扫描电镜在材料表面形貌观察及成分分析中的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描电镜在材料表面形貌观察及成分分析中的应用

一、实验目的

1)了解扫描电镜的基本结构和工作原理,掌握扫描电镜的功能和用途;

2)了解能谱仪的基本结构、原理和用途;

3)了解扫描电镜对样品的要求以及如何制备样品。

二、实验原理

(一)扫描电镜的工作原理和结构

1. 扫描电镜的工作原理

扫描电镜是对样品表面形态进行测试的一种大型仪器。当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X射线等。扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。

图1 入射电子束轰击样品产生的信息示意图

从结构上看,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。

由图2我们可以看出,从灯丝发射出来的热电子,受2-30KV电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。

故视频放大器放大的二次电子信号是一个交流信号,用这个交流信号调制显像管栅极电,其结果在显像管荧光屏上呈现的是一幅亮暗程度不同的,并反映样品表面起伏程度(形貌)的二次电子像。应该特别指出的是:入射电子束在样品表面上扫描和在荧光屏上的扫描必须是“同步”,即必须用同一个扫描发生器来控制,这样就能保证样品上任一“物点”样品A点,在显像管荧光屏上的电子束恰好在A’点即“物点”A与“像点” A’在时间上和空间上一一对应。通常称“像点”A’为图像单元。显然,一幅图像是由很多图像单元构成的。

扫描电镜除能检测二次电子图像以外,还能检测背散射电子、透射电子、特征x射线、阴极发光等信号图像。其成像原理与二次电子像相同。

在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,样品干燥并且有良好导电性能。

三、能谱仪结构及工作原理

特征X射线,X射线探测器

X射线能量色散谱分析方法是电子显微技术最基本和一直使用的、具有成分分析功能的方法,通常称为X射线能谱分析法,简称EDS或EDX方法。它是分析电子显微方法中最基本、最可靠、最重要的分析方法,所以一直被广泛使用。

1.特征X射线的产生

特征X射线的产生是入射电子使内层电子激发而发生的现象。即内壳层电子被轰击后跳到比费米能高的能级上,电子轨道内出现的空位被外壳层轨道的电子填入时,作为多余的能量放出的就是特征X 射线。高能级的电子落入空位时,要遵从所谓的选择规则(selection rule),只允许满足轨道量子数l 的变化Δl=±1 的特定跃迁。特征X 射线具有元素固有的能量,所以,将它们展开成能谱后,根据它的能量值就可以确定元素的种类,而且根据谱的强度分析就可以确定其含量。

另外,从空位在内壳层形成的激发状态变到基态的过程中,除产生X射线外,还放出俄歇电子。一般来说,随着原子序数增加,X射线产生的几率(荧光产额)增大,但是,与它相伴的俄歇电子的产生几率却减小。因此,在分析试样中的微量杂质元素时可以说,EDS 对重元素的分析特别有效。

2. X射线探测器的种类和原理

对于试样产生的特征X 射线,有两种展成谱的方法:X 射线能量色散谱方法(EDS:energy dispersive X-ray spectroscopy)和X射线波长色散谱方法(WDS:wavelength dispersive X-ray spectroscopy)。在分析电子显微镜中均采用探测率高的EDS。从试样产生的X 射线通过测角台进入到探测器中。图示为EDS 探测器系统的框图。

对于EDS 中使用的X 射线探测器,一般都是用高纯单晶硅中掺杂有微量锂的半导体固体探测器(SSD:solid state detector)。SSD是一种固体电离室,当X 射线入射时,室中就产生与这个X 射线能量成比例的电荷。这个电荷在场效应管(TEF:

field effect transistor)中聚集,产生一个波峰值比例于电荷量的脉冲电压。用多道脉冲高度分析器(multichannel pulse height analyzer)来测量它的波峰值和脉冲数。这样,就可以得到横轴为X 射线能量,纵轴为X 射线光子数的谱图。

为了使硅中的锂稳定和降低FET的热噪声,平时和测量时都必须用液氮冷却EDS探测器。保护探测器的探测窗口有两类,其特性和使用方法各不相同。

(1)铍窗口型(beryllium window type)

化学成分等信息。材料内部的夹杂物等,由于它们的体积细小,因此,无法采用常规的化学方法进行定位鉴定。扫描电镜可以提供重要的线索和数据。工程材料失效分析常用的电子探针的基本工作方式为:(1) 对样品表面选定微区作定点的全谱扫描定性;(2) 电子束沿样品表面选定的直线轨迹作所含元素浓度的线扫描分析;(3) 电子束在样品表面作面扫描,以特定元素的X射线讯号调制阴极射线管荧光屏亮度,给出该元素浓度分布的扫描图像。

一般而言,常用X射线能谱仪能检测到的成分含量下限为0.1%(质量分数)。可以应用在判定合金中析出相或固溶体的组成、测定金属及合金中各种元素的偏析、研究电镀等工艺过程形成的异种金属的结合状态、研究摩擦和磨损过程中的金属转移现象以及失效件表面的析出物或腐蚀产物的鉴别等方面。

五、能谱仪的功能

5.1 元素定性分析

元素周期表中的任何一种元素都有各自的原子结构,与其他元素不同,正是这种结构的不同,使得每种元素有自己的特征能谱图,所以测定一条或几条电子线在图谱中的位置,很容易识别出样品显示的谱线属于哪种元素。由于每种元素都有自己的特定的电子线,即使是相邻的元素也不可能出现误判,因此用这种方法进行定性分析是非常准确的。通过对样品进行全扫描,在一次测定中就可以检出全部或大部分元素

5.2 元素定量分折

X射线光电子能谱定量分析的依据是光电子谱线的强度(光电子蜂的面积)反映了原于的含量或相对浓度。由于在进行元素电子扫描时所测得的信号的强度是样品物质含量的函数,因此,根据所得电子线的强弱程度可以半定量或定量地得出所测元素的含量。之所以有半定量的概念,是因为影响信号强弱的因素除了样品中元素的浓度外,还与电子的平均自由行程和样品材料对激发X射线的吸收系数有关。在实际分析中,采用与标准样品相比较的方法来对元素进行定量分析,其分析精度达1%~2%。

5.3 固体表面分析

固体表面是指最外层的1~10个原子层,其厚度大概是(0.1~1)nm。人们早已认识到在固体表面存在有一个与团体内部的组成和性质不同的相。表面研究包括分析表面的元素组成和化学组成,原子价态,表面能态分布。测定表面原子的电子云分布和能级结构等。

5.4 化合物结构鉴定

X射线光电子能谱法对于内壳层电子结合能化学位移的精确测量,能提供化学键和电荷分布方面的信息。化学结构的变化和化合物氧化状态的变,可以引起电子线峰位的有规律的移动。据此,可以分析有机物、无机物的结构和化学组成。X射线能谱是最常用的分析工具。在表面吸附、催化、金属的氧化和腐蚀、半导体、电极钝化、薄膜材料等方面都有应用。

六、对两个样品的扫描电镜图和能谱图和测试结果进行分析

相关文档
最新文档