数学建模——微分方程模型

合集下载

微分方程模型

微分方程模型

6.1 微分方程模型的建模步骤 6.2 作战模型
6.3 传染病模型 习题
6.1 微分方程模型的建模步骤
例1 某人的食量是10467焦/天,其中5038焦/天用于基本的新
陈代谢(即自动消耗)。在健身训练中,他每天大约每千克
体重消耗69焦的热量。 假设以脂肪形式贮藏的热量100%地有效,而1千克脂肪含 热量41868焦,试研究此人的体重随时间变化的规律。
模型分析
甲乙两支部队互相交战,在整个战争期间,双方的兵力 在不断发生变化,而影响兵力变化的诸多因素转化为数量非 常困难。为此,我们作如下假定把问题简化。
模型假设
1. x(t) , y(t) 表示甲乙双方在时刻 t 的人数, x(0)=x0 ,y(0)=y0 表示甲乙双方开战时的人数,x0 > 0, y0 >0; 2.设x(t) , y(t)是连续变化的,并且充分光滑; 3.每一方的战斗减员率取决于双方的兵力,不妨以f(x,y) ,
投入多大的初始兵力。不妨设 100 x0
S 活动区域 x 0.1
p, 0.1 rx, x
ry 2
, 平
平方千米,乙方射击的有效面积 1 sy
y0 2 0.1 0.1 106 100 x 2 1 100 0
2
方米,则可得乙方获胜的条件为:
a
时甲方兵力
降为“零”,从而乙方获胜。同理可知,K 0
甲方获胜。而当 K 0 时,双方战平。 2 2 甲方获胜的充要条件为 bx0 ay0 0
时,
代入a 、b 的值,有甲方获胜的充要条件为
2 2 rx p x x 0 r y p y y 0
故可找到一个用于正规作战部队的综合战斗力的评价函数:

数学建模实验二:微分方程模型Matlab求解与分析

数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。

二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。

其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。

(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。

第四章 微分方程数学模型

第四章 微分方程数学模型
s 0 在轨线方程中,令t知 1 s ln s0 s是[0, ]中的单根 1 1
3)、若s0
1

, 则i(t )先增加,当 s
1
1

时,i(t )达到最大
im 1

(1 ln s0 ), 然后减小趋于0, s(t ) s
若s0
1

, 则i(t )单调趋于0,(i)单调趋于s s
i0
i0
1
i
1
i
1

O
1
1

1
t
i0
O
t
O
t
1 1 i ( ) 0 1
1 1
1 ~ 阈值
1 i (t )
感染期内有效接触感染的 i0小 i(t )按S曲线增长 健康人数不超过病人数
直接求解方程,亦可得到上述结果
di i (1 i ) i dt i (0) i0

i0 i (t ) i0 t 1
1

1 ( ) t e i(t ) i 0
x s0
i0小, 0 1 s
x x ln(1 ) 0 s0 1
x x2 x ( 2)0 s0 2 s 0 1
x 2s0 ( s0
1

)
令 s0 1 , 又 较小, s0 1)
x 2
模型检验 医疗机构一般依据r(t)来统计疾病的波及人数 ,从广 义上理解,r(t)为t时刻已就医而被隔离的人数,是康 复还是死亡对模型并无影响。
代数方程组 f ( x, y ) 0, g ( x, y ) 0. 的实根x = x0, y = y0称为方程(4-3)的平衡点, 记作P0 (x0, y0). 它也是方程(4-3)的解.

数学建模-微分方程模型-饮酒驾车问题

数学建模-微分方程模型-饮酒驾车问题

和 x0 ,将体重 70kg 的某人在快速喝下 2 瓶啤酒之后一段时间内他血液中酒精含量的
测量值进行处理后,得到附录 1 所示的 y0 0 时的一组数据,并采用非线性最小二乘法 拟合算法对系数进行求解,得出参数如下。 x0 5193
=2.00796
=0.1855
同时可以看到,每瓶啤酒含酒精量为 2596.5mg。 所以,得出的血液中酒精含量关于时间的函数如下。
0.1855 t e 2.00756t ) 2860.78604(e y (t ) 0.1855( t 6) 2860.8028e 2.00756(t 6) 3800.7595e
0t 6 6 t 12
利用 matlab 对以上模型进行求解。 图 3 大李血液中酒精含量随时间变化图像
y (t ) ( y0 +5721.57208)e 0.1855t 5721.57208e 2.00796t
拟合效果如图。 图 1 函数的拟合效果
图 2 残差分析图
残差分析图
600 500 400 300 200 100 0 10 11 12 13 14 15 0.5 1.5 2.5 3.5 0.25 ‐100 ‐200 ‐300 ‐400 残差 0.75 4.5 16 1 2 3 4 5 6 7 8 9
时刻为 t 时胃肠道中的酒精含量。
y (t ) 时刻为 t 时血液中的酒精含量。


胃肠道中的酒精进入血液的转移率与胃肠道中酒精量的比值。 血液中的酒精的排除率与血液中酒精量的比值。
五、模型的建立与求解
5.1 问题一 根据题目叙述,大李的实际情况符合快速饮酒的模型。为了确定函数中的系数 ,

数学建模微分方程模型练习题

数学建模微分方程模型练习题

微分方程模型练习题
1.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ,用量纲分析方法确定风车获得的功率P 与,
,v s ρ的关系
2.根据经验当一种新商品投入市场后,随着人们对它的拥有量的增加,其销售量()s t 成正比。

广告宣传可给销量添加一个增长速度,它与广告费()a t 成正比,但广告只能影响这种商品在市场上尚未饱和的部分(设饱和量为M )。

建立一个销量()s t 的模型。

若广告宣传只进行有限时间τ,且广告费为常数a ,问()s t 如何变化?
3.如果两个种群都能独立生存,共处时又能相互提供食物,试建立种群依存模型并讨论平衡点的稳定性,解释稳定的意义。

4.某种群最高年龄为30岁,按间隔10岁将此种群分为三组并
以10年为一时段。

若020b b ==,13b =,016p =,112p =,
0(1000,1000,1000)T N =
求:(1)10年、20年、30年后该种群按年龄分布的种群量;
(2)此种群的固有增长率1λ及相应的稳定年龄分布;
(3)指出该种群的发展趋势。

微分方程建模(溶液浓度)

微分方程建模(溶液浓度)

[解] 设y(t)表示t时刻细菌的总数,由题目告诉的任何 瞬间都成立的事实,找到规律, 列出微分方程:
dy dt ky
解得:
y Ae
kt
找到题目中的特定瞬间信息:
ln 4
y(0) 100, y(24) 400
y 100e
t
24
y (1 2 ) 2 0 0
[例2] 混合溶液的数学模型
衰减(放射性/污染物的净化) “边际的”(经济学)
应注意题目的 这些词: 改变/变化/增 加/减少
如何建立微分方程?
根据规律列方程
利用数学、力学、物理、化学等学科中的定理或经过实验检验
的规律等来建立微分方程模型。

微元分析法
利用已知的定理与规律寻找微元之间的关系式,与第一种方法
不同的是对微元而不是直接对函数及其导数应用规律。
Vanmeegren在狱中作的画实在是质量太差,所 找理由都不能使怀疑者满意。直到20年后,1967
年,卡内基梅隆大学的科学家们用微分方程模型
解决了这一问题。
原理
著名物理学家卢瑟夫(Rutherford)指出:
物质的放射性正比于现存物质的原子数。
设 t 时刻的原子数为N (t ) ,则有
dN dt N
dp k f p g dt p(0 ) p0
p
假设需求函数
假设供给函数 则微分方程为:
f ( p ) ap b g ( p ) cp d
dp k (a c ) p k (b d ) dt p(0 ) p0
数学建模系列讲座之
微分方程建模
微分方程的应用

微分方程模型基本概念

微分方程模型基本概念

2)在D上有不等式
dy f ( x, y ) 则初值问题 dx ( x0 ) y0
f ( x, y) F ( x, y) dy F ( x, y ) 与 dx ( x0 ) y0
的解 ( x), ( x) 在它们共同存在区间上满足
( x) ( x), 当 x x0 ( x) ( x), 当 x x0
那么前边观众必然会遮挡后面观众的视线。试建
立数学模型设计良好的报告厅地面坡度曲线。
建立坐标系
y o—处在台上的设计视点
a—第一排观众与设计视 点的水平距离 b—第一排观众的眼睛到x 轴的垂 直距离
d—相邻两排的排距
b o 问题

a d d
—视线升高标准
x
x—表示任一排与设计视 点的水平距离
求任一排x与设计视点o的竖直距离函数 y y ( x) 使此曲线满足视线的无遮挡要求。
y dy y x d dx x x d
dy1 y1 dx x d y1 b xa
b x y1 ( x) x x ln a d a
dy2 y2 dx x x d y2 xa b
5 总结与讨论
y
方法 利用微分不等式建模; 有时只需求近似解。 模型讨论 1)视点移动时升起 曲线如何求得? b o
a d d
x
2)怎样减少地面的坡度?调整参数、相邻排错位。 3)衡量经济的指标? 座位尽量多、升起曲线占据的空间尽量少等。
2 问题的假设 1) 观众厅地面的纵剖面图一致,只需求中轴线 上地面的起伏曲线即可。 2) 同一排的座位在同一等高线上。 3) 每个坐在座位上的观众的眼睛与地面的距离 相等。

数学建模 微分方程模型讲解

数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果遇到我们不熟悉的问题时,应该怎么办? 答案:不要回避,到网上查一下相关的概念你就 会发现:这个不熟悉的问题可能是比较简单的!
分析:上网查一下热传导,我们可以了解到:热的 传导从温度高的地方向温度低的地方传导,单位时 间传送的热量与温差T成正比,与两个热源的距 离成反比。即
Q k T d
对于两个固定热源,距离d是常数,则
h h
ds
设桶的水平面积为A,孔 的面积为B,则由于质量 守恒,则
Adh=-Bds 符号反映了此消彼长。
dh h
ds
设水的流速是v则
ds vdt dh (B / A)vdt
根据能量转换关系,水失去的势能转化为动能,

mgh 1 mv2
2

v 2gh
综合得到
dh B 2gh dt A
问题1:给出定解条件。 问题2:求出桶里的水流光所需时间。
2
等式两边求导数则得到第一个方程。
例2:一只装满水的圆柱形桶,底半径3m,高6m。 底部有一个直径0.02米的孔。 (1)水多长时间可以流光? (2)如果孔在侧面,而桶放在距地面3m 的高度。求 水流喷出距离的变化规律。
解:直接利用Newton第二定律建模比较困难,我 们利用能量的转换。在流水的过程中,桶的顶部减 少的势能化为水的动能。(如图)
分析:问题研究人体重量随时间的变化w(t)。条件 给出的是 热量单位时间的变化
2500-1200-16w(t) 转换成体重为
(2500-1200-16w(t))/10000 因此得到变化关系
dw 2500120016w
dt
10000
常微分方程建模的物理方法
热传导: 牛顿冷却定律(加热定律):
例:将一只读数为25度的温度计放在室外,10分钟 后度数为30度,又过了10分钟,读数变为33度,问 室外温度是多少?
常微分方程的定解条件:对一个m阶常微分方程, 需要积分m次才能将解函数求出,因此需要m个定 解条件。方程组的定解条件个数是每个方程定解条 件个数之和。 定解问题分为初值问题和边值问题。 初值问题的定解条件在同一个点上,而边值问题的 定解条件在不同点上。
导数的意义:瞬时变化率 在实际上我们遇到的描述变化的词有
微分方程模型
常微分方程的基本方法
微分方程基础
微分方程是含有函数及其导数的方程。 如果方程(组)只含有一个自变量(通常是时间t),则 称为常微分方程。否则称为偏微分方程。
例:下面的方程都是微分方程:
m du ku mg sin
dx
u a2 u sin x t x
微分方程的解是函数,对应一个变化过程。常微分 方程的解是随时间t变化的函数,比如一辆汽车在公 路上飞驰,一个球从空中落下等。 偏微分方程不但描述物体随时间变化发生位置的改 变,而且物体各部分之间的位置的相对变化。如水 的流动,烟雾的扩散,公路上车流的涌动等。
Q k1T
在我们的问题中,室外温度可以看做常数T0,大于 室内温度,而热量正比于温差,从而变化规律为
dT k(T T 0) dt
模型的解为 T T0 Cekt
这里有三个参数,其中T0=25。还剩两个参数,利 用剩下的两个条件可以确定。
问题:现有4000毫升温度为10度的化学溶液,将一 个体积40毫升温度为90度的玻璃球放在溶液中。求 溶液温度的变化规律。(平均温度)
微分方程解决的主要问题: (1)描述对象特征随时间(空间)的演变过程 (2)分析对象特征的变化规律 (3)预报对象特征的未来性态 (4)研究控制对象特征的手段
微分方程模型包括两个部分:方程和定解条件。 由于微分方程的求解需要借助微分的逆运算—积分, 而积分出现任意常数,因此方程的解不唯一,需要 附加条件将所求的解唯一确定下来。这样的条件称 为定解条件。
fn fn x1 x2
f1 Leabharlann xnf2 xn
fn xn
的所有特征值的实部都小于0,则x0是稳定的平衡点, 如果存在某个特征值的实部大于0,则x0是不稳定的 平衡点。
稳定的平衡点的实际意义:
如果微分方程存在稳定的平衡点,设x(t)是微分方 程的解,则当t时, x(t)趋向于某个稳定的平衡 点。
程)。 (2)微元法。
微分方程的稳定性理论: 对微分方程组
dx f (x) dt
若f(x0)=0,则称x0是方程组的平衡点。
如果在平衡点x0处,f(x)的Jacobi矩阵
f1 f1
x1
x2
Df D( f1, f2, Dx D(x1, x2 ,
, ,
fn ) xn )
f2 x1
f2 x2
动力学: 牛顿第二定律 能量守恒定律 欧拉-拉格朗日方程 空气和水的阻力
例1:求单摆的运动:摆长L,摆锤质量m的单摆的 运动方程
(1)利用Newton定律 f=ma 得到
ml
d 2
dt 2
mg sin

d 2
dt 2
g l
sin
(2)利用能量方程建模。设=0的点为零势点

mg(l l cos ) 1 m(l )2
速率(物理) 增长率(经济,生物,人口等) 衰变(原子反应) 边际的(经济)
瞬时变化率的描述: 绝对增加率:单位时间增加的量。 相对增加率:单位时间增加的百分比。 变化率= 增加率-减少率
由于是瞬时的,其量的关系只有在很短的时间间 隔中才能够利用静态的方法分析。(微元法)
微分方程的建模方法: (1)利用导数的意义,建立含有导数的方程(微分方
例:对Logistic方程,
dx rx(1 x )
dt
N
它有两个平衡点 x=0和x=N。其中x=0是不稳定的平
衡点,x=N是稳定的平衡点。
例1:某人的食量是2500卡/天。其中1200卡用于基
本的新陈代谢。在健身训练中,他每公斤体重所消 耗的热量大约是16卡/天。设以脂肪形式贮存的热 量100%有效,且1公斤脂肪含热量10000卡,分析这 个人体重的变化。
练习:如果例2中的桶是漏斗形的(倒圆锥)或球形 的,计算水深的变化规律。
练习题:
1、在一所大学,某个教师每天从图书馆借出一本 书,而图书馆每周收回所借图书的10%。几年后, 这个教师手中有大约多少本图书馆的书?
2、某学院的教育基金,最初投资P元,以后按利 率r的连续复利增长。另外,每年在基金开算的时 间,都要投入新的资本A/年求7年的累计资金数量。 另外,如果每年在基金开算的时间,把其中20% 用于奖学金的发放,求7年后累计资金数量。 3、一场降雪开始于中午前的某个时刻,降雪量稳 定。某人从正午12点开始清扫人行道,他的铲雪 速度(m3/小时)和路面宽度都不变,到下午2点他 扫了1000米,到下午4点又清扫了500米。雪是什 么时间开始下的?另外,如果他在下午4点开始回 头清扫,什么时间回到开始清扫的地点?
相关文档
最新文档