1含参变量的常义积分
参变量积分

由复合函数的连续性
f (a( y ) t (b( y ) a( y )), y )(b( y ) a( y ))
在[0,1][c,d]上连续,由定理1,
F ( y)
在[c,d]上连续.
b( y )
a( y )
f ( x, y)dx
数学分析选讲
多媒体教学课件
定理4设f(x,y), fy(x,y)在矩形[a,b,c,d]上连续, a(y), b (y) 存在,且当y[c,d]时,
0
sin t dt 收敛,故对任意>0,存在M>0,使对任意 t
数学分析选讲
A >M>0,有
多媒体教学课件
sin t | dt | . A t 因此当Aa>M时,对任意x[a,+),有
Ax aA M ,
从而
|
Ax sin xy sin t dt || dy | . A t y
b( y )
a( y )
f ( x, y)dx
数学分析选讲
多媒体教学课件
证明:作积分变换 x a( y ) t (b( y ) a( y )), 则
F ( y)
b( y )
a( y )
1
f ( x, y)dx
f (a( y ) t (b( y ) a( y )), y )(b( y ) a( y ))dt ,
多媒体教学课件
定理5设函数f(x,y)在矩形[a,b,c,d]上连续,,是
d
c
dy f ( x, y )dx dx f ( x, y )dy
b b d a a c
含参变量的常义积分

f ( x, c( x) t(d( x) c( x)))(d( x) c( x))
在矩形区域 [ a ,b][0 ,1]上连续, 由定理1 得函数
F(x) 在[a, b]连续.
b
I( y) a f ( x, y)dx
在[ c , d ]上连续. 证 设 y [ c, d], 对充分小的 y , 有y y [c, d ](若 y 为区间的端点, 则仅考虑 y 0 或 y 0 ), 于是
*例3 计算积分
I
1 ln(1 x) 0 1 x2 dx
dy
y A dy B dy
b( y)
a( y) f y ( x, y)dx f (b( y), y)b( y)
f (a( y), y)a( y) .
例1 设 F ( y) y2 sin yx dx, 求 F( y). yx 解 由定理4,得
F( y)
y2
sin y3 sin y2
b f ( x, y)dx.
a y
证 对于 [c, d ] 内任意一点 y, 设 y y [c, d ] (若y 为
区间的端点, 则讨论单侧函数), 则
I( y y) I( y)
b
I( y) liym0afy( x, yy)dx
b
a
lim
y0
f y ( x,
y
y)dx
b
a f y ( x, y)dx
定理4 (F ( y) 的可微性) 设 f ( x, y), fx ( x, y) 在
一、含参量正常积分的定义
设 f ( x, y)是定义在矩形区域 R [ a, b][ c, d]上的
第9章 含参变量积分

∫N
f (x, y)dy ≤ M ;
c
(2)对每个 x ∈[a, b] ,函数 g(x, y) 关于 y 是单调递减的且当 y → ∞ 时,对参量 x ,
+∞
∫ g(x, y) 一致收敛于 0,则含参量反常积分 f (x, y)g(x, y)dy 在[a,b] 一致收敛。 c
定理 5(阿贝尔判别法)设
敛。
判别法则
定 理 1 ( 柯西 准 则 )含参 量 无 穷积分 (1 ) 在 [a,b] 上 一 致收 敛的 充 要条 件是 :
∀ε > 0, ∃M > c,当A1, A2 > M时,∀x ∈[a,b] ,有
∫| A2 f (x, y)dy |< ε A1
定理 2(魏尔斯特拉斯 M-判别法)设有函数 g( y) ,使得
∫ I '(x) =
+∞
c fx (x, y)dy
+∞
∫ 定理 3(可积性)设 f (x, y) 在[a,b]×[c, +∞) 上连续,若 I (x) = f (x, y)dy 在[a,b] 上 c
一致收敛,则 I (x) 在[a, b] 上可积,且
b
+∞
+∞
b
∫a dx∫c
∫ f (x, y)dy = c
∫ y(x) = 1
x
n−1
(x − t) f (t)dt, x ∈[a,b]
(n −1)! a
是微分方程 y(n) (x) = f (x) 的解,并且满足条件 y(a) = y' (a) = = y(n−1) (a) = 0 。
证明:设 F (x, t) = (x − t)n−1 f (t) ,则 f (x, t), fx (x,t) 在[a, b]×[a, b] 上连续,因此有
陈纪修《数学分析》(第2版)(下册)课后习题-含参变量积分(圣才出品)

7.设函数 具有二阶导数, 是可导的,证明函数
满足弦振动方程
以及初始条件
。
证明:直接计算,可得
所以
且显然成立
。
8.利用积分号下求导法计算下列积分:
5 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
解:(1)设
于是
令
则
所以
(2)设
作变换
得到
则
。
。
则
。设 由于
。研究函数
的连续性。
解:设
由于
在
在 处连续。
设
则
。由于 在 上连续,且
上的最小值
当 时,成立
于是
上连续,可知 所以 在
由 连续。
可知
即
在
处不
§2 含参变量的反常积分
9 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
1.证明下列含参变量反常积分在指定区间上一致收敛:
与
在
上一致收敛。所以
在
上一致收敛。
( ii ) 当
对于
取
取
则当 充分大时,
由 Cauchy 收敛准则,
在
上不一致收敛,同理
在
上也不一致收敛,所以
在
上不一致收敛。
(3)(i)当
而
收敛,由 Weierstrass
判别法
在
上一致收敛。
(ii)当 取
由于
由 Cauchy 收敛准则,可知
在
( 4 )( i ) 当
即
关于
一致有界,以及 单调,当
时 关于
致趋于零,由 Dirichlet 判别
第17章含参变量的积分

2019年2月26日星期二
7
§17 含参变量的正常积分
0, 0,只要 x , 就有
f ( x x, y ) f ( x, y ) f x ( x, y ) x f x (x x,y)-f x (x,y) , 其中 (0,1).因此
第十七章 含参变量的积分
级数与积分是构造函数的两个重要分 析工具。我们已经介绍了一种利用定积分 构造的函数──积分上限的函数。 本章和 下章介绍另一种利用 Riemann 积分与广义 积分构造的函数──含参变量的正常积分与 含参变量的广义积分,并研究它们的分析 性质:连续性、可微性、可积性。
2019年2月26日星期二
J ( y ) 在 [c, d ] 上可积。记为
b
a
I ( x ) dx J ( y)
d
c
f ( x, y) dy dx dy f ( x, y ) dx dy
b d a c d b c a
b
a d
dx dy
d
c b
f ( x, y ) dy f ( x, y ) dx
x 取 [a, b] 上某定值时,函数
上以 y为自变量的一元函数.若此时 f ( x, y)在 [c, d ]上可积,
则其积分值是 x 在 [a, b]上取值的函数,表为
I(x) f ( x, y)dy, x [a, b (定义域) ]
c
d
称为含参量 x 的正常积分,或简称含参量积分.
2019年2月26日星期二 3
(证毕)
2019年2月26日星期二 8
§17 含参变量的正常积分
下面讨论可积性. 设 f ( x, y) 在矩形 [a, b; c, d ]上连续,那末由定理1 ,函数
第十讲含参变量的积分

第十讲含参变量的积分10 . 1 含参变量积分的基本概念含参量积分共分两类:一类是含参量的正常积分;一类是含参量的广义积分. 一、含参量的正常积分 1 .定义设()y x f ,定义在平面区域[][]d c b a D ,,⨯=上的二元函数,对任意取定的[]b a x ,∈.()y x f ,关于 y 在[]d c ,上都可积,则称函数()()[]b a x dy y x f x I dc,,,∈=⎰为含参量二的正常积分.一般地,若 ()()(){}b x a x d y x c y x D ≤≤≤≤=,|, ,也称()()()()[]b a x dy y x f x I x d x c ,,,∈=⎰为含参量x 的正常积分.同样可定义含参量 y 的积分为()()[]d c y dx y x f y J ba,,,∈=⎰或()()()()[]d c y dx y x f y J y b y a ,,,∈=⎰2 .性质(以 I ( x )为例叙述)( l )连续性:若 ()y x f ,必在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,连续,即对[]b a x ,0∈∀,()()()()⎰=→000,lim 0x d x c x x dy y x f x I( 2 )可积性:若()y x f ,在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,可积.且有()()()⎰⎰⎰⎰⎰==bab ad cbadcdx y x f dy dy y x f dx dx x I ,,(若 D 为矩形区域, ·( 3 )可微性:若 ()y x f ,的偏导数()y x f x ,在 D 上连续,()x c ,()x d 在[]b a ,可导,则()x I 在 []b a ,可导,且()()()()()()()()()()x c x c x f x d x d x f dy y x f x I x d xc x''',,,-+=⎰·以上性质的证明见参考文献[ 1 ] ,这里从略,例10. l 求积分⎰>>-⎪⎭⎫ ⎝⎛10,ln 1ln sin a b dx xxx x ab 解法 1 (用对参量的微分法):设()⎰>>-⎪⎭⎫ ⎝⎛=100,ln 1ln sin a b dx x xx x b I ab ,()()()()()()()b I b b dx x x x x b x d x b dx x x b x b x b x d x dxx x b I b b b b b b b '221010121102101010111'11111ln sin |1ln cos 111ln cos 111ln cos 11|1ln sin 111ln sin 1ln sin +-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎰⎰⎰⎰⎰++++所以()()()()()⎰++=++=⇒++=C b db b b I b b I 1arctan11111122',令a b =,则 ()()()1arctan 1arctan0+-=⇒++==a C C a a I 所以原积分()()()1arctan 1arctan+-+==a b b I I 解法 2 : (交换积分顺序方法)因为xx x dy x ab bayln -=⎰,所以⎰⎰⎰⎰⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=10101ln sin 1ln sin b a y b a y dx x x dy dy x x dx I同解法()⎰++=⎪⎭⎫ ⎝⎛1021111ln sin y dx x x y,所以有 ()()()⎰+-+=++=baa b dy y I 1arctan 1arctan1112注:在以上解题过程中,需要验证对参量积分求导和交换积分顺序的条件,为简洁省略了,但按要求是不能省的. 例10.2 设()()()dz z f yz x y x F xyyx ⎰-=,,其中f 为可微函数,求()y x F xy,·解:()()()()()()()()()()()()()()()()()()()xy f y y x y x f y x xy f xy x xy f y y x xy f y x x y f y x xy xf F xy f y yx dz z f xy f xy x y dz z f y x f x x y xy f xy x y dz z f F xy xyyx xyyx xyy x x '2222'222222213213111-+⎪⎪⎭⎫ ⎝⎛+-=-+-+⎪⎭⎫⎝⎛+=-+=-+=⎪⎪⎭⎫⎝⎛---+=⎰⎰⎰二、含参量的广义积分含参量的广义积分包括两类:含参量的无穷积分和含参量的瑕积分 (一)含参量的无穷积分1 .定义:设 ()y x f ,定义在[][)+∞⨯=,,c b a D 上,对每个取定的[]b a x ,∈,积分 ,()()[]⎰+∞∈=cb a x dy y x f x I ,,,都收敛(也叫逐点收敛),它是一个定义在[]b a ,上的函数,称该积分为含参量x 的无穷积分 同样可以定义 ()()[]⎰+∞∈=ad c y dx y x f y J ,,,2 .一致收敛若对c M >∃>∀,0ε,当 A > M 时,对一切[]b a x ,∈,恒有()()()εε<<-⎰⎰+∞AA cdy y x f dy y x f x I ,,或则称含参量积分在[]b a ,上一致收敛.注:非一致收敛定义:若00>∃ε,使得c M >∀,总存在M A >0,及存在[]b a x ,0∈,,使得()()()000000,,εε<<-⎰⎰+∞A A cdy y x f dy y x f x I 或3 .一致收敛的柯西准则含参量积分( l )在[]b a ,上一致收敛⇔对 c M >∃>∀,0ε,当 M A A >>12时,对一切[]b a x ,∈,都有()ε<⎰21,A A dy y x f注:非一致收敛的柯西准则:含参量积分( 1 )在[]b a ,上非一致收敛c M >∀>∃⇔,00ε存在M A A >>12,及存在[]b a x ,0∈,使得()0021,ε<⎰A A dy y x f4.一致收敛判别法( I ) M 判别法:若()()()D y x y g y x f ∈∀≤,,,而()⎰+∞cdy y g 收敛,则()⎰+∞cdy y x f ,在[]b a ,上一致收敛(同时也绝对收敛) .( 2 )阿贝尔判别法: ①()⎰+∞cdy y x f ,在[]b a ,上一致收敛; ② 对每一个[]b a x ,∈,()y x g ,关于y 单调,月关于x 一致有界,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛.( 3 )狄利克雷判别法: ①()[]()c A b a x M dyy x f Ac>∀∈∀≤⎰,,,(即一致有一界);② 对每一个[]()y x g b a x ,,,∈必关于 y 单调,且当 +∞→y 时()y x g ,对x 一致趋于零,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛 ·例 10 . 3 讨沦下列积分的一致收敛性: (1)()⎰∞++-122222dx y xx y 在()+∞∞-,;(2)[)⎰+∞-+∞∈0,0,sin y dx xxe xy 解: ( 1 )因为()()()()+∞∞-∈∀≤+=++≤+-,112222222222222y xy x y xy x y xx y ,而积分 ⎰+∞121dx x 收敛,由M 发,()⎰∞++-122222dx yx x y 在()+∞∞-,一致收敛 ·( 2 )因为⎰+∞sin dx xx收敛,且与y 无关,故关于y 一致收敛,而xy e -对固定的y 关于x 在[)+∞,1上单调减,且1≤-xye ,对()()()+∞⨯+∞∈∀,0,0,y x .由阿贝尔判别法知,积分⎰+∞-0sin dx xxe xy在()+∞∈,0y 上一致收敛. 5 .分析性质( l )连续性:若满足:① ()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上连续,即()()()dy y x f x I x I cx x ⎰+∞→==,lim 000·( 2 )可积性:参量 []b a x ,∈若满足: ①()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上可积,即()()()⎰⎰⎰⎰⎰+∞+∞==babaccb adx y x f dy dy y x f dx dx x I ,,参量[)+∞∈,a x ,若满足:① ()y x f ,在 [)[)+∞⨯+∞=,,c a D 上连续; ②()[]()c d d c y dy y x f a>∀∈⎰+∞,,,和()[]()a b b a x dy y x f c>∀∈⎰+∞,,,都一致收敛;③ 积分()⎰⎰+∞+∞acdy y x f dx ,与()⎰⎰+∞+∞cadx y x f dx ,收敛;则()x I 在[]b a ,上收敛,且()()dx y x f dy dy y x f dx acca⎰⎰⎰⎰+∞+∞+∞+∞=,,( 3 )可微性:若满足:①()y x f ,和()y x f x ,在 [][)+∞⨯=,,c b a D 上连续; ② ()()[]b a x dy y x f x I c,,,∈=⎰+∞收敛;③()[]b a x dy y x f cx ,,,∈⎰+∞一致收敛;则()x I 在[]b a ,上可微,且()()[]b a x dy y x f x I cx ,,,'∈=⎰+∞注: ( 1 )在定理的条件下,必可导出 ② 也是一致收敛的. ( 2 )定理的条件都是充分而非必要的. 6 .狄尼( Dini )定理若()y x f ,在 [][)+∞⨯=,,c b a D 连续且非负,则()()dy y x f x I c⎰+∞=,在[]b a ,上连续()x I 在[]b a ,上一致收敛.证明:充分性是显然的,下证必要性. (反证法)假设()()[]b a x dy y x f x I c,,,∈=⎰+∞不一致收敛,由定义,00>∃ε,对cM >∀总存在[]b a x M A ,,00∈∃>,使得()()0000,ε≥-⎰A cdy y x f x I .特别地,取 M 大于c 的自然数n ·则分别存在 []b a x n A n n ,,∈> ,使得()()0,ε≥-⎰nA cn n dy y x f x I · 注意到f 非负,可写作()()0,ε≥-⎰nA cn n dy y x f x I .由于{}[]b a x n ,⊂有界,记为{}(),...2,1=k x n ,则[]b a x x nk k ,lim 0∈=∞→,不妨设......21<<<<nk n n A A A ,再注意到 f 非负,因此有()()()()⎰⎰≥-≥-10,,n nkA cA cnk nk nk nk dy y x f x I dy y x f x I ε (*)由已知条件,对固定的1n A ,函数()()()⎰-=1,n A cdy y x f x I x F 在[]b a ,上连续,对(*)令∞→k 取极限得()()()00001,ε≥-=⎰dy y x f x I x F n A c.此与()x I 的定义(即逐点收敛)矛盾,即()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛 ·(二)含参量的瑕积分 1 .定义设()y x f ,在区域[](]d c b a D ,,⨯=上有定义,对取定的[]c y b a x =∈,,为函数 f 的瑕点, 若积分()()[]⎰∈=dcb a x dy y x f x I ,,,收敛,它是一个定义在[]b a ,上的函数,称其为含参量x 的瑕积分.2 一致收敛对c d -<<∃>∀δδε0:,0,当δη<<0时,恒有()εη<⎰+c cdy y x f ,,对一切[]b a x ,∈成立,称()()dy y x f x I dc⎰=,在[]b a ,上一致收敛.3.M 判别法设 g ( y )为定义在( c , d ]上以 c y =瑕点的非负函数.且()()[]()b a x y g y x f ,,∈∀≤ ,而()dy y g d c⎰收敛,则()()[]b a x dy y x f x I dc,,,∈=⎰必一致收敛其余的可仿照含参量无穷积分的相关内容平行推得,当然也可以将它转化为无穷积分进 行讨论,这里不再赘述.。
数学分析第二册答案第十九章 含参变量的积分

第十九章 含参变量的积分§1 含参变量的正常积分1.求下列极限: (1)⎰-→+11220lim dx x αα; (2)⎰→220cos lim xdx x αα;(3)⎰+→++αααα122011limdx x .解(1)由于22),(αα+=x x f 在]1,1[]1,1[-⨯-上连续,故⎰-+=1122)(dx x I αα在]1,1[-连续,所以,12)0()(lim lim 1112011220=====+⎰⎰⎰-→-→xdx dx x I I dx x αααα.(2)由于x x x f ααcos ),(2=在]2,0[]2,0[⨯上连续,故⎰=22cos )(xdx x I αα在]2,0[连续,所以,38)0()(lim cos lim 2202020====⎰⎰→→dx x I I xdx x αααα. (3)⎰⎰⎰⎰+++++++-++=++αααααααα11222212212211111111dx x dx x dx x dx x ,由于2211),(αα++=x x f 在]1,0[]1,0[⨯上连续,故⎰++=102211)(dx xI αα在]1,0[连续,所以,411)0()(lim 11lim 10201220παααα=+===++⎰⎰→→dx x I I dx x .而对R ∈∀α,R x ∈有,ααα≤++⎰2211dx x ,ααα≤++⎰+112211dx x ,因此 011lim 0220=++⎰→αααdx x ,011lim 11220=++⎰+→αααdx x , 因而,⎰⎰⎰++-++=++→→+→ααααααααα2201220122011lim 11lim 11lim dx x dx x dx x411lim 11220πααα=++-⎰+→dx x2.求)(x F ',其中: (1)⎰-=22)(x xxy dy e x F ; (2)⎰-=xxy xdy e x F cos sin 12)(;(3)⎰++=xb x a dy y xy x F )sin()(;(4)⎰⎰=xx t dt ds s t f x F 0]),([)(22.解(1)35222222222)(2)(2x x x xxy xx x x x xxy e xe dy y e ex edy y ex F -------+-=-⋅+-='⎰⎰.(2))(sin )(cos 1)(222sin 1cos 1cos sin 21'-'+-='---⎰x e x e dy y e x F xxxx xxy xx e x edy y e xx xx xxy xcos sin 1cos sin cos sin 212---=⎰-.(3))())(sin()())(sin()cos()('+++-'++++='⎰++x a xz x a x x b x b x b x dy xy x F xb xa=)](sin[)11()](sin[)11(a x x x a xb x x x b x +++-+++. (4)⎰⎰⎰⎰=+∂∂='xx x x x t dt x t xf ds s x f dt ds s t f x x F 020),(2),()),(()(2222.3.设)(x f 为连续函数,⎰⎰++=xxd d x f h x F 02])([1)(ξηηξ,求)(x F ''.解 由于⎰⎰⎰⎰++=++=xx x x x du u f d h d x f d h x F 022002)(1)(1)(ξξξηηξξ,所以, ]))(()([1)(02322⎰⎰⎰++∂∂+='x x x xx d du u f x du u f hx F ξξξ})]()2(2[)({10322⎰⎰+-++=x xxd x f x f du u f h ξξξ,)]2(3)3(5[1)]2()3(2)2(2)3(3[1)(22x f x f hx f x f x f x f h x F -=-+-=''.注记 该题的函数应为⎰⎰++=h hd d x f hx F 002])([1)(ξηηξ(这从该教材第二版亦可得到印证),则⎰⎰⎰⎰+++=++=xhx x hhdu u f d h d x f d h x F 022)(1)(1)(ξξξηηξξ,所以,⎰⎰⎰+-++=∂∂='+++hx h x x d x f h x f hd du u f x h x F 0202)]()([1])([1)(ξξξξξξ ])()([122⎰⎰+++-=h x x hx hx du u f du u f h , )]()()2([1)]()()()2([1)(22x f h x f h x f hx f h x f h x f h x f h x F ++-+=++-+-+=''.4.研究函数⎰+=122)()(dx y x x yf y F 的连续性,其中)(x f 是]1,0[上连续且为正的函数.解 当0≠y 时,被积函数在相应的闭矩形上是连续的,因此)(y F 在0≠y 连续.当0=y 时,0)0(=F .而0>y 时,设m 为)(x f 在]1,0[上的最小值,则0>m .由于y m dx yx y m y F 1arctan )(122=+≥⎰,而21arctan lim 0π=+→y y , 故有)(lim 0y F y +→若存在,必然)0(02)(lim 0F m y F y =>≥+→π或不存在,因而)(y F 在0=y 时间断. 5.应用积分号下求导法求下列积分:(1)⎰-222)sin ln(πdx x a (1>a );(2))1()cos 21ln(02<+-⎰a dx a x a π;(3))0,()cos sin ln(202222≠+⎰b a dx x b x a π;(4))1(tan )tan arctan(20<⎰a dx xx a π.解(1)设⎰-=2022)sin ln()(πdx x a a I ,则有⎰⎰-=-∂∂='20222022sin 2)]sin ln([)(ππdx x a a dx x a xa I)11arctan 11(arctan 12)sin 1sin 1(22220--+-+-=-++=⎰a a a a a dx x a x a π12-=a π,即c a a da a a I +-+=-=⎰)1ln(1)(22ππ.c 的确定较为困难,可如下进行.)1ln()sin ln()1ln()(220222-+--=-+-=⎰a a dx x a a a a I c πππ)1ln()]sin 1ln([ln 220222-+--+=⎰a a dx axa ππa a a dx ax 1ln)sin 1ln(22022-+--=⎰ππ, 令+∞→a ,2ln 1ln 2ππ→-+aa a ,又1sin 1110222≤-<-<a x a ,所以, 0)sin 1ln()11ln(222≤-≤-a xa ,)(0)11ln(2)11ln()sin 1ln()sin 1ln(22022022222+∞→→-=-≤-≤-⎰⎰⎰a adx a dx a x dx a x ππππ,2ln π=⇒c ,即21ln 2ln )1ln()(22-+=--+=a a a a a I πππ.(2)设⎰+-=π2)cos 21ln()(dx a x a a I ,则⎰⎰+--=+--='ππ02202cos 2111cos 21)cos (2)(dx ax a a a dx a x a x a a I ⎰⎰+-+--=-+--=ππππ0222022cos 1211)1(1cos 2)1(11dx x aa a a a a dx xa a aa a222022212)1(2)11arctan()1()1()1(2)1(1a a a a a x a a a a a a a a a +=+-=-++--+--=πππππ,所以,)1ln(21)0()()(202a da a a I a I a I a+=+=-=⎰ππ. (3)将a 看作参变量,b 认为是常数,记⎰+=202222)cos sin ln()(πdx x b x a a I .可先设0>a ,0>b ,则⎰⎰+=+∂∂='2020222222222cos sin sin 2)]cos sin ln([)(ππdx xb x a x a dx x b x a a a I . 若b a =,则bxdx b a I 2sin 2)(202ππ=='⎰,若b a ≠作代换x t tan =,得⎰⎰∞+∞+++=++='022222022222))(1(212)(a b t t dt t a t dt b t a at a Iba ))(111(2222202222222222+=---=+--+-=⎰∞+πππba bba adt a bt b a b t b a a a ,所以,c b a πda b a πa I ++=+=⎰)ln()(,而c b b b I +==)2ln(ln )(ππ2ln π-=⇒c ,于是2ln 2ln )ln()(ba b a πa I +=-+=ππ.若0<a 或0<b ,则可以a -或b -代替a 或b ,因而总有2ln)()(b a a I a I +==π.(4)记⎰=20tan )tan arctan()(πdx xx a a I ,令x x a a x f tan )tan arctan(),(=,当2,0π=x 时,f 无定义,但a a x f x =+→),(lim 0,0),(lim 2=-→a x f x π,故补充定义a a f =),0(,0),2(=a f π,则f 在],[]2,0[b b -⨯π连续(10<<b ),从而)(a I 在)1,1(-连续.⎪⎪⎩⎪⎪⎨⎧=∈+=,2,0 ,0,)2,0( ,tan 11),(22ππx x x a a x f a显然)0,(x f a 在2π=x 点不连续,但),(a x f a 分别在)0,1(]2,0[-⨯π和)1,0(]2,0[⨯π连续,故有⎰⎰+=='2222tan 11),()(ππdx xa dx a x f a I a ,)0,1(-∈a 或)1,0(∈a .令t x =tan ,⎰⎰∞+∞+++--+-=++='0222222222222)1)(1(111)1)(1(1)(dt t a t a t a t a a dt t a t a I)1(2])1()1(1[11022222a dt t a a t a +=+-+-=⎰∞+π,)0,1(-∈a 或)1,0(∈a . 积分之1)1ln(2)(c a a I ++=π,)1,0(∈a ;2)1l n (2)(c a a I +--=π,)0,1(-∈a .因为)(a I 在)1,1(-连续,故)(lim 0)(lim )0(0a I a I I a a -+→→===,得021==c c ,从而得|)|1ln(sgn 2)(a a a I +=π,1||<a .6.应用积分交换次序求下列积分: (1))0,0(ln 1>>-⎰b a dx xx x ab ; (2))0,0(ln )1sin(ln 10>>-⎰b a dx xx x x ab . 解(1)b a b a b a yb a y a b y dy y dx x dx dy x dx dx xx x |)1ln(11ln 10101+=+===-⎰⎰⎰⎰⎰⎰aba b ++=+-+=11ln)1ln()1ln(. (2)⎰⎰⎰⎰⎰==-b a y b a y a b dx xx dy dx dy x x dx x x x x 101010)1sin(ln ])1[sin(ln ln )1sin(ln . 记⎰=1)1sin(ln )(dx x xy I y,则 ])1()1cos(ln )1sin(ln [11)1sin(ln 11)(10111101⎰⎰--+=+=+++dx x x x x x y dx x y y I y y y ])1()1sin(ln ()1cos(ln [)1(1)1cos(ln 11101101210⎰⎰---+=+=++dx x x x x x y dx x x y y y y ))(1()1(1))1sin(ln 1()1(12102y I y dx x x y y -+=-+=⎰, 所以,1)1(1)(2++=y y I ,因此, )1)(1(1arctan 1)1(1)(ln )1sin(ln 210b a ab dy y dy y I dx x x x x b a b a a b +++-=++==-⎰⎰⎰. 7.设f 为可微函数,试求下列函数的二阶导数: (1)⎰+=xdy y f y x x F 0)()()(; (2))()()(b a dy y x y f x F ba<-=⎰.解(1))(2)()(0x xf dy y f x F x+='⎰,)(2)(3)(x f x x f x F '+=''.(2)⎰-=bady y x y f x F )()(⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤-=⎰⎰⎰⎰,,))((,,))(())((,,))((b x dy y x y f b x a dy x y y f dy y x y f a x dy x y y f ba b x xa b a⎪⎪⎩⎪⎪⎨⎧≥<<-≤-='⎰⎰⎰⎰,,)(,,)()(,,)()(b x dy y f b x a dy y f dy y f a x dy y f x F bab x xa b a⎩⎨⎧≥≤<<=⎪⎩⎪⎨⎧≥<<≤=''.b x or a x b x a x f b x b x a x f a x x F ,0,,)(2,0,,)(2,,0)(8.证明:⎰⎰⎰⎰+-≠+-101022222101022222)()(dx y x y x dy dy y x y x dx .证明 ⎰⎰⎰⎰⎰+-+=+-101022102222101022222]1)(12[)(dy y x dy y x x dx dy y x y x dx 4|arctan 11112π==+=⎰x dx x , ⎰⎰⎰⎰⎰+-+=+-10102221022101022222]121[)(dx y x y dx y x dy dx y x y x dy 4|arctan 11112π-=-=+-=⎰y dy y , 所以,⎰⎰⎰⎰+-≠+-101022222101022222)()(dx y x y x dy dy y x y x dx .9.设⎰+=122ln )(dx y x y F ,问是否成立⎰=+∂∂='10022ln )0(dx y x yF y .解 1ln ln )0(110-===⎰⎰xdx dx x F ,所以,]11[ln 1)1ln (1)0()(101022221022+-+++=++=-⎰⎰⎰dx dx yx y y y dy y x y y F y F)0(21arctan 2)1ln(]arctan 1[ln 12102+→→++=++=y y y y y x y y y π, 即2)0(π='+F ,同样2)0(π-='-F ,因此)0(F '不存在,而00ln 112210022==+=+∂∂⎰⎰⎰==dx dx y x y dx yx y y y ,因此,⎰=+∂∂='10022ln )0(dx y x yF y 不成立.10.设⎰=πθθθ20cos )sin cos()(d x e x F x ,求证π2)(≡x F .证明 R x ∈∀0,函数)sin cos(),(cos θθθx e x f x =在矩形域]2,0[]1,)1([00π⨯++-x x 连续,θθθθθθθsin )]sin sin([)sin cos(cos ),(cos cos x e x e x f x x x -+=亦在矩形域]2,0[]1,)1([00π⨯++-x x 连续,故由积分号下求导数可得⎰⎰==-=∂∂='πθθπθθθθθθθ20cos cos 20000]sin )sin sin()sin cos(cos [),()(d x e x e d x f x x F x x x x x x⎰⎰-=πθπθθθθθ200c o s 200c o ss i n )s i n s i n ()s i n s i n (100d x e x d ex x x (00≠x )⎰-⋅-=πθπθθθθθ200cos 00200cos 0)sin ()sin sin(1|)sin sin(100d x e x x x e x x x⎰-πθθθθ200cos sin )sin sin(0d x e x0=,当00=x 时,显然0sin cos )0(2020==='⎰ππθθθd F .由R x ∈0的任意性,0)(='x F ,因此,C x F ≡)(,而πθπ2)0(20===⎰d F C ,所以,π2)(≡x F .11.设)(x f 为两次可微函数,)(x ϕ为可微函数,证明函数⎰+-+++-=atx atx dz z a at x f at x f t x u )(21)]()([21),(ϕ满足弦振动方程22222xu a t u ∂∂=∂∂ 及初始条件)()0,(x f x u =,)()0,(x x u t ϕ=.证明)]()([21)]()([21at x at x aat x f at x f x u --+++'+-'=∂∂ϕϕ, )]()([21)]()([2122at x at x a at x f at x f xu -'-+'++''+-''=∂∂ϕϕ, )]()([21)]()([21at x a at x a aat x f a at x f a t u -++++'+-'-=∂∂ϕϕ )]()([21)]()([2at x at x at x f at x f a -++++'+-'-=ϕϕ,)]()([2)]()([2222at x at x aat x f at x f a tu -'-+'++''+-''=∂∂ϕϕ 所以,)]()([2)]()([2222at x at x aat x f at x f a tu -'-+'++''+-''=∂∂ϕϕ 2222)]}()([21)]()([21{x u a at x at x a at x f at x f a ∂∂=-'-+'++''+-''=ϕϕ, 即满足弦振动方程.又)()(21)]()([21)0,(x f dz z ax f x f x u xx =++=⎰ϕ, )()]()([21)]()([2)0,(x x x x f x f a x u t ϕϕϕ=++'+'-=,即满足初始条件.§2 含参变量的广义积分1.证明下列积分在指定的区间内一致收敛:(1)⎰+∞+022)cos(dy yx xy (0>≥a x ); (2))(1)cos(02+∞<<-∞+⎰+∞x dy y xy ;(3))(1b x a dy e y y x ≤≤⎰+∞-;(4)⎰+∞-1cos dy y ye pxy(0>p ,0≥x ); (5))0(1sin 02≥+⎰∞+p dx xx p. 证明(1)因为当0>≥a x 时,],0[+∞∈∀y ,有22222211)cos(ya y x y x xy +≤+≤+, 而dy ya ⎰+∞+0221收敛,由M 判别法,⎰+∞+022)cos(dy y x xy 在0>≥a x 是一致收敛的. (2)因为,),(+∞-∞∈∀x ,),0[+∞∈y 成立22111)cos(y y xy +≤+,而⎰+∞+0211dy y 收敛,由M 判别法,⎰+∞+021)cos(dy y xy 在+∞<<∞-x 一致收敛.(3)因为],[b a x ∈∀,),1[+∞∈y ,成立{}y M yb a y x e y eye y ---≤≤,max ,其中{}0,max ≥=b a M , 而⎰+∞-1dy e y yM 收敛,所以⎰+∞-1dy e y y x 在b x a ≤≤一致收敛.(4)用Abel 判别法.已知⎰+∞1cos dy yyp收敛(见第十一章§3习题3(3)),又对每一个),0[+∞∈x ,函数xye-关于y 是单调函数,且),0[+∞∈∀x ,),1[+∞∈y ,有1≤-xye,由Abel 判别法知 ⎰+∞-1cos dy y ye pxy在),0[+∞一致收敛.(5)由于⎰+∞2sin dx x 收敛(见p56-§11.1-例10),又对每一个),0[+∞∈p ,函数px +11是单调减函数,且),0[+∞∈∀x ,),0[+∞∈p ,有111≤+p x,由Abel 判别法,)0(1sin 02≥+⎰∞+p dx x x p 在),0[+∞一致收敛.2.讨论下列积分在指定区间上的一致收敛性: (1))0(2+∞<<-+∞⎰αααdx e x ;(2)⎰+∞-0dy xe xy ,(i ))0(],[>∈a b a x , (ii )],0[b x ∈; (3)⎰+∞∞---dx e x 2)(α,(i )b a <<α, (ii )+∞<<∞-α; (4))0(sin 0)1(22+∞<<⎰+∞+-x xdy e y x.解(1))0(2)(0)(0222>===⎰⎰⎰∞+-∞+--∞+απαααααdu e ux x d e dx e u x x ,当0=α时积分为0.0>∀A ,由于2lim lim 0222πααααα===⎰⎰⎰∞+-∞+-→∞+-→++du e du e dx e u Au o Ax o,故0ε∃:200πε<<,00>∃α,使得有0020εαα>⎰+∞-Ax dx e ,因此积分非一致收敛.(2)积分对于每一个定值0≥x 是收敛的.当0=x 时,00=⎰+∞-dy xe xy ;当0>x 时1|0=-=∞+-+∞-⎰xy xy e dy xe . (i ))0(],[>∈a b a x ,由于aA xA Axy e e dy xe --+∞-≤=<⎰0,故εε1ln 1,00a A =∃>∀,使当0A A >时,就有ε=<-+∞-⎰0aA Axy e dy xe ,于是,在区间)0(],[>∈a b a x 上积分一致收敛.(ii )由于+→0x 时,1→-Axe ,故10:00<<∃εε,对于足够小的0x 值,00ε>-Axe ,故在],0[b 上,积分⎰+∞-0dy xe xy 不一致收敛.(3)对任意固定的α,积分⎰+∞∞---dx ex 2)(α都收敛,且(作代换t x =-α)πα==⎰⎰+∞∞--+∞∞---dt e dx e t x 22)(.(i )取正数R 充分大,使得R b a R <<<-,显然,当R x ≥时,对一切b a <<α,有22)()(0R x x ee----<<α,而积分⎰⎰+∞--+∞∞---=0)()(222dx e dx eR x R x 收敛,由M 判别法,积分⎰+∞∞---dx e x 2)(α在b a <<α一致收敛.(ii )0>∀A ,有παααα===⎰⎰⎰+∞∞--+∞--+∞→+∞--+∞→dt e dt e dx e t A t Ax 222limlim)(,故当α充分大时,0)(22επα=>⎰∞+--Ax dx e ,由此可知⎰+∞--0)(2dx e x α在+∞<<∞-α非一致收敛,因而⎰+∞∞---dx e x 2)(α在+∞<<∞-α更非一致收敛.(4)0>∀A ,有)0(sin sin 0)1(22222++∞-+∞--+∞+-→→=⎰⎰⎰x dt e dt e e xx xdy e t Ax t x Ay x,因此,积分⎰+∞+-0)1(sin 22xdy e y x在+∞<<x 0非一致收敛.3.设)(t f 在0>t 连续,⎰+∞)(dt t f t λ当a =λ,b =λ时皆收敛,且b a <.求证:⎰+∞)(dtt f t λ关于λ在],[b a 一致收敛.证明 ⎰⎰⎰+∞--+∞+=110)()()(dt t f t t dt t f t t dt t f t b b a a λλλ.由于⎰1)(dt t f t a 收敛,因而,对],[b a ∈λ一致收敛,αλ-t 当λ固定时,对t 在]1,0[单调,且1≤-αλt ,因此,由Abel 判别法,积分⎰⎰=-11)()(dt t f t dt t f t t a a λλ在],[b a 一致收敛.又因为⎰+∞1)(dt t f t b 收敛,故对],[b a ∈λ亦一致收敛,b t -λ当λ固定时,对t 在],1[+∞单调递减,且1≤-btλ,由Abel 判别法,积分⎰⎰+∞+∞-=11)()(dt t f t dt t f t t b b λλ在],[b a 一致收敛.因此,⎰+∞0)(dt t f t λ在],[b a 上一致收敛.4.讨论下列函数在指定区间上的连续性: (1)⎰+∞+=22)(dy yx xx F ,),(+∞-∞∈x ; (2)⎰∞++=21)(dy yy x F x,3>x ; (3)⎰--=ππ02)(sin )(dy y y yx F xx ,)2,0(∈x .解(1)当0≠x 时,⎪⎪⎩⎪⎪⎨⎧><-==+=+=∞+∞+∞+⎰⎰,0,2,0,2arctan )()(11)(0222x x x yx y d xy dy y x xx F ππ而0)0(=F ,因此,)(x F 在0≠x 连续,在0=x 间断(第一类间断点).(2)因为)1(,1112222≥<+=+---y yy y y y x x x , 而当3>x 时,无穷积分⎰+∞-121dx y x 收敛,⎰+=1021)(dy y y x F x在3>x 是常义积分,因而)(x F 在3>x 有意义.30>∀x ,03x b <<∃,当1≥y 时, ),[+∞∈∀b x ,有222221111----≤<+=+b x x x y y y y y y , 而⎰+∞-121dy yb 收敛,因而⎰∞++021dy yy x 在),[+∞b 一致收敛,因此,⎰∞++=021)(dx y y x F x 在),[0+∞∈b x 连续,由),3(0+∞∈x 的任意性可知,)(x F 在3>x 连续.(3)⎰⎰----+-=ππππππ2222)()sin()(sin )(dy y y y dy y y yx F x x x x , 所以,)2,0(0∈∀x ,0>∃δ,使得δδ-<<<200x ,当]2,[δδ-∈x 时,有δδδδπππππ)2(1)2(1)(1)(sin 11212-----=-≤-≤-y y y y y y y xx x x ,]1,0(∈y ,δδπππππ-----≤-≤--1212)()2(1)(1)()sin(y y y y y y xx x x ,),1[ππ-∈y ,⎰-11)2(1dy y δδ及⎰----ππδδπ112)()2(1dy y 均收敛,所以⎰--22)(sin ππdx y y yxx 及⎰--πππ22)(sin dx y y y x x 均在]2,[δδ-∈x 一致收敛,因而⎰--ππ02)(sin dy y y yxx 在]2,[δδ-∈x 一致收敛. 因此,)(x F 在]2,[δδ-∈x 连续,因而在δδ-<<<200x 连续,由)2,0(0∈x 的任意性,知)(x F 在)2,0(连续.5.若),(y x f 在),[],[+∞⨯c b a 上连续,含参变量广义积分⎰+∞=cdy y x f x Ι),()(在),[b a 收敛,在b x =时发散,证明)(x I 在),[b a 不一致收敛.证明 目的在于证明:00>∃ε,c A >∀0,0'''A A A >>∃及],[b a x ∈,使得0'''),(ε≥⎰A A dy y x f . (1)因为⎰⎰⎰+-='''''''''),()],(),([),(A AA A A A dy y b f dy y b f y x f dy y x f⎰⎰--≥'''''')],(),([),(A A A A dy y b f y x f dy y b f ,因此,若能证明00>∃ε,c A >∀0,0'''A A A >>∃及],[b a x ∈,02),('''ε≥⎰A A dy y b f ,0'''),(),([ε<-⎰A A dy y b f y x f , (2)则(1)式即可得到.剩下的问题在于证明(2).01 因⎰+∞cdy y b f ),(发散,故00>∃ε,c A >∀0,0'''A A A >>∃,使得02),('''ε≥⎰A A dy y b f .02 但),(y x f 在),[],[+∞⨯c b a 连续,从而在有界闭区域b x a ≤≤,A y A ''≤≤'上一致连续,于是对上述01中00>ε,0>∃δ,当 δ<''-'x x ,δ<''-'y y 且],[,b a x x ∈''',],[,A A y y '''∈'''时,有A A y x f y x f '-''<''''-''0),(),(ε,从而δ<-b x 时,有A A y b f y x f '-''<-0),(),(ε,由此推得0'''),(),([ε<-⎰A A dy y b f y x f .6.含参变量的广义积分⎰+∞=cdy y x f x Ι),()(在],[b a 一致收敛的充要条件是:对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数∑∑⎰∞=∞==+11)(),(1n n n A A x u dy y x f n n在],[b a 上一致收敛.证明 必要性.⎰+∞=cdy y x f x I ),()(在],[b a 一致收敛,故0>∀ε,c A >∃0,当0A A >时,有ε<⎰+∞Ady y x f ),(,对],[b a x ∈一致地成立.对任意递增数列{}n A :)(1c A A n =∞→,首先,∑⎰∑⎰∑=∞→∞=∞=++==nk A A n n A A n n k kn ndy y x f dy y x f x u 11111),(lim ),()()(),(),(lim 1x I dy y x f dy y x f cA cn n ===⎰⎰+∞∞→+,],[b a x ∈∀成立.其次,由于{}n A 单调递减趋于∞+,故对上述c A >0,N ∃满足0A A N ≥,因此当N n >时,0A A A N n ≥>,因此,有ε<==⎰∑⎰∑∞+∞=∞=+nk kA n k A A nk kdy y x f dy y x f x u),(),()(1,],[b a x ∈∀一致地成立,因此级数∑∞=1)(n n x u 在],[b a 上一致收敛于)(x I .充分性.采用反证法.若不然,设对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数∑⎰∑∞=∞=+=111),()(n A A n nn ndy y x f x u在],[b a 上一致收敛,但广义积分⎰+∞=cdy y x f x Ι),()(在],[b a 不一致收敛,因此00>∃ε,c A >∀0,0A A >∃,],[0b a x ∈∃,使得00),(ε≥⎰+∞Ady y x f .取01][)1(0>+=c A ,)1(02A A >∃,],[1b a x ∈∃,使得012),(ε≥⎰+∞A dy y x f ;取11)2(0+=A A,)2(03AA >∃,],[2b a x ∈∃,使得023),(ε≥⎰+∞A dy y x f ; 取12)3(0+=A A ,)3(04A A >∃,],[3b a x ∈∃,使得034),(ε≥⎰+∞A dy y x f ;如此一直下去.得到一列单调递增序列{}n A (令C A =1),且)(∞→+∞→n A n 和一列{}],[b a x n ⊂,使得01),(ε≥⎰+∞+n A n dy y x f ,即函数项级数∑⎰∑∞=∞=+=111),()(n A A n nn ndy y x f x u在],[b a 非一致收敛,矛盾!因此,⎰+∞=cdy y x f x I ),()(在],[b a 一致收敛.7.用上题的结论证明含参变量广义积分⎰+∞=cdy y x f x I ),()(在],[b a 的积分交换次序定理(定理19.12)和积分号下求导数定理(定理19.13).证明 积分交换次序定理 设),(y x f 在),[],[+∞⨯c b a 上连续,且含参变量的广义积分⎰+∞=cdy y x f x I ),()(在],[b a 上一致收敛,则⎰⎰⎰+∞=cbabadx y x f dy dx x I ),()(,即⎰⎰⎰⎰+∞+∞=cbab a cdx y x f dy dy y x f dx ),(),(.由于⎰+∞=cdy y x f x I ),()(在],[b a 一致收敛⇒对任意递增趋于∞+的数列{}n A (c A =1),函数项级数∑∑⎰∞=∞==+11)(),(1n n n A A x u dy y x f n n在],[b a 一致收敛于)(x I ,由已知条件,),(y x f 在),[],[+∞⨯c b a 上连续,因而亦在],[],[1+⨯n n A A b a 上连续,故⎰+=1),()(n nA A n dy y x f x u 在],[b a 连续,因此利用函数项级数和函数的逐项积分定理,有∑⎰⎰∑⎰⎰∑⎰⎰∞=∞=∞=++===11111),(),()()(n A A ban baA A n ban ban nn ndx y x f dy dy y x f dx dx x u dx x I⎰⎰⎰⎰∑⎰⎰+∞∞→=∞→===++cbaA cban nk A A ban dx y x f dy dx y x f dy dx y x f dy n k k),(),(lim ),(lim111.积分号下求导数定理 设),(y x f 和),(y x f x 都在),[],[+∞⨯c b a 上连续,若⎰+∞cdy y x f ),(在],[b a 上收敛,⎰+∞cx dy y x f ),(在],[b a 上一致收敛,则⎰+∞=cdy y x f x I ),()(在],[b a 可导,且⎰+∞='cx dy y x f x I ),()(,即⎰⎰+∞+∞∂∂=c c x dy y x f xdy y x f dx d ),(),(. 由于⎰+∞cdy y x f ),(在],[b a 上收敛,故对任意趋于∞+的递增函数列{}n A (C A =1),级数∑∑⎰∞=∞==+11)(),(1n n n A A x u dy y x f n n在],[b a 上收敛于)(x I ,又⎰+∞cx dy y x f ),(在],[b a 上一致收敛,故函数项级数∑∑⎰∞=∞='=+11)(),(1n nn A A x x u dy y x f n n在],[b a 上一致收敛,用函数项级数和函数的逐项求导定理,知 ⎰∑⎰∑+∞∞=∞==='='+cx n A A x n ndy y x f dy y x f x u x I n n),(),()()(111.8.利用微分交换次序计算下列积分: (1)⎰+∞++=12)()(n n a x dxa I (n 为正整数,0>a ); (2)⎰∞+---0sin mxdx xe e bxax (0>a ,0>b ); (3)⎰+∞-0sin 2bxdx xe ax (0>a ).解(1)由于积分⎰+∞+02ax dx对一切00>a 在0a a ≥上一致收敛,得)()()1(10220202a I a x dx dx ax a a x dx da d -=+-=+∂∂=+⎰⎰⎰+∞+∞+∞, 由00>a 的任意性,知上式对一切0>a 成立.同理对积分⎰+∞+02ax dx逐次求导,得)(!)1()(!)1(01202a I n a x dx n a x dx da d n nn n nn -=+-=+⎰⎰∞++∞+, 但320212)2(aa da d a x dx da d ππ-==+⎰+∞,5323202221231)1()12(aada d ax dx da d ππ⋅-=-=+⎰∞+,用数学归纳法,可得121212!)!12()1(++∞+--=+⎰n n n nn an a x dx da d π,所以,)21()21(1!)!2(!)!12(2!2!)!12()(+-+-+-⋅=⋅⋅-=n n n n a n n a n n a I ππ.(2)当0=m 时,0sin 0=-⎰∞+--mxdx xe e bxax ,下设0≠m . 由于0sin lim0=---→+mx xe e bxax x ,因此0=x 不是瑕点,从而当0>a ,0>b 时,被积函数在+∞<≤x 0内连续(0=x 的函数值理解为极限值0),又由于)0(sin >-≤-----x xe e mx x e e bxax bx ax , 而积分⎰∞+---1dx x e e bx ax 收敛,由比较判别法,积分⎰∞+---0sin mxdx xe e bxax收敛.当00>≥a a 时,积分⎰⎰∞+-∞+---=-∂∂00sin )sin (mxdx e dx mx xe e a ax bxax 是一致收敛的.事实上,由)0(sin 0≥≤--x emx exa ax立即得到此结论.于是⎰∞+---=0sin )(mxdx xe e a I bxax 在00>≥a a 时可以在积分号下求导数,得220sin )(ma mmxdx e a I ax +-=-='⎰+∞-, 由00>a 的任意性知,上式对一切0>a 均成立,从而c m ada m a m a I +-=+-=⎰arctan )(22,其中c 为待定常数,令b a =,则得c m b b I +-==arctan 0)(mbc arctan =⇒.所以, )0()(arctan arctan arctan sin 20≠+-=-=-⎰∞+--m abm a b m m a m b mxdx x e e bx ax . (3)⎰⎰⎰+∞-+∞-+∞-+∞-+-=-=0000cos 2sin 21)(sin 21sin 2222bxdx e a b bx e a e bxd a bxdx xeax ax ax ax ⎰+∞-=0cos 22bxdx e ab ax 设⎰+∞-=0cos )(2bxdx eb I ax ,由于bx e ax cos 2-与bx xe bx e bax ax sin )cos (22---=∂∂都是0≥x ,+∞<<∞-b 上的连续函数,且此时22cos ax ax e bx e --≤,22sin ax ax xe bx xe --≤,而积分⎰+∞-02dx e ax 与⎰+∞-02dx xe ax 都收敛,因此积分⎰+∞-0cos 2bxdx e ax 与⎰+∞-0sin 2bxdx xe ax 均在),(+∞-∞上一致收敛,从而可以在积分号下求导数.所以,)(2sin )(02b I abbxdx xe b I ax -=-='⎰+∞-, 解得,ab ceb I 42)(-=,其中c 是待定常数.但21)0(02πa dx e I ax ==⎰∞+-,得ab a b axe aa b e a a b b I a b bxdx xe 42402224212)(2sin --∞+-===⎰ππ. 9.利用对参数的积分法计算下列积分:(1)⎰∞+---022dx xeebx ax (0>a ,0>b ); (2)⎰∞+---0sin mxdx xe e bxax (0>a ,0>b ). 解(1)⎰⎰⎰⎰⎰∞+-∞+-∞+--=-=-b atx abtx bx ax dx xedt dt exdx dx xe e2222⎰⎰⎰+∞-+∞--=--=b a tx ba tx dt e t tx d e dt t 0022221)(21ab a b t dt t b a b a ln 21)ln (ln 21ln 2121=-===⎰. (2)⎰⎰⎰⎰⎰∞+-∞+-∞+--==-b a tx b a tx bxax mxdx e dt dt e mxdx mxdx xe e 000sin sin sinabm a b m m a m b m t dt m t m ba ba+-=-==+=⎰222)(arctanarctan arctan arctan ()0≠m , 而0=m 时,0sin 0=-⎰∞+--mxdx xe e bxax ,这也可以归结到前面最终答案中0=m 的情形,所以, abm a b m mxdx x e e bx ax +-=-⎰∞+--20)(arctan sin . 10.利用⎰+∞+-=+0)1(2211dy e xx y 计算Laplace 积分 ⎰+∞+=021cos dx x x L α和 ⎰+∞+=0211sin dx xx x L α. 解 先计算⎰+∞+=021cos dx xxL α. 若0=α,则2arctan 111cos 00202πα==+=+=∞++∞+∞⎰⎰x dx x dx x x L ,故下设0≠α.⎰⎰⎰⎰⎰+∞+∞--+∞+∞+-+∞==+=0000)1(02cos cos )(1cos 22xdx e dy e xdx dy e dx xx L yx y x y ααα ⎰⎰⎰∞++-∞++-∞+--==⋅=0)2(0)4(04222221dt eedt ety dy e yett tt yyααααπππ,其中第四个等号应用了8(3)中)(b I 的结果.下面计算⎰∞++-=0)2(2dt eI tt α.设u tt =-2α,则+∞<<t 0时,+∞<<∞-u ,αα222+=+u tt )2(212α++=⇒u u t , 从而有du u u u du u u dt ααα2221)2221(21222+++=++=,代入得⎰⎰∞+∞-+-∞++-+++==du u u u e dt eI u tt αααα222122)2(0)2(22)2222(21022)2(022)2(22⎰⎰∞++-∞-+-+++++++=du u u u e du u u u e u u αααααα)2222(21022)2(022)2(22⎰⎰∞++-∞++-+++++-+=du u u u e du u uu e u u αααααα(前者作负代换)ααααπ2020)2(0)2(2221222-∞+--∞++-∞++-====⎰⎰⎰edu e e du e du e u u u ,所以,αααααππππ--∞++-=⋅=⋅=⎰eeedt eeL tt 2220)2(2.再计算⎰+∞+=0211sin dx x xx L α.显然 ⎰⎰⎰⎰⎰⎰--+∞+∞==+=+=ααααππ000020021221cos 1cos du e du e dx x ux du du x ux dx L uu απαπαπααπαααααsgn )1(20,)1(2,0,)1(20,,0,200----=⎪⎪⎩⎪⎪⎨⎧<-≥-=⎪⎩⎪⎨⎧<≥=⎰⎰e e e du e du e u u . 11.利用)0(2102>=⎰+∞-x dy e xxy π计算Fresnel 积分⎰⎰+∞+∞==002sin 21sin dx xxdx x F ,和 ⎰⎰+∞+∞==0021cos 21cos dx xxdx x F . 解 在积分⎰+∞-=221dy e xxy π的两端乘以x sin ,再在100x x x ≤≤<上积分,则得⎰⎰⎰+∞-=121sin 2sin x x xy x x dy xe dx dx xx π.由于202sin y x xy e ex --≤⋅,而⎰+∞-020dy e y x 收敛,故积分⎰+∞-02sin dy xe xy 对10x x x ≤≤一致收敛,从而可以进行积分顺序的交换,得⎰⎰⎰⎰∞+-∞+-++-=⋅=420102121]1)cos sin ([2sin 2sin dy yx x y e dx e x dy dx xx x x xy x x xy x x ππ⎰⎰∞+-∞+-+++=04004201cos 21sin 22020dy y e x dy y y e x y x y x ππ⎰⎰∞+-∞+-+-+-04104211cos 21sin 22121dy y e x dy y y e x y x y x ππ, 上述等式右端的诸积分分别对+∞<≤00x ,+∞<≤10x 都是一致收敛的(120≤-y x e,121≤-y x e ,且⎰∞++0421dy yy 及⎰+∞+041y dy 均收敛).于是,它们分别是10,x x (+∞<≤00x ,+∞<≤10x )的连续函数,从而令+→00x ,可在积分号下取极限,得⎰⎰⎰⎰∞+-∞+-∞++-+-+=04104210401cos 21sin 212sin 21211dy y e x dy y y e x y dy dx xx y x y x x πππ, 且由于上式右端后两个积分均不超过积分)(0211121+∞→→=⎰∞+-x x dy e y x π.故0104221→+⎰∞+-dy y y e y x ,)(0110421+∞→→+⎰∞+-x dy y e y x ,令+∞→1x 取极限,222212sin 04ππππ=⋅=+=⎰⎰∞+∞+y dy dx xx ,。
第十五章 含参变量积分

f (α ( y), y)α ′( y) .
∫ 证明 记 G(α, β , y) =
β (y)
f (x, y)dx = F ( y) , 利用链法则,有
α ( y)
∫ F ′( y)
=
∂G ∂y
+
∂G ∂α
⋅
dα dy
+
∂G ∂β
⋅
dβ dy
=
β ( y)
α ( y) f y (x, y)dx −
f (α ( y), y)α ′( y) +
1
《数学分析》教案----含参变量积分
华中科技大学数学系汤燕斌
∫ ∫ 明函数 F(y) =
β ( y) α( y)
f (x, y)dx在闭区间[c, d ] 上连续,并求极限 lim y→0
1+ y
1
y 1+ x2 + y2
dx .
β ( y)
β ( y)
α ( y)
∫ ∫ ∫ 证明 因为 F ( y) = f (x, y)dx = f (x, y)dx − f (x, y)dx , 由定理 1 以及复合函数的连续性,
dx
.
因为
ln(1 + αx) 1+ x2
和
∂ ∂α
(
ln(1 + αx) 1+ x2
)
=
(1 +
x2
x )(1 +
αx)
都在闭区域
D = {0 ≤ x ≤ 1;0 ≤ α ≤ 1} 上连续, 由积分号下求导定理(定理 2),有
∫ ∫ ∫ I ′(α) =
1 0
∂ ∂α
ln(1 + αx) ( 1 + x 2 )dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同理可定义含参变量 x 的积分:
J ( x)
f ( x, y)dy ,
c
d
x [a , b]
一般就称为含参变量积分。 它们统称为含参变量常义积分,
x2 y2 例如: 计算 椭圆 1 (b a 0)的周 长。 2 2 a b
椭圆的参数方程: x a cos t , y b sin t ,
dI ( y ) dy
b
a
f y ( x , y )dx 。
定理3 的结论也可写成
d dy
b
a
f ( x , y )dx f ( x , y )dx 。 a y
b
说明求导运算和积分运算可以交换。
机动 目录 上页 下页 返回 结束
定理4 设f ( x, y ), f y ( x, y )都在闭矩形 [a, b] [c, d ]上连续 ,
例3 解
设F ( y )
y
0
ln(1 xy) dx, y 0, 求F ( y )。 x
y
F ( y )
0
1 ln(1 y 2 ) dx 1 xy y
ln(1 xy) y ln(1 y 2 ) 0 y y 2 ln(1 y 2 ) y
机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
1 I ( )
0
1 dx 1 cos x
x 对 最 后 一 个 积 分 作 万代 能 换 t tan , 2
0
1 dx 1 cos x
2dt 1 t 2 (1 t 2 )
2 1 2 1 arctan t 0 1
f ( x , y )dx dx f ( x , y )dy
a c
b
d
例2 计算 I 解 由于
1 xb
0
xa dx ,其中 b a 0。 ln x
1 0
b a x x x y dy , a ln x
b
因此 I dx x dy
a
b
y
dy
a
b
1
0
周 长 4 ds
L
0 0
2
a 2 sin2 t b 2 cos 2 t dt a 2 sin2 t b 2 (1 sin2 t )dt
机动 目录 上页 下页 返回 结束
2
2
0
a 2 sin2 t b 2 (1 sin2 t )dt
2
k
2
b2 a 2 b
1 1 b dy ln x dx a 1 y 1 a
y
b
机动
目录
上页
下页
返回
结束
定理3(积分号下求导定理)
设f ( x, y ), f y ( x, y )都在闭矩形 [a, b] [c, d ]上连续 ,
则I ( y ) ba[c , d ]上 成 立 f ( x , y )dx在[c , d ]上 可 导并 ,且 在
b( y )
a( y )
f y ( x , y )dx f (b( y ), y )b( y )
f (a( y ), y )a ( y )
机动
目录
上页
下页
返回
结束
F ( y)
b( y )
a( y )
f ( x , y )dx
由定理 4还 可 以 得 到 : F ( y )在[c, d ]上 连 续 !
y [c , d ]
在[c , d ]上 连 续 。
机动 目录 上页 下页 返回 结束
例1 求 lim
0 0
1 x
1
dx
2
cos x
。
解: 由于函数
f ( x, ) 1 1 x 2 cos x
1 1 因此由连续性定理, 在 闭 矩 形 [0,1] , 上 连 续 , 2 2
例4
解
计 算 I ( )
ln(1 cos x)dx
0
(| | 1)。
必存在 0 a 1, 对于任意的 | | 1, 使 得 | | a, cos x 记 f ( x, ) ln(1 cos x ), 则 f ( x , ) , 1 cos x
0 0
lim
1 x
1
dx
2
cos x
1
0 0 1
lim
1 x cos x
2
dx
1
1 1 x
2
0
dx
机动 目录
4
上页 下页 返回 结束
定理2(积分次序交换定理)
设f ( x , y )在闭矩形 [a , b] [c, d ]上连续 ,则
dy
c
d
b
a
又设 a( y ), b( y ) 是在[c, d ] 上的可导函数,满足
a a( y) b, a b( y) b,
则函数
F ( y)
b( y )
a( y )
f ( x , y )dx
并 且 在[c, d ] 上 成 立 在 [c , d ] 上 可 导 ,
F ( y )
连续函数, 且积分值 因 此它 在 [a , b]上 的积 分 存 在,
b
a
也就是说, f ( x , y )dx 由 y 惟 一 确 定 ,
I ( y)
b
a
f ( x , y )dx ,
y [c , d ]
确 定了 一 个关 于 y的 一元 函 数 , 称为含参变量 y的积分。
机动 目录 上页 下页 返回 结束
由I ( )的定义可知 I (0) 0, 代入上式可得 C ln 2,
于是
2 I ( ) ln 1 1
ln 2
即
1 1 2 I ( ) ln . 2
机动 目录 上页 下页 返回 结束
2
b
0
1
b a b
2
2
2
sin2 t dt b
0
1 k 2 sin2 t dt
含参变量k的积分
二、含参变量常义积分的分析性质
定理1(连续性定理)
设f ( x , y )在闭矩形 [a , b] [c, d ]上连续 , 则函数
I ( y)
b
a
f ( x , y )dx ,
第十五章 第一节 含参变量的常义积分
一、含参变量常义积分的定义 二、含参变量常义积分的分析性质
连续性定理
积分次序交换定理 积分号下求导定理
机动 目录 上页 下页 返回 结束
一、含参变量常义积分的定义
设f ( x, y )是定义在闭矩形 [a, b] [c, d ]上的连续函数 , x的一 元 则对固定的 y [c, d ],f ( x , y )是[a , b]上关 于
显然 f ( x, )和f ( x, )都在 [0, ] [a, a]上连续,
因此,由积分号下求导定理可知
I ( )
0
cos x 1 dx 1 cos x
0
1 1 dx 1 cos x
1
0
1 dx 1 cos x
0
2 1
0
1 2
dt 1 2 1 t 1
I ( ) 1 2
机动 目录 上页 下页 返回 结束
I ( ) 1 2 再对 积分得
2 I ( ) ln 1 1 C,