空调群控节能控制系统原理图
某标准空调控制原理图_PLC电气控制原理设计CAD图纸

中央空调系统原理及原理图

PPT文档演模板
中央空调系统原理及原理图
中央空调系统的分类(续)
3、空气-水系统 由经过处理的空气和水共同负担室内热湿 负荷 ,典型装置是风机盘管加新风系统。
4、冷剂系统 利用直接蒸发的制冷剂吸热来调节室内温 度、湿度。
PPT文档演模板
中央空调系统原理及原理图
中央空调系统的分类(续)
二、按处理设备的情况分类
PPT文档演模板
中央空调系统原理及原理图
压缩机(续)
4)评价制冷压缩机消耗能量方面先进性的指标: a、制冷压缩机的性能系数 COP即:单位轴功率的 制冷量。
轴功率(压缩机的耗功率)指电动机传至压缩 机机轴上 的功率,主要包括直接用于压缩空气的 所耗功率和克服运动机构的摩擦阻力所耗功率。 b、能效比 EER :单位电动机输入功率的制冷量 大小。
离心式冷水机组单机容量大,制冷性能系数COP值高,但在部分负荷 下运行时容易发生“喘振”现象。螺杆式冷水机组由于在压缩机构造 上的特点,在部分负荷下仍能稳定、高效地运行,常被用于负荷波动 大、需要调节的场合。活塞式冷水机组和涡旋式冷水机组均为小容量 制冷机,其中活塞式冷水机组由于振动大、运行维护复杂,目前运用 较少,而涡旋式冷水机组运行噪声小,调节方便,在小型工程中运用 较多。
PPT文档演模板
中央空调系统原理及原理图
中央空调系统的分类
一、按负担室内热湿负荷所用的介质分类
1、全空气系统 空调房间的室内热湿负荷全部由经过处理 的空气来承担,利用空调装置送出风调节 室内空气的温度、湿度。
PPT文档演模板
中央空调系统原理及原理图
中央空调系统的分类(续)
2、全水系统 全部由经过处理的水负担室内热湿负荷 , 利用冷冻机处理后的冷冻水(或锅炉制出热 水)送往空调房间的风机盘管中对房间的温 度、湿度进行处理的。
空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析单元电路原理简析美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机系列:“数智星R”、“数智星M”、“数智星F”柜机系列等。
美的KFR-26/33GW/CBPY型变频空调。
属“数智星”变频系列。
其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。
它们的电路原理基本相似。
结合图1~图6电路原理图,对整机单元电路作简要分析。
1.室内机主电源电路电路见上图,由电源捅头L、N两端输入AC220V交流电压,经保险管FS1、压敏电阻ZNR1、电容C1和C2、T2过流保护和高频滤波后。
一路经接线柱L、N两端送到室外机主电源电路的输入端。
其中N 端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到电源变压器T1的初级线圈;第三路送到室内风机控制电路。
2.室内机辅助电源电路电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆IC6(1)、(2)脚,经IC6、C8和C35整流、滤波后,输m+13V电压,给换气风机(M2)供电;另一路经插件CN5(1)、(2)脚送到整流桥堆IC7(1)、(2)脚,经整流桥堆IC7、三端稳压块IC4(7812)和IC5(7805)、C9~C11和C32~C34整流、滤波、稳压后。
输出稳定的+12V和+5V 电压,分别给继电器控制、室内风机控制、步进电机控制、蜂鸣器、主控芯片、复位、过零检测、驱动、温度传感器、通讯、存储器、按键和显示等电路供电。
3.室内风机控制电路电路见上图、下图。
在主控芯片IC3(UPD780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由三极管04和双向可控硅光耦IC11(3526)进行控制,可实现室内风机(FAN)的运转、停转及无级调速等功能。
当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。
空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析单元电路原理简析美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机:“数智星R”、“数智星M”、“数智星F”柜机系列等。
美的KFR-26/GW/CBPY型变频空调。
属“数智星”变频系列。
其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。
它们的电路原理基本相似。
结合图1~图6电路原理图,对整机单元电路作简要分析。
1.室内机主电路电路见上图,由电源捅头L、N两端输入AC0V交流电压,经、ZNR1、和C2、T2过流保护和高频后。
一路经L、N两端送到室外机主电源电路的输入端。
其中N端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到T1的初级线圈;第三路送到室内风机控制电路。
2.室内机辅助电源电路电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆6(1)、(2)脚,经、C8和C35整流、滤波后,输m+13V电压,给换气风机()供电;另一路经插件CN5(1)、(2)脚送到整流桥堆(1)、(2)脚,经整流桥堆IC7、三端块()和IC5()、~C和~C34整流、滤波、稳压后。
输出稳定的+12V和+5V电压,分别给控制、室内风机控制、步进电机控制、、主控芯片、复位、过零检测、驱动、、通讯、存储器、按键和显示等电路供电。
3.室内风机控制电路电路见上图、下图。
在主控芯片IC3(780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由和双向可控硅光耦IC11()进行控制,可实现室内风机()的运转、停转及无级调速等功能。
当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。
其发光强度控制内部双向可控硅的导通程度。
从而进一步控制室内风机(FAN)的工作状态和运转速度。
同时室内风机(FAN)的转速还受反馈电路控制,当风机转速信号通过R、反馈到IC3(53)脚后,其内部风机转速检测电路则按照风机运转状况来确定风机转速。
空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析单元电路原理简析美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机系列:“数智星R”、“数智星M”、“数智星F”柜机系列等。
美的KFR-26/33GW/CBPY型变频空调。
属“数智星”变频系列。
其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。
它们的电路原理基本相似。
结合图1~图6电路原理图,对整机单元电路作简要分析。
1.室内机主电源电路电路见上图,由电源捅头L、N两端输入AC220V交流电压,经保险管FS1、压敏电阻ZNR1、电容C1和C2、T2过流保护和高频滤波后。
一路经接线柱L、N两端送到室外机主电源电路的输入端。
其中N 端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到电源变压器T1的初级线圈;第三路送到室内风机控制电路。
2.室内机辅助电源电路电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆IC6(1)、(2)脚,经IC6、C8和C35整流、滤波后,输m+13V电压,给换气风机(M2)供电;另一路经插件CN5(1)、(2)脚送到整流桥堆IC7(1)、(2)脚,经整流桥堆IC7、三端稳压块IC4(7812)和IC5(7805)、C9~C11和C32~C34整流、滤波、稳压后。
输出稳定的+12V和+5V 电压,分别给继电器控制、室内风机控制、步进电机控制、蜂鸣器、主控芯片、复位、过零检测、驱动、温度传感器、通讯、存储器、按键和显示等电路供电。
3.室内风机控制电路电路见上图、下图。
在主控芯片IC3(UPD780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由三极管04和双向可控硅光耦IC11(3526)进行控制,可实现室内风机(FAN)的运转、停转及无级调速等功能。
当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。
空调自动控制原理图

空调自动控制原理图
以下是空调自动控制的原理图,没有标题的文字。
1. 室内温度传感器:将室内温度转化为电信号。
2. 室外温度传感器:测量室外温度情况。
3. 室内湿度传感器:将室内湿度转化为电信号。
4. 室外湿度传感器:测量室外湿度情况。
5. 温度控制器:接收室内温度传感器的信号并与设定温度进行比较,根据比较结果控制空调开关或调整温度。
6. 湿度控制器:接收室内湿度传感器的信号并与设定湿度进行比较,根据比较结果控制空调开关或调整湿度。
7. 控制面板:提供操作界面,用户可以通过控制面板设置温度和湿度等参数。
8. 冷凝器:通过制冷剂的循环和传热,将室内热量排出去,降低室内温度。
9. 蒸发器:通过制冷剂的循环和传热,从室内吸收热量,提高室内温度。
10. 电风扇:控制室内空气的流动,使冷热空气均匀分布。
11. 压缩机:提供制冷剂的压缩和循环,实现室内空气的冷却。
12. 膨胀阀:控制制冷剂的流量,调节制冷效果。
以上是空调自动控制的原理图。
中央空调智能群控系统节电原理

中央空调智能群控系统综合应用了智能群控技术、数据采集技术、微处理技术、PLC控制技术、变频控制技术、网络通信技术等,形成具有自主知识产权的智能节电控制程序。
它在中央空调运行温度、压力、流量等数据采集基础上,结合建筑物的高度、朝向、材质、热负荷情况及用户使用习惯等一系列参数,利用独有的节电智能控制程序,建立能耗最佳运行模式,自动跟踪楼宇负荷变化,实现动态预测、提前调整、同步优化,最终调节中央空调温度、压力、流量等参数,在保证末端系统对温度、压力、流量等要求的情况下使功率曲线最大限度接近实际负荷需要功率曲线,将空调的节能效果推到极限,达到系统优化节能的目的。
下面是深圳邦德瑞厂家的小编带来的中央空调智能群控系统节电原理。
产品从如下四方面进行节能:1、消除设备选型产生的富余功率;2、消除系统部分负荷运行时的富余功率;3、提高主机的能效比和电动机的工作效率;4、运行能量优化控制和管理节能。
系统节电率:主机10~20%,水系统40~60%,综合节电率20~30%。
产品特点:具有自寻优、自适应的智能化控制传统的中央空调节能系统是将冷冻水和冷却水系统独立开来控制,但是对于中央空调这样多参量相互影响的复杂系统,只有采用智能控制功能知识,实现冷冻水和冷却水系统的统一化管理,使其达到最优的配比才能成功。
因此该系统采用了智能控制技术,使系统具有自寻优和自适应的优化控制功能,实现了中央空调系统各种负荷条件下的最大节能,使空调系统综合节能达到20%以上。
具有可靠的安全保护通过全面的运行参数采集,实现了系统工作状态的全面监控,并设置了冷冻水、冷却水的低限流量保护和低温保护,有效地保障了冷冻水和冷却水系统在变流量工况下空调主机蒸发器和冷凝器的安全稳定运行。
实现动态负荷跟随,保障了末端的服务质量系统突破了传统中央空调冷媒系统的运行方式(定流量模式或冷源侧定流量而负荷侧变流量模式),实现最佳输出能量控制,即空调主机冷媒流量自动跟随末端负荷需求而同步变化(即变流量),因此,在空调系统的任何负荷状况(满负荷或部分负荷)下,都能既保障中央空调系统末端的服务质量(舒适性),又实现最大的节能。
多联机空调系统原理图

多联机空调系统原理图多联机空调系统是一种能够同时连接多个室内机和一个室外机的空调系统,其原理图如下所示:1. 室外机部分:室外机是多联机空调系统的核心部件,其主要包括压缩机、冷凝器、膨胀阀和电子控制器。
当空调系统启动时,压缩机开始工作,将低压、低温的制冷剂吸入,经过压缩后变成高压、高温的气体,然后通过冷凝器散热,使制冷剂冷却成为高压、高温的液体。
接着,制冷剂通过膨胀阀减压,成为低压、低温的液体,进入室内机进行制冷循环。
2. 室内机部分:室内机包括蒸发器、风机和控制器。
制冷剂从室外机进入室内机后,经过蒸发器吸热蒸发,吸收室内热量,然后通过风机将冷风送入室内,降低室内温度。
控制器则负责监测室内温度,并根据设定值来控制制冷剂的流动和风机的运行,以保持室内舒适的温度。
3. 多联机连接:多联机空调系统可以连接多个室内机,每个室内机可以独立控制温度,实现不同房间的个性化空调需求。
室外机通过管道将制冷剂分配到各个室内机,同时室内机通过电子控制器与室外机进行通讯,实现整个系统的协调运行。
4. 工作原理:当有一个或多个室内机需要制冷时,室外机会根据室内机的信号进行相应的调节,保证每个室内机都能够得到足够的制冷量。
同时,室内机也可以根据实际需求进行独立控制,实现节能和舒适的空调效果。
5. 优势:多联机空调系统的优势在于能够满足多个房间的空调需求,同时又能够独立控制,节能又舒适。
而且室外机只需要一个,节省了安装空间和维护成本,是一种非常实用的空调系统。
总之,多联机空调系统的原理图清晰地展示了其工作原理和连接方式,通过合理的设计和控制,能够实现多个房间的独立空调控制,满足不同需求,是一种高效、节能、舒适的空调系统。