马尔科夫链预测方法共29页文档
第7章+马尔可夫预测方法

P{ X n +1 = j | X n = i}
ij
称为在时刻n的一步转移概率, 记作 p
(n)
首页
注:
由于概率是非负的,且过程从一状态出发,经过一步 转移后,必到达状态空间中的某个状态 一步转移概率满足
(1) pij (n) ≥ 0 , i, j ∈ I
2) (
一步转移矩阵
∑ p (n) =1,
简记为{ X n , n ≥ 0 }
首页
注:
表明 X (t ) 在时刻 n +1 的状态 X ( n + 1) = j 的概率分布 只与时刻 n 的状态 X ( n) = i 有关, 而与以前的状态
X ( n − 1) = i n −1 , … , X ( 0 ) = i 0 无 关 。
二、一步转移概率 即 马氏链在时刻n处于状态 i 的条件下, 到时刻n+1转移到状态 j 的条件概率,
则此马氏链是遍历的, 是方程组 的满足条件
s
且
( lim pijn ) = π ( j ) 中的 π ( j ) n →∞
π ( j ) = ∑ π (i ) pij
i=0
j =0,1,2,…,s 的唯一解
π ( j) > 0
∑
s
π ( j) = 1
j=0
注1 定理表明不论从链中哪一状态i出发,都能以正概率经 有限次转移到达链中预先指定的其它任一状态。 注2 定理给出了求平稳分布 π ( j )的方法。
第七章 马尔可夫预测方法
第一节 马尔可夫链的基本概念 第二节 马尔可夫预测的基本原理 第三节 马尔可夫预测应用
第一节 马尔可夫链的基本概念
一、马尔可夫链
设随机过程{ X (t ) , t ∈ T },
第十一章马尔科夫预测法

12月份三个企业市场用户拥有量分别为:
甲:1000×0.306 = 306 户
乙:1000×0.246 = 246 户
丙:1000×0.448 = 448 户
17
稳定状态概率为:
Sn SS12nnP1P1121
P21 P221
P3110 P32 0
S3n 1
1 1 1
0.3 0.1 0.3
300 300 300
20
本月的状态:
S 1 S 1 1 S 2 1 S 3 1 S 0 P
0.4 0.3 0.3
0.4 0.3 0.30.6 0.3 0.1
0.6 0.1 0.3
0 .52 0 .24 0 .24
即本月A牌号味精的市场占有率为0.52,B牌号味精 的市场占有率为0.24,C牌号味精的市场占有率为0.24 。
根据市场调查情况,确定一次转移概率矩阵为:
230 10 10
P22500 300 30
250 250
300 10
34230150000 000..00.966277
0.04 0.833 0.022
0.04
0.1
0.911
450 450 450
14
步骤
利用马尔柯夫预测模型进行预测,11月份三个企业市 场占有率为:
R
5 1
1 1
试求下一个季度的即时期望利润和三个季度后的期望 利润。
30
步骤:
根据调查资料估计状态转移概率并确定状态转移概率 矩阵
PP1 177400.7.58 127400.2.52
9
9
31
P2P1P 0 0 .7 .580 0 .2 .5 2 2 0 0..5 66 40 0..4 3 4 6
《马尔可夫链分析法》课件

马尔可夫链分析法具有无后效性 、离散性和随机性,适用于描述 大量随机现象,如股票价格、人 口迁移等。
马尔可夫链分析法的应用领域
金融领域
马尔可夫链分析法用于描述股票价格、汇率等金融市场的随机波 动,以及风险评估和投资组合优化。
自然领域
在生态学、气象学、地质学等领域,马尔可夫链分析法用于描述物 种分布、气候变化、地震等自然现象。
ABCD
云计算应用
利用云计算资源,实现大规模数据的快速处理和 分析。
跨学科合作
加强与其他学科领域的合作,共同推动马尔可夫 链分析法的技术创新和应用拓展。
THANKS FOR WATCHING
感谢您的观看
CHAPTER 03
马尔可夫链分析法的基本步 骤
建立状态转移矩阵
确定系统的状态空间
首先需要确定系统可能的状态,并为其编号。
计算状态转移概率
根据历史数据或实验结果,计算从一个状态转移到另一个状态的 概率。
构建状态转移矩阵
将状态转移概率按照矩阵的形式排列,形成状态转移矩阵。
计算稳态概率
初始化概率向量
系统的长期行为
02
通过分析稳态概率,可以了解系统的长期行为和趋势,例如系
统的最终状态分布、系统的平衡点等。
预测未来状态
03
基于稳态概率,可以对系统未来的状态进行预测,从而为决策
提供依据。
CHAPTER 04
马尔可夫链分析法的应用实 例
人口迁移模型
描述人口迁移的动态过程
马尔可夫链分析法用于描述人口迁移的动态过程,通过分析人口在各个地区之间 的转移概率,预测未来人口分布情况。这种方法可以帮助政府和企业了解人口流 动趋势,制定相应的政策和计划。
(优选)马尔科夫预测法完整版.

第五页,共50页。
二.状态转移、转移概率及状态转移矩阵
• 2.状态转移概率矩阵
一次转移概率矩阵P
p11 p12 p1n
P
p21
p22
p2
n
pn1
pn2
pnn
0 pij 1
n
pij 1
j 1
第六页,共50页。
• k次转移概率矩阵
p11(k)
P(k
)
p21 (k
A 转移购买比例
B
C
A
0.4 0.3 0.3
B
0.6 0.3 0.1
C
0.6 0.1 0.3
试预测6月与7月三个厂味精的市场占有率,如果 顾客流动情况稳定,那么,市场稳定后三个厂的 市场占有率情况如何?
第十四页,共50页。
第十五页,共50页。
解答:上述味精在市场上占有率的变化过程为一个马尔
可夫过程,初始状态为
0.2
0.1
0.8
0.1
0.05 0.05 0.9
0.39,0.3,0.31
第四十三页,共50页。
未来各期的市场占有率:
1 0 P
0.7 0.1 0.2
0.5,
0.3,
0.2
0.1
0.8
0.1
0.05 0.05 0.9
0.39,0.3,0.31
(2) (1)P (0.319, 0.294, 0.387)
2、试求当市场处于均衡状态时,各厂商的市 场占有率是多少。
第二十五页,共50页。
1、先求出12月份,厂商1、2、3的市场占 有率情况,得到初始分布为
2、通过转移频数矩阵计算转移概率矩阵
第二十六页,共50页。
利用马尔可夫链预测用户行为

利用马尔可夫链预测用户行为马尔可夫链是一种随机过程,被广泛应用于许多领域,包括自然语言处理、金融市场分析和预测等。
在个性化推荐系统中,利用马尔可夫链可以预测用户行为,提高推荐算法的准确性和效果。
本文将介绍利用马尔可夫链预测用户行为的原理和应用。
一、马尔可夫链基础概念及原理解释马尔可夫链是一种随机过程,具备"马尔可夫性"。
所谓"马尔可夫性"指的是,某一时刻状态的转移只依赖于前一时刻的状态,而与过去的状态序列无关。
如下所示:P(Xn+1 = x | X0, X1, ..., Xn) = P(Xn+1 = x | Xn)其中,Xn表示第n个时刻的状态,P(Xn+1 = x | X0, X1, ..., Xn)表示在X0, X1, ..., Xn的条件下,第n+1个时刻的状态为x的概率。
利用马尔可夫链预测用户行为的基本假设是用户的行为具备马尔可夫性,即用户在当前时刻的行为只依赖于前一时刻的行为。
例如,用户在某个电商平台上的购买行为可能与其之前的点击、加购物车等行为有关,而与更久远的历史行为无关。
二、基于马尔可夫链的用户行为预测方法1. 数据预处理在利用马尔可夫链预测用户行为之前,需要对原始数据进行预处理。
预处理包括数据清洗、特征提取等步骤。
具体来说,可以根据用户行为数据构建状态空间和状态转移矩阵。
2. 构建状态空间状态空间是指用户行为的所有可能状态的集合。
例如,在一个电商平台上,用户的行为可以包括浏览商品、加购物车、下订单、支付等。
因此,状态空间可以包括"浏览商品"、"加购物车"、"下订单"、"支付"等状态。
3. 构建状态转移矩阵状态转移矩阵描述了用户行为在不同状态之间的转移概率。
具体来说,对于状态空间中的每一个状态,计算用户从该状态转移到其他状态的概率。
例如,对于状态"浏览商品",可以统计用户在浏览商品后转移到"加购物车"、"下订单"或其他状态的概率。
第2章-马尔可夫链

0.4834
0.5009
例
甲、乙两人进行比赛,设每局比赛中甲胜的概率是p,
乙胜的概率是q,和局的概率是r ,(p q r 1)。
设每局比赛后,胜者记“+1”分,负者记“-1”分,
和局不记分。当两人中有一人获得2分结束比赛。X以n
表示比赛至第n局时甲获得的分数。
(1)写出状态空间;(2)求P(2);
pij a0j,i ,
ji ji
显然{Yn,n≥1}也是一马尔可夫链。
例2 M/G/1排队系统
若以X(t)记在t时刻系统中的顾客数,{X(t),t≥0}则不具马 尔可夫性。
Xn-----第n个顾客走后剩下的顾客数, Yn -----第n+1个顾客接受服务期间来到的顾客数,则
X
n1
Xn 1 Yn ,
CHAPTER 2 马尔可夫链
第一节 基本概念
一、马尔可夫链的定义及例子
1、定义
随机过程Xn, n 0,1, 2, 称为马尔可夫链,若它只
取有限或可列个值(称为过程的状态,记为0,1,2,…),
并且,对任意
及状态
,有
n0
i, j, i0 , i1, , in1
P( X n1 j X 0 i0 , X1 i1, , X n1 in1, X n i)
(3)问在甲获得1分的情况下,再赛二局可以结束比 赛的概率是多少?
解
(1)
记甲获得“负2分”为状态1,获得 “负1分”为状态2,获得“0分”为状态3, 获得“正1分”为状态4,获得“正2分”为 状态5,则状态空间为
I {1,2,3,4,5}
一步转移概率矩阵
1 0 0 0 0
q
r
p
马尔可夫链的基本原理和使用方法

马尔可夫链是一个非常有趣的数学概念,它在许多领域都有着重要的应用,包括自然语言处理、金融建模、生物信息学等。
本文将介绍马尔可夫链的基本原理和使用方法,希望能够帮助读者更好地理解和应用这一概念。
马尔可夫链最早由俄罗斯数学家安德烈·马尔可夫在20世纪初提出,它是一种描述离散时间随机过程的数学工具。
在马尔可夫链中,当前状态的未来发展只依赖于当前状态,而不依赖过去的状态。
换句话说,马尔可夫链具有“无记忆”的性质,每一步的转移只与当前状态有关。
马尔可夫链由状态空间、初始概率分布和状态转移概率矩阵组成。
状态空间指的是系统可能处于的所有状态的集合,初始概率分布指的是系统在初始时刻各个状态的概率分布,状态转移概率矩阵则描述了系统从一个状态转移到另一个状态的概率。
通过这些元素,我们就可以描述一个离散时间的随机过程,并进行相应的分析和计算。
在实际应用中,马尔可夫链经常用来建模一些具有随机性的现象。
举一个简单的例子,假设我们想要模拟一个赌博游戏,玩家可以选择抛硬币正面朝上或者反面朝上。
我们可以用一个2个状态的马尔可夫链来描述这个游戏,其中状态1表示硬币正面朝上,状态2表示硬币反面朝上。
我们可以通过状态转移概率矩阵来描述硬币抛掷的规律,然后利用马尔可夫链的性质来计算玩家在游戏中的各种概率。
除了简单的模拟之外,马尔可夫链还可以用来解决一些实际问题。
例如,我们可以利用马尔可夫链来建立语言模型,从而实现自然语言处理中的词语预测和生成。
在这种应用中,状态空间对应于词语的集合,状态转移概率矩阵则描述了词语之间的转移规律。
通过对大量文本数据的训练和学习,我们可以得到一个基于马尔可夫链的语言模型,从而实现对文本的自动处理和生成。
另外,马尔可夫链还可以用来进行金融建模。
在金融市场中,许多价格的变化具有随机性,这就为马尔可夫链的应用提供了机会。
我们可以利用马尔可夫链来建立股票价格的模型,从而进行风险管理、投资决策等方面的分析。
《马尔可夫链讲》课件

在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。