_扫描电镜与电子探针分析

合集下载

实验六--电子探针结构原理及分析方法

实验六--电子探针结构原理及分析方法

实验六电子探针结构原理及分析方法一、实验内容及实验目的1.结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。

2.选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。

二、电子探针的结构特点及原理]电子探针X射线显微分析仪(简称电子探针)利用约1|im的细聚焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。

电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。

电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。

本实验这部分内容将参照教材,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。

三、电子探针的分析方法电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析、以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内的浓度分布。

1.实验条件(1)样品:样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。

实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。

(2)加速电压:电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择,应考虑待分析元素及其谱线的类别。

原则上加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。

若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。

同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。

(3)电子束流:特征X射线的强度与入射电子束流成线性关系。

为提高X射线信号强度,电子探针必须使用较大的入射电子束流,特别是在分析微量元素或轻元素时,更需选择大的束流,以提高分析灵敏度。

能谱定量分析通则

能谱定量分析通则

能谱定量分析通则电子探针和扫描电镜X射线能谱定量分析通则General Specification of X-ray EDS QuantitativeAnalysis for EPMA and SEM( 中华人民共和国国家标准GB/T 17359 -98)1 适用范围本标准规定了与电子探针和扫描电镜联用的X射线能谱仪的定量分析方法的技术要求和规范。

本标准适用于电子探针和扫描电镜X射线能谱仪对块状试样的定量分析。

2 引用标准下列标准包含的条件,通过在标准中引用而构成本标准的条文。

在标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用本标准最新版本的可能性。

2.1 GB/T4930-1993 《电子探针定量分析标准试样的通用技术条件》2.2 GB/T15074-1994 《电子探针定量分析标准方法通则》3 分析方法原理在电子探针和扫描电镜等分析仪器中,应用一定能量并被聚焦的电子束轰击试样时,被轰击区发射出试样中所含元素的特征X射线,采用半导体探测器,对接收的信号进行转换、放大。

再经过线性放大器、脉冲处理器、多道分析器的进一步放大、处理和分析,可获得各元素的特征X射线的能谱及其强度值,再通过与相应元素的标准试样的X射线能谱的对比测定,以及修正计算处理,最终可以获得被测试样的化学组成的定量分析结果。

4 X射线能谱仪4.1 X射线能谱仪的基本组成方框图如下:4.2 X射线能谱仪的主要组成部分4.2.1 X射线探测器:通常是Si(Li)半导体探测器,用于探测试样发射的X射线,使能量不同的X射线转换为电压不同的电脉冲信号。

4.2.2 前置放大器:将来自探测器的信号作初级放大。

4.2.3 线性放大器和脉冲处理器:将经过前置放大器初级放大的信号作进一步放大、并进行模拟或数字化处理。

4.2.4 多道分析器:将来自脉冲处理器的信号作进一步处理,完成对X射线谱的能量和强度的初步分析。

4.2.5电子计算机系统:配备有能满足能谱分析所必需的功能完整的硬件和相应的各种分析程序软件,用于对从试样收集到的X射线能谱进行定性和定量分析,并输出分析结果。

电子探针和扫描电镜常用的标准方法-25电子探针和扫描电

电子探针和扫描电镜常用的标准方法-25电子探针和扫描电

电子探针和扫描电镜常用的标准方法电子探针和扫描电镜涉及的标准方法及技术规范共有25个,有电子探针仪检定规程(JJG901-95)、扫描电子显微镜试行检定规程(JJG 550-88)、不同类型样品的定量分析方法、样品及标样的制备方法、微米长度的扫描电镜测量方法及X射线能谱成分定量分析方法等。

各单位计量认证分析检测的项目,必须有相应的标准检测方法。

要根据标准方法进行成分分析,要采用有效的国家标准。

没有国家标准的检测项目,可以采用行业标准或地方标准。

行业标准在相应的国家标准出台后自动作废,地方标准在相应的国家标准或行业标准出台后也自动作废。

企业标准及检测机构按用户要求制定的检测条件和试验方法,只能作参考数据。

当国家标准方法不能满足某些检测要求时,例如“方法通则”,可根据方法通则制定检测实施细则,经检验机构技术负责人批准后,可以实施。

检测报告中必须有检测依据,即检测的标准方法。

所以标准方法在认证过程中和检测过程中都是必须的。

现在电子探针和扫描电镜的标准方法,还不能满足所有样品测试的要求,特别是能谱分析方法,但基本都有通则,可根据通则制定实施细则,以满足一般检测工作的需要。

(1)GB/T 4930-93 电子探针分析标准样品通用技术条件(代替GB4930-85)(2)GB/T 15074-94 电子探针定量分析方法通则(3)GB/T 15075-94 电子探针分析仪的检测方法(4)GB/T 15244-94 玻璃的电子探针分析方法(5)GB/T 15245-94 稀土氧化物的电子探针定量分析方法(6)GB/T 15246-94 硫化物矿物的电子探针定量分析方法(7)GB/T 15247-94 碳钢和低合金钢中碳的电子探针定量分析方法(8)GB/T 14593-93 山羊绒、绵羊毛及其混合纤维定量分析方法(9)GB/T 15617-95 硅酸盐矿物的电子探针定量分析方法(10)GB/T 15616-95 金属及合金电子探针定量分析方法1(11)GB/T 16594-94 微米级长度的扫描电镜测量方法(12)GB/T 17359-98 电子探针和扫描电镜X射线能谱定量分析通则 (13)GB/T 17360-98 钢中低含量Si、Mn的电子探针定量分析方法(14)GB/T 17361-98 沉积岩中自生粘土矿物扫描电子显微镜及X射线能谱鉴定方法(15)GB/T17632-98 黄金饰品的扫描电镜X射线能谱分析方法(16)GB/T17363-98 黄金制品的电子探针定量测定方法(17)GB/T17364-98 黄金制品中金含量的无损定量分析方法(18)GB/T17365-98 金属与合金电子探针定量分析样品的制备方法(19)GB/T17366-98 矿物岩石的电子探针分析试样的制备方法(20)GB/T17506-98 船舶黑色金属腐蚀层的电子探针分析方法(21)GB/T17507-98 电子显微镜-X射线能谱分析生物薄标样通用技术条件 (22)GB/T17722-99 金覆盖层厚度的扫描电镜测量方法(23)GB/T17723-99 黄金制品镀层成分的X射线能谱测量方法 此外,还有以下一些其他标准可作参考,如:(24) 分析型扫描电子显微镜检定规程(JJG 011-1996)(25) 纳米级长度的扫描电镜测量方法(国家标准讨论稿)(26) 微束分析-扫描电镜-图像放大倍率校准导则(陈振宇编译)2。

电子探针和扫描电镜X射线能谱定量分析通则

电子探针和扫描电镜X射线能谱定量分析通则

MV_RR_CNG_0396电子探针和扫描电镜X射线能谱定量分析通则1.电子探针和扫描电镜X射线能谱定量分析通则说明2.电子探针和扫描电镜X射线能谱定量分析通则摘要1范围本标准规定了与电子探针和扫描电镜联用的X射线能谱仪的定量分析方法的技术要求和规范。

本标准适用于电子探针和扫描电镜X射线能谱仪对块状试样的定量分析。

2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探计使用下列标准最新版本的可能性。

4.1 X射线能谱仪的基本组成方框图如下:I X 射^ I前置—I线性多道分析器4.2 X射线能谱仪的主要组成部分GB/T 4930 —93电子探针分析标准样品通用技术条件GB/T 15074 —94 电子探针定量分析方法通则3分析方法原理在电子探针和扫描电镜等分析仪器中,应用一定能量并被聚焦的电子束轰击样品时,被轰击区发射出样品中所含元素的特征X射线,利用半导体探测器的能量色散特性,对接收的信号进行转换、放大。

再经过线性放大器、脉冲处理器、多道分析器的进一步放大、处理和分析,可获得各元素的特征X射线的能谱及其强度值,再通过与相应元素的标准样品的X射线能谱的对比测定,以及修正计算处理,最终可以获得被测样品的化学组成的定量分析结果。

4射线能谱仪4.2.1 X射线探测器:通常是Si(Li)半导体探测器,用于探测试样发射的X射线,使能量不同的X射线转换为电压不同的电脉冲信号。

4.2.2前置放大器:将来自探测器的信号作初级放大。

4.2.3线性放大器和脉冲处理器:将经过前置放大器初级放大的信号作进一步放大、并进行模拟或数字化处理。

4.2.4多道分析器:将来自脉冲处理器的信号作进一步处理,完成对X射线谱的能量和强度的初步分析。

4.2.5电子计算机系统:配备有能满足能谱分析所必须的功能完整的硬件和相应的各种分析程序软件,用于对从试样收集到的X射线能谱进行定性和定量分析,并输出分析结果。

电子探针扫描电镜显微分析

电子探针扫描电镜显微分析

第八章 电子探针、扫描电镜显微分析中国科学院上海硅酸盐所李香庭1 概论1.1 概述电子探针是电子探针X射线显微分析仪的简称,英文缩写为EPMA(Electron probe X-ray microanalyser),扫描电子显微境英文缩写为SEM(Scanning Electron Microscope)。

这两种仪器是分别发展起来的,但现在的EPMA都具有SEM的图像观察、分析功能,SEM也具有EPMA的成分分析功能,这两种仪器的基本构造、分析原理及功能日趋相同。

特别是现代能谱仪,英文缩写为EDS(Energy Dispersive Spectrometer)与SEM组合,不但可以进行较准确的成分分析,而且一般都具有很强的图像分析和图像处理功能。

由于EDS分析速度快等特点,现在EPMA通常也与EDS组合。

虽然EDS的定量分析准确度和检测极限都不如EPMA的波谱仪(Wavelength Dispersive Spectrometer ,缩写为WDS)高,但完全可以满足一般样品的成分分析要求。

由于EPMA与SEM设计的初衷不同,所以二者还有一定差别,例如SEM以观察样品形貌特征为主,电子光学系统的设计注重图像质量,图像的分辨率高、景深大。

现在钨灯丝SEM的二次电子像分辨率可达3nm,场发射SEM二次电子像分辨率可达1nm。

由于SEM一般不安装WDS,所以真空腔体小,腔体可以保持较高真空度;另外,图像观察所使用的电子束电流小,电子光路及光阑等不易污染,使图像质量较长时间保持良好的状态。

EPMA一般以成分分析为主,必须有WDS进行元素成分分析,真空腔体大,成分分析时电子束电流大,所以电子光路、光阑等易污染,图像质量下降速度快,需经常清洗光路和光阑,通常EPMA二次电子像分辨率为6nm。

EPMA附有光学显微镜,用于直接观察和寻找样品分析点,使样品分析点处于聚焦园(罗兰园)上,以保证成分定量分析的准确度。

EPMA和SEM都是用聚焦得很细的电子束照射被检测的样品表面,用X射线能谱仪或波谱仪,测量电子与样品相互作用所产生的特征X射线的波长与强度,从而对微小区域所含元素进行定性或定量分析,并可以用二次电子或背散射电子等进行形貌观察。

扫描电子显微镜与电子探针

扫描电子显微镜与电子探针
上一页 下一页 返回
(三)扫描电镜的主要性能
1
(1)扫描电子束斑直径 (2)入射电子束在样品中的扩展效应。 (3)成像所用信号的种类。 2 3
上一页 下一页 返回
(四)扫描电镜的试样制备
一般的扫描电镜对样品的要求主要有:(1)适当的大小;(2)良好的 扫描电镜景深长,样品室大,故样品尺寸可变化范围大,试样的大小
分析。其方法是:利用波谱仪上配置的光学显微镜及SEM的图像选
定待分析的点或微区,并将其移到电子束的轰击之下,缓慢地驱动谱
θ
X
λ
线,将谱线强度峰值所对应的波长与标准特征X射线波长相比较,即
可获得分析微区所含元素析和面扫描分析
(一)线扫描分析(线分析) (二)面扫描分析(面分析或面分部)
返回
(一)电子与固体样品的相互作用区
样品的倾斜角的大小对相互作用区的大小也有一定影响
另外,从Rutheford模型可知,电子在样品中的弹性散 射截面与其能量的平方成反比
E
z
E
高,电子穿过某段特定的长度后保持的能量越大,电子在
样品中能够穿透的深度越大
下一页 返回
(二)电子束与样品相互作用产生的信号
检测系统主要包括计数管、前置放大器、比例放大器、波 高分析器、定标器、计数率表以及计算机、打印机输出设
上一页 返回
(一)分光系统
背散射电子像衬度应用最广泛的是它的成分衬度像,与二次电子的形 貌像(或BSE形貌相)相配合,根据BSE的原子序数衬度,可以很 方便地研究元素在样品中的分布状态,根据原始资料及形貌特点,定 性地分析判断样品中的物相
上一页 返回
4.3 电子探针的工作原理与结构
一、波谱仪的工作原理及结构 二、能谱仪的工作原理及结构

扫描电镜与电子探针

扫描电镜与电子探针

钛酸铋钠粉体的六面体形貌 20000× 返回
扫描电镜的主要性能与特点
放大倍率高(M=Ac/As) 分辨率高(d0=dmin/M总) 景深大(F≈ d0/β) 保真度好 样品制备简单
放大倍率高
从几十倍到几十万倍,连续可调。放大倍 率不是越大越好,要根据有效放大倍率和分析 样品的需要进行选择。如果放大倍率为M,人 眼分辨率为0.2mm,仪器分辨率为5nm,则 有效放大率M=0.2106nm5nm=40000 (倍)。如果选择高于40000倍的放大倍率, 不会增加图像细节,只是虚放,一般无实际意 义。放大倍率是由分辨率制约,不能盲目看仪 器放大倍率指标。
比 较
透射电镜一般是电子光学系统(照明 系统)、成像放大系统、电源和真空系统 三大部分组成。
3.电子与固体试样的交互作用
一束细聚焦的电子束轰击试样表面
时,入射电子与试样的原子核和核外电 子将产生弹性或非弹性散射作用,并激 发出反映试样形貌、结构和组成的各种 信息,有:二次电子、背散射电子、
阴极发光、特征X 射线、俄歇过程和俄
返回
4. 不损坏试样、分析速度快
现在电子探针均与计算机联机,可以连续自 动进行多种方法分析,并自动进行数据处理和数 据分析,对含10个元素以下的试样定性、定量分 析,新型电子探针在30min左右可以完成,如果 用EDS 进行定性、定量分析,几分种即可完成。 对表面不平的大试样进行元素面分析时,还可以 自动聚焦分析。 电子探针分析过程中一般不损坏试样,试样 分析后,可以完好保存或继续进行其它方面的分 析测试,这对于文物、古陶瓷、古硬币及犯罪证 据等的稀有试样分析尤为重要。
多孔SiC陶瓷的二次电子像
一般情况下, SEM 景深比 TEM 大 1 0 倍 , 比 光 学 显 微 镜 ( OM) 大 100倍。如10000倍时,TEM :D= 1m,SEM:10m, 100 倍 时 , OM:10m,SEM=1000m。

扫描电镜的应用

扫描电镜的应用

扫描电镜和电子探针的应用扫描电镜是利用静止的或在样品表面做光栅扫描的一束精细聚焦的电子束,轰击样品表面产生各种信号(二次电子、背散射电子、俄歇电子、特征X射线及不同能量的光子等),利用电磁透镜系统成像,对固体材料进行分析的仪器。

广泛应用于生物、地质、固体物理、电子及材料等科学领域。

主要用于观察微米及亚微米范围内的各种现象。

第一台扫描电镜是由vonArdenne通过在透射电镜(TEM)上加装扫描装置改制而成的。

由于SEM具有分辨率高(纳米级)、景深大而且可以从几十倍到几千倍连续放大,因此自问世以来就成为材料研究和失效分析的利器。

1 SEM的应用1.1 SEM金相分析正确的金相分析是失效分析的基础。

首先是对各种光学显微镜不能分辨的基本显微组织的分析,如隐针马氏体、屈氏体等;其次是对显微组织精细结构的分析,如上贝氏体中铁素体和渗碳体两个相的形态,条状马氏体的细长板条状的立体形态等。

再次,各种金属间化合物相、碳化物相、硼化物相及氮化物相等。

相、M如‘型化合物、p 相等,硬质合金中的Co相WC相等等。

其他金相分析,如异种钢接头焊缝底层的不均匀带、硬质合金晶粒形状大小、硬质合金的混料、蠕墨铸铁中石墨的空间立体形态、钢中显微裂纹和显微缩孔等。

金相分析一般在低倍分析及光学显微镜分析的基础上结合结构分析(如X 射线衍射分析、电子衍射分析等)和微区成分分析(如波谱仪、能谱仪等)完成的。

1.2 SEM在断口分析中的应用利用扫描电镜进行电子断口分析,是在失效分析中的最主要的应用,利用SEM对断裂机理分析归类,明确断裂类型,其次是对裂纹源位置和扩展方向的判定,金属材料的主要断裂机理有:韧窝断裂、解理断裂、滑移分离、准解理断裂、疲劳断裂及环境断裂等。

韧窝断裂主要分析韧窝的形状、大小、数量、第二相粒子及夹杂物等。

其微观形貌为:正交韧窝、剪切韧窝、撕裂韧窝及卵形韧窝和沿晶韧窝等。

解理断裂的微观形貌特征为:解理台阶、河流、舌状花样、扇形花样、鱼骨花样、瓦纳线等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_扫描电镜与电子探针分析
扫描电镜(Scanning Electron Microscope,SEM)和电子探针分析(Energy Dispersive X-ray Spectroscopy,EDS)是现代材料科学和纳
米技术领域中广泛应用的两种重要分析技术。

本文将分别介绍扫描电镜和
电子探针分析的原理、仪器结构和应用。

一、扫描电镜(SEM)
扫描电镜是一种基于电子束的显微镜,通过聚焦的电子束对样品表面
进行扫描,获得高分辨率的图像。

相比传统光学显微镜,SEM具有更高的
分辨率和更大的深度聚焦能力。

SEM的工作原理如下:
1.电子源:SEM使用热阴极电子枪产生的高速电子束。

电子束由一根
细丝产生,经过加热后电子从细丝上发射出来。

2.透镜系统:电子束经过电子透镜系统进行聚焦和调节。

透镜系统包
括几个电磁透镜,用于控制电子束的聚焦和扫描。

3.样品台:样品台用于固定样品并扫描表面。

样品通常需要涂覆导电
性材料,以便电子束可以通过样品表面。

4.探测器:SEM使用二次电子和背散射电子探测器来检测从样品表面
散射的电子。

这些探测器可以转化为图像。

SEM可以提供高分辨率的表面形貌图像,并通过电子束的反射和散射
来分析样品的成分、孔隙结构和晶体结构等。

其应用广泛,包括材料科学、纳米技术、电子器件等领域。

二、电子探针分析(EDS)
电子探针分析是一种基于X射线的成分分析技术,常与扫描电镜一同使用。

EDS可以对样品的元素成分进行快速准确的定性和定量分析。

其工作原理如下:
1.探测器:EDS使用一个固态半导体探测器来测量从样品发射的X射线。

当样品受到电子束轰击时,样品中的元素原子被激发并发射出特定能量的X射线。

2.能谱仪:EDS使用能谱仪来分析探测到的X射线,该仪器能够将X 射线能量转换成电压信号,并进行信号处理和分析。

3.能量分辨率:EDS的精度取决于能谱仪的能量分辨率,分辨器的能量分辨率越高,分析结果越准确。

4.谱库:EDS使用事先建立的元素谱库进行定性和定量分析。

该谱库包含了每个元素的能量特征峰值。

EDS可以用于分析样品的元素成分、检测杂质、研究晶体结构和物相等。

该技术在材料科学、地质学、环境科学等领域有广泛应用。

总结:
扫描电镜和电子探针分析是两种重要的表征和分析技术,它们能够提供高分辨率的显微图像和样品元素成分分析,有助于我们深入了解材料的微观结构和性质。

随着材料科学和纳米技术的进一步发展,这两种技术将在更广泛的应用领域发挥重要作用。

相关文档
最新文档