5.2+第五章+线性方程组+第二节++齐次线性方程组的解空间与基础解系(图片+动画版)
合集下载
高等数学线性代数线性方程组教学ppt(4)

1.2 高斯消元法
对线性方程组消元的三种变换(统称为线性方程组 的初等变换):
(1)交换方程组中某两个方程的位置; (2)以非零常数k乘以方程组中某个方程; (3)用数k乘以方程组中某个方程后加到另一个方程 上去.
定理1 线性方程组经过初等变换后得到的新方程组 与原方程组同解.
例1
解线性方程组
R( A) n;
(2)若R(A) n 1,则 A 0, AA* A E O,
由例5知:R( A) R( A*) n, R( A*) n R( A) n (n 1) 1, 即R( A*) 1.
另一方面,由于R(A) n 1, 因此A存在n 1阶非零子式,即A* O, 从而R( A*) 1.
R( A*) 1;
任一解都可以表示为
x 0 k11 knrnr ,
其中k1, , knr R. 即,当R(A) R(A | b)时,有
Ax b的通解
Ax b的一个特解 Ax 0的通解.
行阶梯形矩阵对应的方程组,叫行阶梯 形方程组;
行阶梯形方程组中,每个方程的第一个 未知量称为主未知量(主变量),其余变量叫 自由未知量(自由变量);
用消元法解线性方程组,就是用初等行 变换将方程组的增广矩阵化为行阶最简形, 得到的行阶梯方程组与原方程组同解.
例2 求解非齐次方程组的通解
x1 x1
3.设0是Ax b的某个解(称为特解),则Ax b 的任一个解向量都可表示成0与对应的 Ax 0的解之和,即有
0 .
证 :由于 0 ( 0 ),记 0,由性质1知 是导出组Ax 0的解,则 0 .
故只要 取遍Ax 0的全部解, 0 就取遍了 Ax b的所有解.
三、Ax b解的结构定理 定理4 若Ax b有解,1, ,nr是对应的Ax 0 的基础解系,0是Ax b的一个特解,则Ax b的
哈尔滨工业大学数学系 第五章 线性方程组

2.解的存在唯一性条件: 2.解的存在唯一性条件: 解的存在唯一性条件
(i) (ii)
AX=β有唯一解
AX=β有无穷多解 (iii) A 为方阵时,AX=β有唯一解 方阵时 唯一解
β)=n R(A)=R(A β)<n
R(A)=R(A
|A|≠0 |A|=0
AX=β无解或有无穷多解 无解或有无穷多解
设 ξ1 , ξ2 , … , ξ n-r是(2)的基础解系 η﹡是(1)的特解 的基础解系, 的特解, 的基础解系 ﹡ 的特解 通解可表示成 可表示成: 则AX=β的通解可表示成
的基础解系 和通解. x2 + x3 – 3 x4 = 0 和通解
-1 -2 2 -2 1 0
方法一: 方法一: -1 0, ξ = ξ1 = 2 1 0
为基础解系; 基础解系
2 -1 0 1
-1 2 0 -1 通解。 X= k1 + k2 为通解。 1 0 0 1 k1 , k2 为任意常数 为任意常数.
… … … … x r + br1 x r+1 + … + br,n-r x n = 0 ,
示例
x1 x2
…
= - b11 x r+1 - … - b1,n-r x n , = - b21 x r+1 -… - b2,n-r x n ,
… … … … x r = - br1 x r+1 - … - br,n-r x n ,
例2:求方程组 x1 + x2 + x3 – x4 = 0
x1 – x1 + 3 x2 + x3 + x4 = 0 解: 1 1 1 -1 r2 +(-1) r1 1 1 1 A = 1 -1 1 -3 r3 +(-1) r1 0 -2 0 0 2 0 1 3 1 1 r3+r2 1 1 1 -1 1 0 1 r1 +(-1) r2 (-1/2) r2 0 1 0 1 0 1 0 0 0 0 0 0 0 0 x = – x3 +2x4 R(A)=2,同解方程为: 1 ,同解方程为 x2 = –x4
第五节 线性方程组解的结构

定理 n元齐次线性方程组 Amn x 0的全体解所构成的 集合S是一个向量空间,当系数矩阵的秩为r时,解空
间S的维数为n-r.
当rank( A) n时,线性方程组只有零解,故没有基础
解系(此时解空间只含有零向量,称为0维向量空间)
当rank( A) n时,线性方程组必有含n-r个向量的基
础解系 1,2 ,L ,nr ,此时线性方程组的解可以表示为 k11 k22 L knr nr
L
a12 L a22 L L
am1
am 2
L
a1n a2n L
,x
x1 x2
amn
xn
则上述方程组(1)可写成向量方程 Ax 0.
二、基础解系及其求法
1、基础解系的定义
方程组 Ax 0 解空间V的一组基称为齐次线性方程组的 一组基础解系,即解空间的某一个部分组 1,2 ,L ,s满足:
a 2 1 1 a 2 1 1
:
a 4a
2 10
1 3
0 0
b c
1 4
:
a 2 a4
1 0
0 0
c
b 3b
1
1
当a 4 0 时,b可由 1,2 ,3 线性表示,且表达式唯一. 当a 4 0 且 c 3b 1 0 时,b可由 1,2 ,3 线性表示,
但表达式不唯一;
1
2 10
,
2
1 5
,
3
1 4
,
b c
,
试问,当a,b,c 满足什么条件时
(1)b可由 1,2 ,3 线性表示,且表达式唯一?
(2)b可由 1,2 ,3 线性表示,且表达式不唯一?
(3)b不能由1,2 ,3 线性表示?
齐次方程组的基础解系和通解

矩阵表示形式
Amn X 0
r(A) n r(A) n
齐次线性方程组有非零解 齐次线性方程组仅有零解
线性代数
齐次方程组的基础解系
齐次线性方程组
a11 x1 a12 x 2 L a1n xn 0 La21Lx1 a22 x2 L a2n xn 0 am1 x1 am2 x2 L amn xn 0
0
0 0
3
0
0 1 1 0
1 2 2 0
1 11Biblioteka 03 04
0
0 1 0 0
1 2 0 0
1
1
1
0
1
0
0
0
0 1 0 0
1 2 0 0
0
0
1
0
x1 x3 0
等价同解的线性方程组为:
x2 2x3 0 x4 0
0 0
1
1
取自由变元x3
1,
得
2 1
为方程组的基础解系. 通解为:X
x1 k1r1xr1 k1r2 xr2 L k1n xn
x2
k2 r 1 xr 1
k2r2 xr2
L
k2n xn
LLLLLL
xr kr r x 1 r1 kr r2 xr2 L krn xn
其中xr+1,xr+2,…,xn为自由未知量, 对nr个自由未知量分别取:
xr1 1 0
LLLLLLLLLLLL
dxrr kkrrrr11xdrr11kkr rrr2x2rdr22 L L krnkxrndn
k1r1dr1 k1r2dr2 L k1ndn
k2
r
1dr
1
k2
r
齐次线性方程组

2.齐次线性方程组解的性质
的解, (1)若 x = ξ1 , x = ξ 2 为 Ax = 0 的解,则 的解. 也是 Ax= 0 的解.
x = ξ1 + ξ 2
证明 ∵ Aξ1 = 0 , Aξ 2 = 0
∴ A(ξ1 + ξ 2 ) = Aξ1 + Aξ 2 = 0
故 x = ξ1 + ξ 2 也是 Ax = 0的解 .
一、齐次线性方程组解的性质
1.解向量的概念
设有齐次线性方程组
a11 x1 + a12 x2 + ⋯ + a1n xn = 0 a x + a x +⋯+ a x = 0 21 1 22 2 2n n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ am 1 x1 + am 2 x2 + ⋯ + amn xn = 0
2 7 3 7 5 7 , 4 7 , 即得基础解系 ξ 1 = ξ2 = 0 1 0 1
7 3 及 x1 2 7 3 7 x2 5 7 4 7 = c1 + c2 , (c1 , c 2 ∈ R ). x3 1 0 0 1 x4
S = {x = k 1ξ 1 + ⋯ + k n− r ξ n− r k 1 ,⋯, k n− r ∈ R}.
特别的,当R( A) = n时,方程组只有零解 因而没有基础解系 , 。此时 解空间只有一个零向量,为零维子空间 。 推论。齐次线性方程组有非零解的充分必要 1 条件是系数矩阵的秩小于未知量个数。 推论2,对于m = n, 齐次线 性方程组有非零解充分必要条件系数矩阵的行 列式为 。 0
线性代数齐次线性方程组

x11 x2 2 xn n 0 有非零解
, , 线性相关 矩阵 A ( , ,, )的秩 R( A) n
1 2 n
2 1 n
于是我们得到下面的一个非常重要的判定定理 定理1 齐次线性方程组 Amn x 0 有非零解的 充要条件是它的系数矩阵的秩小于未知量的个 数,即 R A n.
由于系数行列式为零,所以有非零解
方法二
对系数矩阵A作初等行变换
1 1 5 1 0 2 7 4 0 2 7 4 0 4 14 8
1 1 5 1 r2 r1 1 1 2 3 r 3r 3 1 A 3 1 8 1 r4 r1 1 3 9 7 1 1 5 1 r3 r2 0 2 7 4 r4 2r2 0 0 0 0 0 0 0 0
由于与都是方程Ax 0的解, 而Ax 0又等价于
x1 b11 x r 1 b1,n r x n x b x b r 1 r 1 r ,n r x n r
方程组
而方程组的前r个未知量的值由后面n-r个 未知量唯一确定
(1)
若记
a11 a12 a21 a22 A a m 1 am 2
a1n a2 n , amn
x1 x2 x x n
则上述方程组(1)可写成矩阵方程
Ax 0.
x 1 2
齐次线性方程 组的解对于加 法运算封闭
证明 A1 0 , A 2 0
A1 2 A1 A 2 0
故 x 1 2 也是Ax 0的解.
(2)若 x 为 Ax 0的解, k 为实数,则 x k 也是 Ax 0 的解. 齐次线性方程 证明
方程组解的结构

x5
0 0
1 0
0 1
所以原方程组的一个基础解系为
2
1
1
1
,
0
0
13
2
0
,
1
0
2
1
3
0
.
0 1
故原方程组的通解为 x k11 k22 k33 .
其中k1 ,k2 ,k3为任意常数.
定理1 n元齐次线性方程组Amn x 0的全体解所 构成的集合S是一个向量空间,当系数矩阵的秩 R( Amn) r时, 解空间S的维数为n r.
2x 73
5 7
x3
x 3
x4
3 7 4 7
x4 x4
2
7
5
7
1
0
x 3
3
7
4
7
0
1
x, 4
2 7
3 7
即得基础解系1
57 1
,
2
47 0
,
0 1
并由此得到通解
x1 2 7 3 7
x2
x x
3 4
c1
57 1 0
c2
47 0 1
A
2
1
1 1
3 3
5 2
5 1
3 1 5 6 7
1
~
0 0
0
1 1 2 2
1 1 2 2
4 3 6 6
3
1
2
2
~
1 0 0 0
0 1 0 0
2 1 0 0
1 3 0 0
2
1
0
0
RA r 2, n 5, n r 3,即方程组有无穷多解,
线性方程组解的结构

xr
1
br 1 1
0
xr
2
br 2 0
1
L
xn
br ,nr 0
0
(4)
M
xn
M
0
M
0
M
1
令(4)为 k11 k22 L knr nr
(5)
易知:1,2 ,L ,nr 为齐次线性方程组(1)的一个
基础解系,(5)为方程组 Ax 0的通解.
x1 6 x2 4 x3 x4 4 x5 0
- 1 2 3
- 7 2 1
1
4 1
,
2
4 0
;
0
2
基础解系:
0
1
二、非齐次线性方程组解的性质
非齐次线性方程组
Ax b. (1)
与非齐次方程组 Ax b 对应的齐次方程组 Ax 0 称为该非齐次方程组的导出组.
(2)当 1时,方程组的矩阵为
1 2 2 1 0 0
A
2 3
1 1
1 1
:
0 0
1 0
1 0
所以 R A 2
k1, k2 , , ks ,有k11 k22 kss 也是 Ax 的0解.
齐次线性方程组基础解系的求法
若A的秩为r,则(1)的全部解不妨写成:
x1 b11 xr1 b12 xr2 L b1,nr xn
x2
b21 xr1 b22 xr2 L
b2,nr xn
M
xr
br1 xr1 br 2 xr2 L
br ,nr xn
xr1 xr1
(3)
xr
2
xr2
M
xn
xn
其中 xr1, xr2 ,L , xn 是任意实数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)由 A2 还原出最简方程组 ,自由未知数个数为n r ,
构造基础解系 , , ,得到通解(生成 n r维解空间)
1ห้องสมุดไป่ตู้
2
nr
c c c X
11
22
nr nr
A 3、常用结论:若 m×n B = O
→
则矩阵B的每一列都是齐次线性方程组 Am×n X = 0 的解向量,
所以B的秩不超过方程组解空间的维数.
R( A)
=
R(1
2
) n
=r < n
R( A)
=
R(1
2
) n
=r=n
A 2、基本方法:线性方程组求解基本步骤 X m×n = 0
A (1)系数矩阵 A 行变换 行阶梯阵 从上向下 1
(2)判断解的状态:
A1的非零行数= r
r n r n
——唯一解(零解) ——无穷多解(零解及非零解)
A A (3)无穷多解时 1 行变换 从下向上行最简形 2
又如果 R( A) r n, 则 R(B) n r
因此 R(A) R(B) n .
第二节 齐次线性方程组的解空间与基础解系
一、 齐次线性方程组(Ⅰ)的解空间
二、齐次线性方程组(Ⅰ)的基础解系
总结: 1、基本关系
齐次线性方程组
A X 0 mn
→
x11 + x2 2 + + xn n = 0
无穷多解(非零解)
唯一解(零解)
1,2, ,n 线性相关
1,2, ,n 线性无关