小型风力发电机控制器设计说明

合集下载

电气工程中的微型风力发电系统设计与性能评估

电气工程中的微型风力发电系统设计与性能评估

电气工程中的微型风力发电系统设计与性能评估引言:随着可再生能源的广泛应用与推广,风能作为一种环保、可再生的清洁能源,受到越来越多的关注。

在电气工程领域,微型风力发电系统作为风能利用的一种重要方式,具有灵活性、可扩展性和适应性强的特点。

本文将介绍微型风力发电系统的设计原理和关键技术,并重点讨论其性能评估方法。

一、微型风力发电系统的设计原理微型风力发电系统由风能捕捉部分、转换部分和储存部分组成。

风能捕捉部分主要包括风轮、叶片和风速传感器,用于捕捉和测量风能。

转换部分是核心部分,主要由发电机和电控部分组成。

发电机通过叶片的转动,将机械能转化为电能。

电控部分则用于控制和优化发电系统的运行。

储存部分则是将发电的电能储存起来,以备不时之需。

二、微型风力发电系统的关键技术1. 叶片设计:叶片是微型风力发电系统中最关键的部分之一。

其设计要考虑风能的捕捉效率和机械强度。

常见的叶片材料包括玻璃纤维增强塑料和碳纤维复合材料。

通过优化叶片的形状和尺寸,可以提高系统的发电效率。

2. 电机选择:电机的选择对系统的发电效率和稳定性具有重要影响。

常用的电机类型包括直流电机和交流电机。

直流电机较为简单,适用于小型和低功率的发电系统;交流电机则具有较高的转矩和效率,适用于中小功率的发电系统。

3. 风能转换率:风能转换率是评估微型风力发电系统性能的重要指标之一。

它表示了系统从风能到电能的转换效率。

提高风能转换率需要优化叶片设计、降低机械摩擦损失并改进发电机的效率。

4. 转速控制:微型风力发电系统的转速控制对于系统的工作稳定性和安全性至关重要。

通常采用的转速控制方法有PWM调速和MPPT调速。

PWM调速通过调节电机的电压和频率来控制转速;MPPT调速则通过不断追踪系统的最大功率点来实现转速控制。

三、微型风力发电系统的性能评估方法1. 发电效率评估:发电效率是评估微型风力发电系统性能的重要指标之一。

它表示了系统将风能转化为电能的能力。

发电效率可通过实际发电量与预期发电量的比值来计算。

小型风力发电机控制器设计

小型风力发电机控制器设计

电子设计竞赛教程考试(设计报告)题目:小型风力发电机控制器设计摘要现有的小型风力发电系统存在能量转换效率低、蓄电池使用寿命短、控制简单和缺乏完整的系统功率控制等问题。

因此提高对蓄电池的充电速度,减少充电损耗,正确地监控蓄电池状态,确保蓄电池的正确使用、延长蓄电池的使用寿命对小型风力发电有着重要意义。

本设计的目的是在分析现有的小型风力发电系统的基础上,设计简单、高效、高可靠性的风机控制器,实现风电系统可靠及优化运行。

本设计以单片机8051的加强版STC12C5A60S2为核心控制整个电路,具体由风力发电机、控制系统、整流电路、斩波电路、蓄电池充放电控制电路、蓄电池及其用电设备组成,功能上能保证系统安全运行,在电气特性和机械特性允许范围内运行。

减少风速随机变化对输出电能的影响,使输出电压稳定,减少纹波。

合理调度系统电能,保证向负载提供连续电能。

保护蓄电池,防止过充和过放,提供足够充电能量进行快速充电。

综上所述,本设计将具有可靠性更高、价格更廉等优势,对于增强市场竞争能力,加速小型风力发电的普及和应用,节约能源和保护环境都具有重要意义。

关键词:发电机整流锂电池环保目录一绪论 (1)二小型风力发电系统原理 (2)2.1 风力发电系统组成 (2)2.2 风电系统的运行特点 (2)2.3 电能变换单元和控制单元 (4)2.3.1 整流器 (4)2.3.2 DC/DC 变换器 (5)2.4 锂电池 (5)2.4.1 锂电池的介绍 (5)2.4.2 锂电池的种类 (6)2.4.3 锂电池的充电方法 (6)三小型风力发电机控制器的设计 (7)3.1 电机的选择 (7)3.1.1 手摇发电机 (7)3.1.2 电机特性曲线 (9)3.2 单片机(单片机STC12C5A60S2) (11)3.2.1 产品介绍 (11)3.2.2 单片机STC12C5A60S2的特点 (11)四流程图和电路图 (14)4.1流程图和控制原理图 (14)4.2 显示屏 (18)4.3 锂电池选择 (20)4.4 检测电路 (21)4.4.1 电压检测 (21)4.4.2 电流检测 (22)五调试 (22)六结语 (24)一绪论随着现代工业的发展和社会的进步,人们对供电持续性和供电量的要求也越来越高。

小型家用风力发电机毕业设计

小型家用风力发电机毕业设计

小型家用风力发电机毕业设计1000字一、设计内容本次设计的目的是设计一台小型家用风力发电机,能够在一个家庭中使用。

此发电机可产生电流,将电力储存到电池中,通过逆变器将直流电转为交流电供应家庭用电。

设计将包括以下内容:1. 选择合适的风轮尺寸和型号。

2. 选出合适的发电机和电路。

3. 逆变器的设计与制作。

4. 发电机和逆变器的控制系统。

5. 外壳的设计和制造。

二、设计原理风力发电机是利用风能产生的机械能转变为电能的装置。

当环境中的风吹在旋转的叶片上时,通过叶轮将机械能传递给发电机。

发电机会将机械能转化为电能并储存在电池中,其后逆变器会将直流电变为交流电以供应各项家庭电力需求。

三、设计细节1. 风轮:通过大气压力的力量,使叶片旋转,最终达到发电目的。

在此设计中,我们选择了一种直径为0.9米,叶片数为三的风轮。

2. 发电机:发电机是小型家用风力发电机的核心。

在此设计中,采用了一台带有稳定器的直流发电机。

发电机输出电流的功率为250W。

3. 逆变器:逆变器可以将直流电转换为交流电,以供应家庭用电。

我们选择了一台可以将12伏直流电转换为220伏交流电的逆变器。

4. 控制系统:我们需要对风力发电机进行控制。

控制系统是根据风速来控制发电机的转速,将飞轮的转速保持在一个稳定范围内。

5. 外壳:外壳是保护小型家用风力发电机内部设备的一个重要部分。

我们选择了一种轻质的、具有良好透气性的材料来制作外壳。

四、设计结果这款小型家用风力发电机的核心部件是发电机和逆变器。

通过控制系统,可以在不同风速下保持转速的稳定。

外壳可以保护内部设备,同时也起到状觉上的美观作用。

通过此设计,我们发现小型家用风力发电机是最佳可持续能源选择之一。

它可以为家庭提供一定量的电力,同时具有环保和节能的特点。

小型风力发电机控制器设计

小型风力发电机控制器设计

小型风力发电机控制器设计一、引言二、设计原理1.风速监测风速监测是风力发电机控制的基础,可以使用风速传感器或者压力传感器来实时测量风速。

将传感器与单片机连接,获取实时的风速数据。

2.转速测量转速测量用于监测发电机的转速,以便控制器判断发电机是否在安全范围内运行。

可以使用霍尔元件或者光电传感器等装置实时测量发电机的转速。

3.功率控制根据预设的功率曲线控制发电机的工作。

通过计算机算法,将实时监测到的风速和转速数据与预设的功率曲线进行比较,如果风速和转速达到预设的要求,则控制器将保持发电机的工作状态。

如果风速和转速不能满足要求,则控制器将停止发电机的工作或者切换到备用能源。

4.停机保护在发电机工作过程中,如果出现故障或者超负荷的情况,控制器应该及时停机以防止设备损坏。

可以设置过载保护、欠压保护和过压保护等功能,检测当前环境是否安全,并根据检测结果来控制发电机的运行状态。

三、设计步骤1.确定需求和功能:根据实际需要,确定设计的功能和要求,如额定功率、额定转速、保护等级等。

2.采用合适的硬件:选择合适的单片机和传感器等硬件设备,保证系统的性能和稳定性。

3.硬件设计:根据系统需求,设计并搭建硬件电路,将传感器和单片机进行连接。

4.软件编程:使用相应的开发工具对单片机进行编程,实现风速监测、转速测量、功率控制和停机保护等功能。

5.调试和优化:对整个系统进行调试和优化,确保系统的稳定和可靠运行。

四、设计实例以STC89C52单片机为核心,采用风速传感器和霍尔元件进行风速监测和转速测量,设置合理的功率曲线,实现小型风力发电机的控制。

五、结论本文介绍了一种小型风力发电机控制器的设计原理和实现步骤,通过风速监测、转速测量、功率控制和停机保护等功能,实现对小型风力发电机的稳定控制和保护。

该设计可以提高风力发电机的利用效率,减少能源浪费,具有一定的应用价值和推广前景。

微型风力发电机的设计与制造

微型风力发电机的设计与制造

微型风力发电机的设计与制造随着环保意识的提高和新能源的广泛应用,微型风力发电机逐渐成为一种趋势,被广泛应用于家庭、学校、农村等领域。

在本文中,我将介绍微型风力发电机的设计与制造流程。

一、设计首先,设计是微型风力发电机制造的重要环节。

在设计中,需要考虑以下几个方面:1.1 风轮设计风轮的设计是微型风力发电机的核心。

风轮应该具备如下特点:(1)具有足够的面积面积通常控制在50-60平方厘米左右,面积过小会使发电效率低下。

(2)合适的叶片数量一般来说,叶片数量为3-5片为佳,因为旋转速度不会太慢或太快。

(3)合适的材质常见的材质有塑料、木材、铝合金等,选择材料时要考虑材料的强度、重量、成本和易加工性等因素。

(4)减少风阻力在设计风轮时,需要减小风阻力,从而提高发电效率。

1.2 发电机设计微型风力发电机中常用的是直流发电机。

发电机的选择要根据风轮的转速匹配。

具体要求可参考厂家提供的技术数据。

1.3 控制器设计控制器通常是微型风力发电机的核心部件之一,它能够实时检测风轮的转速,并根据转速调节输出电压和电流。

1.4 塔架设计塔架的设计需要考虑到风轮的高度,风速和塔架的稳定性,一般需要在地面上混凝土基础上架设。

二、制造2.1 风轮制造在制造风轮时,首先需要根据设计图纸制作叶片,并考虑叶片的重心和均衡。

其次,需要制造风轮骨架,根据骨架形状来加工好齿轮,该齿轮与风轮直径相等,定位固定在骨架中间,轴向风轮输出转速。

2.2 发电机制造发电机的制造需要根据设计图纸加工各部件,如定子、转子和轴承等。

2.3 控制器制造控制器制造需要选择合适的电子元器件,如电容器、电阻器、磁性元件等,并制作出完善的电路板。

2.4 塔架制造塔架制造通常需要使用钢材,并进行切割,焊接和装配等工艺。

三、安装安装时需要先将塔架安装在地面上,并固定好,然后将风轮装在塔架的顶部,并与发电机和控制器接线连接。

最后,在安装好的组件上附加警示标志,避免外力干扰。

独立式民用小型风力发电机及控制器的设计

独立式民用小型风力发电机及控制器的设计

独立式民用小型风力发电机及控制器的设计AbstractThis paper presents the design of a standaloneresidential small-scale wind turbine and controller for home-based electrical power generation. The system consists of a Wind Turbine Generator (WTG), Battery and Charge Controller. The Wind Turbine Generator is a three-phase permanent magnet generator with a rated power of 1000 Watts. The Battery and Charge Controller ensures the proper functioning of thesystem by regulating the charging and discharging of the battery. The controller also controls the output voltage ofthe WTG.IntroductionAs the world becomes more dependent on energy, renewable energy technologies such as wind power are continuing to grow in popularity. Residential wind power systems offer several advantages to homeowners, including reduced electricity bills and lower carbon emissions. In this paper, we present the design of a standalone residential small-scale wind turbine and controller that can be easily installed by homeowners.Design of Wind Turbine GeneratorA small-scale wind turbine generator is designed to take advantage of the kinetic energy of wind to produce electrical energy. Permanent magnet generators are used in many small-scale wind turbines because of their high efficiency, low maintenance, and ease of use. The Wind Turbine Generator (WTG) used in this system is a three-phase permanent magnet generator with a rated power of 1000 Watts. The generator ismounted on a pole and connected to the battery via cables. The blades of the turbine are designed to capture the maximum wind energy and turn the generator.Design of Battery and Charge ControllerTo ensure the proper functioning of the system, it is essential to regulate the charging and discharging of the battery. The charge controller ensures that the battery is not overcharged or over-discharged, which can damage the battery. The controller also regulates the output voltage of the WTG. Our controller uses a microprocessor-based system to automatically control the charging and discharging of the battery.The charge controller consists of two main sections, which are the charging section and the discharging section. The charging section is responsible for regulating the charging of the battery from the WTG. The discharging section is responsible for regulating the discharging of the battery to the load. The charge controller constantly monitors the battery voltage and adjusts the charging and discharging rate accordingly.ConclusionThe design of a standalone residential small-scale wind turbine and controller has been presented. The system includes a Wind Turbine Generator, Battery, and Charge Controller. The WTG is a three-phase permanent magnet generator with a rated power of 1000 Watts. The Battery and Charge Controller ensure the proper functioning of the system by regulating the charging and discharging of the battery. The controller also controls the output voltage of the WTG. This system can be easily installed by homeowners and offersmany benefits, including reduced electricity bills and lower carbon emissions.。

家用小型风力发电系统的初步设计说明

家用小型风力发电系统的初步设计说明

家用小型风力发电系统的初步设计院-系:工学院专业:电气工程与其自动化摘要风能作为一种清洁的可再生能源正逐渐受到了人们的重视,风力发电也成为了时下的产业。

本论文详细阐明了小型独立风力发电系统的设计方案,对风力发电机组的结构和电能的变换与继电控制电路做了初步的研究。

本论文首先介绍了课题的目的和意义,综述了国外风力发电的发展概况,简要概括了风力发电相关技术的发展状况,论述了常见小型风力发电系统的基本组成和各部分的作用,同时对本论文的系统方案做了简要的概括,着重分析了整流电路与Buck降压电路的配合,蓄电池充放电继电保护以与电能输出的有效性等。

还引入了市电切换电路,作为在发电机故障或蓄电池电量不足的情况下为负载供电。

为了使能量的利用达到最大化,本系统还引入了并网电路。

所以本论文设计的小型风力发电机组不但适合偏远的地区,也适合市区家庭使用。

本文提出的解决方案为:风力传动装置带动三相永磁交流发电机,然后通过AC—DC—DC—AC变换为交流电,并且考虑到风力的不稳定性,在系统中并入蓄电池组和稳压器,通过继电控制电路的监控以实现系统的自动控制,同时并入市电投切,保证系统在风能充足时可蓄能,在风能不充足时亦可为负载供电。

系统的运行状况采用继电控制电路监控和切换。

本论文的重点在于继电控制电路的设计,并对各种不同风力情况下系统的运行状况进行了全面而严谨的分析。

关键词:小型风力发电机组;整流:逆变;继电控制:蓄电池ABSTRACTWind energy as a clean and renewable energy has been paid more and more attention, wind power generation has become the sunrise industry. This paper expounds the design scheme of small independent wind power generation system, transform and relay control circuit and the power structure of the wind turbine to do in-depth study.This paper firstly introduces the purpose and significance of the topic, summarizes the general situation of development of wind power at home and abroad, summarized the development situation of wind power generation technology, discusses the small wind power generation system, the basic composition and function of each part of the system, at the same time, this paper made a brief summary, focuses on the analysis of the coordination rectifier circuit and Buck circuit, battery charging and discharging of relay protection and electric energy output efficiency. Also introduced the power switching circuit, as for the load of the power supply in the generator or battery power shortage. In order to make the use of energy to achieve the maximization, this system also introduced the grid circuit. So small wind turbines are designed in this paper is not only suitable for remote areas, but also suitable for family use.The solution proposed in this paper is: the wind turbine driven by three-phase AC generator, and then through the AC - DC - DC - AC transform as the standard alternating current user needs, and considering the wind instability, batteries are incorporated in the system, the relay control circuit of the control system achieves automatic control, to ensure the system can storage in the wind in the wind energy is not sufficient enough, also to supply power for the load. The running status of the system with the relay control circuit and switch control.The focus of this paper is the design of relay control circuit, and the running state of thesystem under theconditions of different wind has made a comprehensive and rigorous analysis.Keywords:Small wind turbines;Rectifier; relay control;Battery目录第一章绪论51.1小型风力发电概述51.1.1小型风力发电发展历程与展望51.2论文系统概述8第二章风力机原理与其结构112.1风力机的气动原理112.2风力机的主要部件112.3风力机的功率122.4风力机组选型122.4.1风力机选型12第三章电气设计部分163.1整流部分163.1.1整流电路图和工作原理163.1.2整流管参数选择183.2蓄电池容量选择193.3DC/DC变换器213.3.2驱动电路253.4充放电保护电路273.7蓄电池组供电控制设计283.8驱动电路电源设计283.9逆变电路293.9.1三相电压型桥式逆变电路293.9.2整流管选型313.9.3逆变电路主电路设计323.10稳压环节343.11市电切换电路353.12并网电路设计35 结论39参考文献39致 40附录41第一章绪论风能是—种可再生、无污染、取之不尽用之不竭的新能源,也称之为“绿色能源”。

独立式小型风力发电机及其控制器的研究

独立式小型风力发电机及其控制器的研究

二、研究现状
近年来,针对小型永磁风力发电机性能测试技术的研究已经取得了一定的进 展。然而,现有的测试方法大多基于传统风力发电机性能测试技术,未能充分考 虑永磁风力发电机的特性和需求。此外,这些方法往往操作复杂,精度不高,难 以满足实际应用的需求。因此,开发适用于小型永磁风力发电机的性能测试技术 势在必行。
六、结论
本次演示对小型永磁风力发电机性能测试技术进行了深入研究,提出了一种 基于磁势能和风能测量的测试技术方案。实验验证表明,该技术方案具有高精度、 简便快速、稳定性好等优势,具有广泛的应用前景。未来,随着新能源技术的不 断发展,小型永磁风力发电机性能测试技术将在风能领域发挥越来越重要的作用, 推动可再生能源的可持续发展。
2、反馈系统:反馈系统是控制器的重要组成部分,它通过实时监测发电机 的运行状态,为控制器提供必要的信息,以便做出相应的调整。反馈系统通常包 括风速传感器、发电机速度传感器、电力输出传感器等。
3、电力储存和管理:对于独立式小型风力发电机来说,电力储存和管理也 是控制器的重要职责之一。控制器需要确保在风速低或者无风的情况下,电力能 够得到有效的储存和管理,以确保持续供电。
谢谢观看
2、产业规模:我国的小风电机产业规模也在不断扩大。据统计,我国的小 风电机市场规模在过去几年中增长迅速,成为全球最大的小风电机市场之一。
3、政策支持:我国政府对小风电机的发展给予了大力支持。各级政府出台 了一系列优惠政策,如补贴、税收优惠等,以推动小风电机产业的发展。
三、发展趋势
1、技术创新:未来,我国小风电机产业将继续加大技术创新的力度,以提 高产品的性能和竞争力。例如,通过采用新材料、新工艺等,使得小风电机在重 量、体积和噪音等方面都能得到优化。
参考内容
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.2 DC/DC变换器5
2.4锂电池5
2.4.1锂电池的介绍5
2.4.2锂电池的种类6
2.4.3锂电池的充电方法6
三小型风力发电机控制器的设计8
3.1电机的选择8
3.1.1手摇发电机8
3.1.2电机特性曲线9
3.2单片机(单片机STC12C5A60S2)11
3.2.1产品介绍11
3.2.2单片机STC12C5A60S2的特点11
综上所述,本设计将具有可靠性更高、价格更廉等优势,对于增强市场竞争能力,加速小型风力发电的普及和应用,节约能源和保护环境都具有重要意义。
关键词:发电机 整流 锂电池 环保
一绪论1
二小型风力发电系统原理2
2.1风力发电系统组成2
2.2风电系统的运行特点2
2.3电能变换单元和控制单元4
2.3.1整流器4
电子设计竞赛教程
考试(设计报告)
题 目:小型风力发电机控制器设计
摘要
现有的小型风力发电系统存在能量转换效率低、蓄电池使用寿命短、控制简单和缺乏完整的系统功率控制等问题。因此提高对蓄电池的充电速度,减少充电损耗,正确地监控蓄电池状态,确保蓄电池的正确使用、延长蓄电池的使用寿命对小型风力发电有着重要意义。本设计的目的是在分析现有的小型风力发电系统的基础上,设计简单、高效、高可靠性的风机控制器,实现风电系统可靠及优化运行。
图 2.1 小型风力发电系统结构示意图
2.2 风电系统的运行特点
对于独立运行的小型风力发电系统,它的工作情况主要由风速、蓄电池状态和负载情况决定,发电机输出的能量要与负载当前消耗的能量以及蓄电池所能储存的能量总和匹配。系统运行状态的分析如表2.1所示:
表2.1 风电系统运行模式
状态是否存在
风机状态
蓄电池状态
现代电池的基本构造包括正极、负极与电解质三项要素。作为电池的一种,锂离子电池同样具有这三个要素。一般锂离子技术使用液体或无机胶体电解液,因此需要坚固的外壳来容纳可燃的活性成分,这就增加了电池的重量和成本,也限制了尺寸大小和造型的灵活性。
2.4.3 锂电池的充电方法
阶段 1:小电流预充
先用 50mA 小电流对电池预充。
图3.1发电机原理图
本设计采用的是拆机日产直流减速电机,额定功率10W,最大电流500mA。适合电压:6V-24V,转速:32-130转/分钟,重量:200克。
直流减速电机,即齿轮减速电机,是在普通直流电机的基础上,加上配套齿轮减速箱。齿轮减速箱的作用是,提供较低的转速,较大的力矩。同时,齿轮箱不同的减速比可以提供不同的转速和力矩。这大大提高了,直流电机在自动化行业中的使用率。减速电机是指减速机和电机(马达)的集成体。这种集成体通常也可称为齿轮马达或齿轮电机。通常由专业的减速机生产厂进行集成组装好后成套供货。减速电机广泛应用于钢铁行业、机械行业等。使用减速电机的优点是简化设计、节省空间。
① 风能是一种可再生的洁净能源,它既不消耗自然资源,也不污染环境,这是火力发电所无法比拟的。
② 风力发电系统的建设周期要比火力发电系统短,而且投入的资金也要少得多。
③ 由于现代高科技技术得融入,使得风力发电的可靠性得到显著提高。大中型风力发电机组的可靠性从 80 年代的 50%提高到 98%,已经高于火力发电,并且机组寿命可达 20 年以上。
图 2.4 锂电池充电过程曲线
三 小型风力发电机控制器的设计
3.1 电机的选择
3.1.1 手摇发电机
发电机是由线圈作为转子,磁铁作为定子,形成稳定磁场。手摇使线圈在磁场中连续转动切割磁场,发生电磁感应现象,产生电流。定子由机座.定子铁芯、线包绕组、以及固定这些部分的其他结构件组成。线圈作为转子,磁铁作为定子,形成稳定磁场。手摇使线圈在磁场中连续转动切割磁场,发生电磁感应现象,产生电流。其原理图如图3.1所示。
负载状态
发电
不发电
充电
放电
有电
无电
1
0
1
0
1
0
NO
0
0
0
YES(状态1)
0
0
1
NO
0
1
0
NO
0
1
1
NO
1
0
0
YES(状态2)
1
0
1
YES(状态3)
1
1
0
YES(状态4)
1
1
1
状态说明:
状态 1:风机不发电,由蓄电池单独为负载供电;
状态 2:风机发电,由风机和蓄电池一起为负载供电;
状态 3:风机发电,为蓄电池充电,风机和蓄电池都没有为负载供电;
当电池电压>=2.5V 时转到下一阶段。
阶段 2:恒流充
用 500mA 恒定电流对电池快速充电。
当电池电压>=4.2V 时转到下一阶段。
阶段 3:恒压充
逐渐减少充电电流,保证电池电压恒定=4.2V
当充电电流<=50mA 时,停止充电
阶段4:涓流充
充电结束后,为维持电池电压,进行小电流脉冲充电。
因为锂电池的自放电较轻微,故该阶段可省略。如图 2.4 所示。
本设计以单片机8051的加强版STC12C5A60S2为核心控制整个电路,具体由风力发电机、控制系统、整流电路、斩波电路、蓄电池充放电控制电路、蓄电池及其用电设备组成,功能上能保证系统安全运行,在电气特性和机械特性允许围运行。减少风速随机变化对输出电能的影响,使输出电压稳定,减少纹波。合理调度系统电能,保证向负载提供连续电能。保护蓄电池,防止过充和过放,提供足够充电能量进行快速充电。
对小型风力发电机及其相关控制技术的研究,来改进和完善风力发电技术,为风力发电技术的发展提出一些创造性的想法。
二 小型风力发电系统原理
2.1 风力发电系统组成
普通的独立式小、蓄电池充放电控制电路、蓄电池及其用电设备组成(见图 2.1),其中整流电路和斩波电路也可以合称为电能变换单元电路,它实现了将风能转换为电能和变换为能够使用的电能的整个过程。利用风力带动发电机发电,将发出的电能存储在蓄电池中,在需要使用的时候再把存储的电能释放出来。
锂离子电池是锂电池的改进型产品。锂电池很早以前就有了,但锂是一种高度活跃的金属,它使用时不太安全,经常会在充电时出现燃烧、爆裂的情况,后来就有了改进型的锂离子电池,加入了能抑制锂元素活跃的成份(比如钴、锰等等)从而使锂电真正达到了安全、高效、方便,而老的锂电池也随之基本上淘汰了。至于如何区分它们,从电池的标识上就能识别,锂电池为Li、锂离子电池为Li-ion。现在,笔记本和手机使用的所谓“锂电池”,其实都是锂离子电池。
发电机发出的电能较多,除了满足为蓄电池充电外,还可以为负载供电,这就是第四种
工作状态。
2.3 电能变换单元和控制单元
2.3.1 整流器
在发电系统中,整流模块是非常重要的一个环节。发电机发出的交流电能必须通过整流模块,整形成直流电能,才能向蓄电池充电,或给后接负载供电。根据发电系统的容量不同,整流器可分为可控整流器和不可控整流器两种,可控型整流器主要用在大功率的发电系统中,可以克服由于电感过大引起的体积大、功耗大等缺点;不可控型整流器主要用在功率较小的发电系统中,其特点是体积小、成本较低。
状态 4:风机发电,为蓄电池充电的同时也为负载供电。
由以上状态分析可以看出,风力发电系统一般都是在以上四种状态下工作的,随着外界环境的变化,如风速、风向的不同,还有负载工作情况的变化,整个风力发电系统是在四种状态间切换工作的。
当由于环境风速低于风力机的启动风速,而使风力发电机无法发电时,则要由蓄电
池为负载供电,这就是第一种工作状态;当风速足够大,风力发电机可以发电,且蓄电
2.4 锂电池
2.4.1 锂电池的介绍
在数码产品中,无论是从技术角度评估还是从价格方面的考虑,电池都占有十分重要的地位。时值今日,市场上正在销售的数码产品中,所使用的电池已经基本完成了从镍电池到锂电池的过渡。也许是由于电池刚刚完成了一次镍电池到锂电池的革命,所以人们对锂电池的认识并不统一,在许多情况下不正确的说法和做法颇为流行。因此,懂得一点锂电池的知识,掌握锂电池的正确使用方法是非常有必要的。
池不需要充电时,则可以由风力机和蓄电池一同为负载供电,若负载较小时,也可由风
力发电机单独为负载供电,这就是第二种工作状态;当风速不是很大,且蓄电池亏电较
为严重时,为了保护蓄电池,则需要停止为负载供电,而风力发电机只为蓄电池充电,
这就是第三种工作状态;与第三种状态类似,当蓄电池亏电严重,而风速较大时,风力
④ 与火力发电相比,风力发电机组建设的占地面积要远远小于火力发电,并且风力发电既可以并网运行,也可以和其他能源,如柴油发电、太阳能发电、水力发电组成互补系统。还可以独立运行。对于解决边远无电或供电困难地区的用电问题提供了现实的可行性。
由以上所述可以看出,风力发电对我国的经济发展有着巨大的意义。作者希望通过
近年来,随着高频化、软开关和三电平技术的不断发展,DC/DC 变换器向着体积
更小、重量更轻、效率更高的方向发展,可供风力发电系统使用的 DC/DC 变换器类型也不断增加。
在风力发电系统中使用的 DC/DC 变换器具有以下特点:
① 与传统的 DC/DC 变换器相比,在风力发电系统中使用的 DC/DC 变换器除了具有电压变换的作用外,还要实现最大功率点跟踪(MPPT—Maximum Power Point Tracking)功能。(又可称为最大功率输出控制)
我国的风能资源十分丰富,目前已经探明的风能储量约为 3226GW,其中可利用风能约为 253GW,主要分布在西北、华北和东北的草原和戈壁以及东部和东南沿海及岛屿上。据统计,截至到 2006 年底,我国大陆地区已建成并网型风电场 91 座,累计运行风力发电机组 3311 台,总容量达 259.9 万 kW。已经建成并网发电的风场主要分布在、蒙、、、等 16 个省区。根据电监会公布的数据,截至 2006 年底,中国发电装机容量达到 62200 万 kW,风力发电占全国总装机容量的 0.42%。和火力发电相比,风力发电还具有以下显著的优点:
相关文档
最新文档