素, 按 照 一 定 顺 序 排 成 一 列,叫 做 从n个 不 同 元 素 中 取
出m个元素的一个排列 (arrangement).
思考 你能归纳一下排列的特征吗?
根据排列的定义,两个排列相同,当且仅当两个排 列的元素完全相同,且元素的排列顺序也相同.例 如在问题2中,123与134的元素不完全相同,它们 是 不 同 的 排 列;123与132虽 然 元 素 完 全 相 同, 但 元 素的排列顺序不同,它们也是不同的排列.
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线
(9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14
个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛?
nn
1n
2 n n m
m 1n
2 1
m
2
1
n! nm!
A
n n
A nm nm
.

高二数学排列和组合知识点

高二数学排列和组合知识点

高二数学排列和组合知识点排列与组合是高中数学中的重要内容,它们在解决实际问题时具有广泛的应用。

本文将详细介绍排列和组合的基本概念、公式以及解题方法,帮助学生掌握这一知识点。

基本概念排列和组合都是从一组元素中选择一定数量的元素进行分析的数学方法。

排列强调元素的顺序,而组合则不考虑元素的顺序。

排列1. 排列数公式:从n个不同元素中取出m个元素的所有排列的个数,记作A_{n}^{m},计算公式为:\[ A_{n}^{m} = \frac{n!}{(n-m)!} \]其中n!表示n的阶乘,即从1乘到n。

2. 举例说明:假设有5本不同的书,我们要选出2本来阅读。

如果考虑阅读的顺序,那么第一天读哪本书,第二天读哪本书是有区别的。

这里就有A_{5}^{2}种不同的排列方式。

组合1. 组合数公式:从n个不同元素中取出m个元素的所有组合的个数,记作C_{n}^{m},计算公式为:\[ C_{n}^{m} = \frac{n!}{m!(n-m)!} \]同样,这里的n!表示n的阶乘。

2. 举例说明:继续上述的例子,如果我们只关心选出哪2本书来阅读,而不关心阅读的顺序,那么这就是一个组合问题。

计算方法为C_{5}^{2}。

解题方法1. 区分排列与组合:首先要明确问题是要求排列还是组合。

如果问题中涉及到元素的顺序,那么就是排列问题;如果不涉及顺序,则是组合问题。

2. 公式运用:根据问题的具体要求,选择合适的排列或组合公式进行计算。

3. 实际应用:排列和组合的知识可以应用于许多实际问题,如概率计算、统计分析等。

在解题时,要结合实际情况,灵活运用所学知识。

练习题1. 有7个人排队,其中甲必须排在乙的前面,问有多少种排队的排列方式?2. 一个班级有10个男生和5个女生,从中选出3个代表,其中至少有1个女生的组合有多少种?通过以上介绍和练习题,相信学生可以更好地理解和掌握排列与组合的概念、公式及解题方法。

在实际解题过程中,要注意区分排列和组合的不同,并正确运用公式,这样才能有效地解决问题。

高二重要数学公式归纳总结

高二重要数学公式归纳总结

高二重要数学公式归纳总结数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

下面是小编为大家整理的关于高二重要数学公式总结,希望对您有所帮助!高二数学排列公式1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的'个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!_m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!_n2!_..._nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高二数学向量公式1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y) 那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y 平方)3.P1(x1,y1) P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cos=x1x2+y1y2Cos=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)=根号(x1平方+y1平方)_根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a={x,y,z})6.充要条件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y27.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方高中数学三角函数公式锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的.邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))。

5.2排列与排列数排列数公式课件-高二上学期数学北师大版选择性

5.2排列与排列数排列数公式课件-高二上学期数学北师大版选择性

(2) 元素的有序性
判断关键是看选出的元素有没有顺序要求.
2、排列数及公式
排列数公式:从n个不同元素中取出m (m≤n,且m,n∈N+)个元素的排 列共有n(n-1)(n-2)·…·[n-(m-1)]种,所以
分析:每组任意2支队之间进行的1场比赛, 可以看作是从该组6支 队中选2支,按“主队、客队”的顺序排成一个排列.
解 可以先从6支队选1支队为主队,然后从剩下的5支队中选1支队 为客队,按分步乘法计数原理,每组进行的比赛场数为:6×5=30.
§2 排列 第1课时 排列与排列数、排列数公式
➢1.通过实例,理解排列的概念,能利用计数原理推导排 列数公式,达到数学运算和数学抽象核心素养水平一的层 次; ➢利用排列数公式解决一些简单的实际问题,达到逻辑推 理和数学建模核心素养水平一的层次。
环节一
排列的概念
1、排列的概念
思考1:3名同学排成一行照相,共有多少种排法?
环节二
排列数及公式
2、排列数及公式
2、排列数及公式
第1步:第一个位置可以从n个不同元素中任选1个,有n种方法 ; 第2步:第二个位置可以从除了确定排在第一个位置的那个元素 之外的(n-1)个中任选1个,有(n-1)种方法,即第一个位置的 每一种方法都对应(n-1)种方法
2、排列数及公式
提示:从n个不同元素中取出m (m≤n,且m,n∈N+)个元素的排列,看成 从n个不同的球中取出m个球,放入排好的m个盒子中,每个盒子里放一个 球,我们根据分步乘法计数原理排列这些球: 第1步,从全体n个球中任选一个放入第1个盒子,有n种方法; 第2步,从剩下的(n-1)个球中任选一个放入第2个盒子,有(n-1)种方法 ;
(2)甲、乙两人不相邻的排法有多少种?

高二数学排列、排列数公式人教版知识精讲

高二数学排列、排列数公式人教版知识精讲

高二数学排列、排列数公式人教版【同步教育信息】一. 本周教学内容:排列、排列数公式二. 重点、难点:重点:1. 排列的概念、排列数公式2. 排列的应用难点:有附加条件的排列数的计算,排列应用问题等是这部分内容的难点。

【典型例题】例1. 一排有8个座位3个人去坐,若每个人左右均有空位,有多少种坐法?分析:转化为3个人插5个空的模型:每个人都拿着一把椅子,先排其余的5个椅子(一种排法),它们之间产生4个空档,再把手拿椅子的3个人排到这4个空档中,共有A 43=24种。

例2. 把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按从小到大的顺序排列,构成一个数列。

(1)43251是这个数列的第几项?(2)这个数列的第96项是多少?(3)求这个数列的各项和。

解:(1)本题实际上是求不大于43251的五位数有多少个的问题,逆向考虑,将大于它的数分成如下三种情况。

答:43251是此数列的第88项。

(2)用排除法逆向分析,此数列共有120项,第96项以后还有120-96=24项,即比第96项所表示的五位数大的五位数有24个,而以5打头的五位数恰好有A 44=24(个),所以小于以5打头的五位数中最大的一个就是该数列的第96项,即为45321.答:这个数列的第96项是45321.(2)实际上是求所组成的五位数的和,因为1、2、3、4、5各在万位上时都有44P 个五位数,所以在万位上的和为10000)54321(44⋅++++P 。

同理,它们在千位、百位、十位、个位上也都有44P 个五位数,所以其和为)1000100101()54321(44+++⋅++++P 。

∴综上可知,这个数列的和为:答:这个数列的各项和为3999960。

说明:本题中的逆向思维的分析方法是解决问题的重要方法,当从正面解决问题比较困难时,可以考虑从它的反面入手,问题往往就可以迎刃而解。

例3. 一场晚会有5个唱歌和3个舞蹈共8个节目,问按下列要求各可排出多少种不同的节目单?(1)前4个节目中即要有唱歌又要有舞蹈;(4)3个舞蹈节目的先后顺序一定。

高二排列组合基本知识点

高二排列组合基本知识点

高二排列组合基本知识点在高中数学中,排列组合是一个重要的知识点,它是数学中的一种计数方法。

在解决真实生活问题或者数学题目时,我们经常会遇到需要使用排列组合知识点的情况。

下面,我们将详细介绍高二阶段学习的排列组合的基本知识点。

一、排列的基本概念排列是从给定的元素中取出若干个,按一定顺序排列成一列的方式。

在排列过程中,每个元素只能使用一次。

我们用P表示排列的个数,P后面的数字表示从中选取元素的个数。

1. 从n个不同元素中取出m个元素进行排列,形成的排列数用P(n, m)表示。

其中n和m均为非负整数,且m必须小于等于n。

排列数的计算公式为:P(n, m) = n! / (n - m)!2. 当m = n 时,即从n个不同元素中取出所有元素进行排列,此时的排列数用P(n)表示,即全排列。

全排列的计算公式为:P(n) = n!二、组合的基本概念组合是从给定的元素中取出若干个,不考虑顺序地合成一组的方式。

在组合过程中,每个元素只能使用一次。

我们用C表示组合的个数,C后面的数字表示从中选取元素的个数。

1. 从n个不同元素中取出m个元素进行组合,形成的组合数用C(n, m)表示。

组合数的计算公式为:C(n, m) = n! / (m! * (n - m)!)2. 当m = n 时,即从n个不同元素中取出所有元素进行组合,此时的组合数用C(n)表示,即全组合。

全组合的计算公式为:C(n) = C(n, 1) + C(n, 2) + ... + C(n, n-1) + C(n, n)三、排列组合的应用排列组合在实际生活和数学问题中的应用非常广泛。

下面以几个典型的应用例子来说明:1. 生日问题假设有n个人,问至少有两人生日相同的概率是多少?这个问题可以通过排列组合的方式求解。

我们首先求出总的可能性,即将n个人的生日安排在365天中的任意一天,所以总的可能性为365^n。

然后,我们计算没有两人生日相同的情况数。

假设第一个人的生日可以任意选择,那么第二个人的生日不能与第一个人同一天,所以有365-1=364种选择,同理可推第三个人有365-2=363种选择,以此类推,得到没有两人生日相同的情况总数为365*364*363*...*(365-n+1)。

高中数学第一章计数原理1.2排列与组合1.2.1第1课时排列与排列数公式a23a高二23数学

高中数学第一章计数原理1.2排列与组合1.2.1第1课时排列与排列数公式a23a高二23数学

义及表示 叫做从n个不同元素中取出m个元素的排列数,用符号Amn 表示
全排列的概念
n个不同元素__全__部__(q_uá_nb_ù_)取_的出一个排列
阶乘的概念
把_n_·(_n_-__1_)_·…__·_2_·_1记作n!,读作:n的阶乘
Anm=___n_(_n_-__1_)…__(_n_-__m__+__1_) ____
2021/12/12
第十五页,共三十六页。
[跟踪训练] 1.判断下列问题是否是排列问题 (1)同宿舍4人,每两人互通一封信,问他们一共写了多少封信? (2)同宿舍4人,每两人通一次电话,问他们一共通了几次电话?
[解] (1)是一个排列问题,相当于从4个人中任取两个人,并且按顺序 排好.有多少个排列就有多少封信,共有A24=12封信.
题.
()
2021/12/12
第八页,共三十六页。
[解析] (1)× 因为相同的两个排列不仅元素相同,而且元素的排列顺 序也相同.
(2)√ 因为三名学生参赛的科目不同为不同的选法,每种选法与“顺 序”有关,属于排列问题.
(3)× 因为分组之后,各组与顺序无关,故不属于排列问题. (4)√ 因为任取的两个数进行指数运算,底数不同、指数不同结果不 同.结果与顺序有关,故属于排列问题. (5)√ 因为纵、横坐标不同,表示不同的点,故属于排列问题.
第二页,共三十六页。
[自 主 预 习·探 新 知]
1.排列的概念 从n个不同元素中取出m(m≤n)个元素,按照_一__定_(_yī_dì_ng_)_的_顺排序成一列,叫 做从n个不同元素中取出m个元素的一个排列. 2.相同排列的两个条件 (1)_元__素__(_yu相án s同ù) . (2)_顺__序__(s_hù相nxù同) . 思考:如何理解排列的定义?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
打鱼换现金提现
[单选,A2型题,A1/A2型题]2~3岁儿童的先天性肌性斜颈的治疗可选择()A.局部热敷,按摩B.手法牵引,头部扳正C.切断胸锁乳突肌胸骨头和锁骨头D.切除胸锁乳突肌E.胸锁乳突肌和斜方肌部分切除 [配伍题,B1型题]发生在输血2小时内最常见的并发症是()</br>输血的同时输注低渗性液体易发生()A.变态反应B.发热反应C.过敏反应D.溶血反应E.细菌污染反应 [多选]气管切开术后护理应特别注意()A.保持气管套管通畅B.每4~6小时清洗消毒内套管一次C.严格无菌操作,吸痰导管一用一消毒D.痰液粘稠时可给予气道雾化吸人E.贮液瓶内应先放入250毫升消毒液 [单选,A2型题,A1/A2型题]只可外用,不宜内服的药物是()A.轻粉B.砒石C.升药D.炉甘石E.硼砂 [单选,A2型题,A1/A2型题]碘造影剂可发生过敏反应,除哪项外属于轻度反应()A.恶心、呕吐B.气喘、呼吸困难C.面色潮红D.头晕、头痛E.荨麻疹 [单选,A1型题]短暂脑缺血发作的临床表现是()。A.血压突然升高,短暂意识不清,抽搐B.眩晕、呕吐、耳鸣持续一至数日C.发作性神经系统功能障碍,24小时内完全恢复D.昏迷、清醒、再昏迷E.一侧轻偏瘫,历时数日渐恢复 [填空题]为保证工程质量,现场监理人员对隐蔽工程进行(),并签证。 [单选]承担自动喷水灭火系统中洒水喷头、水流指示器、压力开关、湿式报警阀等产品市场准入检验的检验机构是()。A、国家固定灭火系统和耐火构件质量监督检验中心B、国家消防装备质量监督检验中心C、国家消防电子产品质量监督检验中心D、国家防火建筑材料质量监督检验中心 [单选,A2型题,A1/A2型题]分化是指肿瘤细胞生长成熟的程度()A.分化程度越高则恶性程度越高B.分化程度越低则恶化程度越低C.未分化细胞越少则恶性程度越高D.分化程度越低则越接近其相应的发源组织E.未分化细胞越少则越接近其相应的发源组织 [单选]《女职工劳动保护特别规定》共有()条(不含附录)。A、12B、16C、21D、28 [单选]义务消防队一般分为指挥组、通信组、灭火组以及()等。A.医疗组B.设备组C.疏散组D.交通指挥组 [单选,A1型题]全身性水肿不见于下列哪项疾病()A.丝虫病B.心功能不全C.肝硬化D.急性肾小球肾炎E.营养不良 [单选]下列因素中,提示类风湿关节炎预后较差的是()。A.病程长B.HLA-DR3阳性C.抗核抗体阳性D.类风湿因子持续低滴度阳性E.多发类风湿结节 [单选,A1型题]关于急性中毒的治疗原则,不正确的是()。A.酸性毒物污染皮肤、黏膜后应用碱性液体冲洗、中和B.立即终止接触毒物C.迅速清除进入体内已被吸收或尚未吸收的毒物D.及时使用特效解毒剂或拮抗剂E.积极对症治疗 [单选]关于隐性感染,下列不正确的是()A.机体发生特异性免疫应答B.不引起或只引起轻微的组织损伤C.不出现临床症状和体征D.病原体被完全清除,不会转变为病原携带状态E.在大多数传染病中最常见的表现 [单选,A2型题,A1/A2型题]于前后方向将人体纵切为左右两半的切面是()A.冠状面B.矢状面C.正中面D.横切面E.水平面 [判断题]采用顺序分配法分配辅助生产费用,其特点是受益少的先分配,受益多的后分配。先分配的辅助生产车间不负担后分配的辅助生产车间的费用。()A.正确B.错误 [单选,A2型题,A1/A2型题]儿童鼻咽部触诊时,要用左手食指紧压患儿颊部是为了()。A.让口张的更大,以便于检查B.帮助固定患儿头部C.减轻患儿的咽部反射D.防止被患儿咬伤E.保护患儿的口角 [名词解释]简答决策支持系统的设计思想 [单选,A1型题]下列哪项不是黄连的主治病证()A.肺热咳嗽B.血热吐血C.胃热呕吐D.湿热泻痢E.痈疽疮毒 [单选]当遇到深度访谈或对问题所知不多时常用()A.专题调查B.定量调查C.半定量调查D.定性调查E.以上都不是 [单选]根据《中华人民共和国消防法》的规定,任何单位、个人不得()A、损坏、挪用或者擅自拆除、停用消防设施、器材B、不得埋压、圈占、遮挡消火栓或者占用防火间距C、不得占用、堵塞、封闭疏散通道、安全出口、消防车通道D、以上全是 [单选]()是实施美育的重要途径,对于培养德、智、体等方面全面发展的社会主义事业的建设者和接班人,塑造完美的人格,提高全民族的素质,具有不可替代的作用。A.环境教育B.历史教育C.艺术教育D.科学教育 [问答题,简答题]简述开放性伤口的止血包扎步骤 [单选,A2型题,A1/A2型题]下列药物中,治疗有机磷毒的有效解毒剂是().A.美蓝B.阿托品C.乙酰胺D.依地酸二钠钙E.二巯丙磺钠 [单选,A2型题,A1/A2型题]休克时最能反映组织和细胞是否缺氧、缺氧程度、休克是否好转与恶化的主要实验室检查是()。A.动脉血pH值B.动脉血乳酸水平C.血清钾离子浓度D.血清乳酸脱氢酶含量E.动脉血二氧化碳结合力 [名词解释]应用型地理信息系统 [单选]()是在调查组下面分设若干调查小组分头调查,适用于涉及面广、调查取证难度较大的案件。A、母子式B、联合式C、纵向联合式D、横向联合式 [单选]终末期肝硬化门静脉高压症最有效的治疗方法是()A.门体分流术B.脾切除术C.断流术D.肝移植术E.药物治疗 [填空题]2009年七人制橄榄球锦标赛于()举行。 [名词解释]气调养护(气调贮藏) [多选]鉴定档案价值最重要的是分析()。A.档案的来源B.档案的内容C.档案的形成时间D.档案的形式 [单选]甲产品经过两道工序加工完成。采用约当产量比例法将直接人工成本在完工产品和月末在产品之间进行分配。甲产品月初在产品和本月发生的直接人工成本总计23200元。本月完工产品200件;月末第一工序在产品20件,完成全部工序的40%;第二工序在产品40件,完成全部工序的60%。月末在 [单选]脊柱结核的好发部位是()A.颈椎B.胸椎C.腰椎D.胸腰交界区E.骶、尾椎 [单选,A2型题,A1/A2型题]临床最常见周围性面瘫的类型是()。A.先天性B.感染性C.外伤性D.原发性E.医源性 [单选]颅后窝骨折的特征性表现为()A.脑脊液鼻漏B.失明C.Battle征D.失嗅E.搏动性突眼 [问答题,简答题]货车篷布号码是怎样规定的? [名词解释]物料容重 [单选,A1型题]上尿路结石形成的因素与下列哪项无关()A.饮食结构中肉类过多B.长期卧床不起C.尿中枸橼酸增多D.肾小管酸中毒E.饮食结构中纤维素过少 [单选]编制水土保持方案所需费用应当根据编制工作量确定,并纳入项目()。A.前期费用B.可行性研究费用C.期间费用D
相关文档
最新文档