不等式证明的常用基本方法(自己整理)
不等式证明的基本方法

4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
不等式证明的基本方法

不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
基本不等式题型及常用方法总结

基本不等式题型及常用方法总结1. 引言不等式是数学中重要的概念之一,它在数学建模、优化理论、概率论等领域中有着广泛的应用。
基本不等式是解决不等式问题的基础,掌握常用的解题方法对于学习和应用不等式理论至关重要。
本文将系统总结基本不等式题型及常用方法,以帮助读者更好地理解和应用这一领域的知识。
2. 一元一次不等式2.1 一元一次线性不等式2.1.1 基本性质:线性函数图像特点、函数值与符号关系在解决一元一次线性函数时,我们首先需要了解线性函数图像的特点。
对于形如ax+b>0或ax+b<0的线性函数,我们可以通过求解对应方程ax+b=0得到临界点x=-b/a,并以此为界将数轴分为两个区间。
在每个区间内,我们可以通过选取任意一个测试点来判断该区间内函数值与符号之间的关系。
2.1.2 解法:图像法、代数法对于一元一次线性不等式,我们可以通过图像法和代数法来解决问题。
图像法是通过绘制线性函数的图像,通过观察函数在不同区间的变化来确定不等式的解集。
代数法则是通过代数运算,将不等式转化为等价的形式,从而得到解集。
例如,对于ax+b>0形式的线性不等式,我们可以将其转化为ax>-b,并根据a的正负性讨论出解集。
2.2 一元一次绝对值不等式绝对值函数是一个常见的非线性函数,在解决绝对值不等式时我们需要特别注意其特点和解题方法。
对于形如|ax+b|>c或|ax+b|<c的绝对值不等式,我们可以将其转化为一个或多个线性不等式,并根据这些线性不等式得到最终的解集。
2.3 一元二次根号型不等式二次根号型函数在数学中也有着重要地位,在解决二次根号型函数时我们需要掌握特定方法。
例如,在求解形如√(ax^2+bx+c)>0或√(ax^2+bx+c)<0 的二次根号型函数时,可以通过求出二次方程ax^2+bx+c=0 的两个实数根,并根据根的位置和函数的凹凸性来确定函数值与符号之间的关系。
高考数学证明不等式的基本方法

知识网络
要点归纳
题型研修
知识网络
要点归纳
题型研修
1.比较法证明不等式 作差比较法是证明不等式的基本方法,其依据 是:不等式的意义及实数大小比较的充要条件. 证明的步骤大致是:作差——恒等变形——判 断结果的符号.
知识网络
要点归纳
题型研修
2.综合法证明不等式 综合法证明不等式的依据是:已知的不等式以及逻辑推理 的基本理论.证明时要注意的是:作为依据和出发点的几个 重要不等式(已知或已证)成立的条件往往不同,应用时要先 考虑是否具备应有的条件,避免错误,如一些带等号的不 等式,应用时要清楚取等号的条件,即对重要不等式中 “当且仅当……时,取等号”的题型研修
例 1 若 x,y,z∈R,a>0,b>0,c>0.求证:b+a cx2+c+b a
y2+a+c bz2≥2(xy+yz+zx).
证明 ∵b+a cx2+c+b ay2+a+c bz2-2(xy+yz+zx)
=bax2+aby2-2xy+bcy2+bcz2-2yz+acz2+acx2-2zx=
∴0< (n+1)n22+ +11+ +( n n+1)<1,即CCn+n1<1,
从而有 Cn+1<Cn.
知识网络
要点归纳
题型研修
跟踪演练 2 若 a,b,m,n 都为正实数,且 m+n=1, 试证: ma+nb≥m a+n b. 证明 ∵a,b,m,n 均为正数,且 m+n=1, ∴( ma+nb)2-(m a+n b)2 =ma+nb-m2a-n2b-2mn ab =m(1-m)a+n(1-n)b-2mn ab =mn( a- b)2≥0,又 ma+nb>0,m a+n b>0, ∴ ma+nb≥m a+n b.
知识网络
数学论文【不等式的证明方法】(汉)

黔南民族师范学院(贵定分院)毕业论文题目:不等式的证明姓名:丁成义班级:12级数学(2)班学号:2012052206专业:数学教育指导教师:张大书日期:2015年2月26日2不等式的证明方法不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。
其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。
1.证明不等式的基本方法1.1比较法比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下:比差法。
主要依据是实数的运算性质与大小顺序关系。
即 ,0,0,0a b a b a b a b a b a b ->⇔>-<⇔<-=⇔=基本解题步骤是:作差——变形——判断符号。
(1)作商比较法。
当欲证的不等式两端是乘积形式幂指数式可采用作商比较法。
当0b > 欲证a b >只需证1ab > 欲证a b <只需证1ab< 基本解题步骤是:作商——变形——判断。
(与1的大小)例1.求证: 222(2)5a b a b +≥--322224254250a b a b a b a b +≥--=>+-++≥22(44)(21)0a a b b -++++≥ 2,1a b ==-时等号成立。
所以222(2)5a b a b +≥--成立。
例2.已知,a b R +∈求证a b b a a b a b ≥证: ,a b R +∈又()a b a b b a a b aa b b -=∴()1a b b a a b a a b a b b-≥⇔≥ (1)当a b >时,1a b >,0a b ->所以()1a b ab -> (2)当a b <时01,a a b o b <<-<所以()1a b ab-> (3)当a b =时不等式取等号。
利用数学归纳法证明不等式的基本技巧

利用数学归纳法证明不等式的基本技巧利用数学归纳法证明不等式的基本技巧:1、比较法:比较法证明不等式的一般步骤:作差(作商)—变形—判断—结论.作差法:差与“0”比较。
为了判断作差后的符号,经常需要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,判断其正负.作商法:商与“1”相比较。
作商时,需要满足两者均为正数。
2、综合法(顺推):综合法是指从已知条件出发,经过逐步的逻辑推理,最后得到结论,其特点是“执因索果”,即由“已知”,利用已经证明过的不等式或不等式的性质逐步推向“未知”。
综合法证明不等式的逻辑关系是:A B1B2…Bn B,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论 B.3、分析法(逆推):从求证的结论出发,分析使这个结论成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”.即从“未知”看“需知”,逐步靠拢“已知”。
4、放缩法:要证明不等式A<B 成立,借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法.放缩法证明不等式的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.常用的放缩技巧有:①应用均值不等式进行放缩;②舍掉(或加进)一些项;③在分式中放大或缩小分子或分母。
5、反证法:即从正难则反的角度去思考,要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B. 凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不可能”、“不存在”等词语时,可以考虑用反证法.6、常数代换法常数代换是指利用某些带有常数项的恒等式,把常量化为变量代入到所求证的式子中,以到达化繁为简的目的。
常用的带有常数项的恒等式,可由题目中的条件变形得到,也可用常用的公式或公式变形。
7、几何法通过构造几何图形,利用几何图形的性质来证明不等式的方法称为几何法。
高中数学知识点总结(不等式选讲 第二节 不等式的证明)

第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3a +b 24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立.2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞). t 2+1-3t -3t =t 3-3t 2+t -3t=t -3t 2+1t,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴t -3t 2+1t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。
不等式证明方法大全

不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。
常用的推导法有数学归纳法、递推法、代入法等。
其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。
(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。
(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。
通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。
2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。
常用的数学运算包括加法、减法、乘法、除法等。
在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。
3.几何法:几何法是指通过将不等式转化为几何问题进行证明。
几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。
通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。
4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。
这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。
5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。
通过逐个讨论每种情况,可以得出要证明的不等式的证明。
6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。
反证法常用于证明不等式的唯一性和存在性。
7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。
通过不断进行递推,可以逐步证明不等式的成立。
以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。
在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明不等式的基本方法导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式.[自主梳理]1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立.2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n≥na 1·a 2·…·a n ,当且仅当__________________时等号成立.3.证明不等式的常用五种方法(1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小.(2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法.(3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法①反证法的定义先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.②思路:分析观察证明式的特点,适当放大或缩小是证题关键.题型一 用比差法与比商法证明不等式1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) A.s≥t B.s>t C.s≤t D.s<t【解析】∵s -t =b 2-2b +1=(b -1)2≥0,∴s≥t.【答案】A2.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( D ) A .a >b B .a <b C .a ≤b D .a ≥b解析:∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n)2≥0,∴a ≥b.答案:D 3.设a,b ∈R,给出下列不等式:①lg(1+a 2)>0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所有恒成立的不等式序号是 ② .②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.题型二 用综合法与分析法证明不等式 4.(1)已知x ,y 均为正数,且x>y ,求证:2x +1x 2-2xy +y2≥2y+3;(2)设a ,b ,c>0且ab +bc +ca =1,求证:a +b +c≥ 3. 证明 (1)因为x>0,y>0,x -y>0,2x +1x 2-2xy +y 2-2y =2(x -y)+1 x-y 2=(x -y)+(x -y)+1x-y2≥33 x-y21 x-y 2=3,所以2x +1x 2-2xy +y2≥2y+3.(2)因为a ,b ,c>0,所以要证a +b +c≥3,只需证明(a +b +c)2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca)≥3,而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca)≥3(ab+bc +ca).即证:a 2+b 2+c 2≥ab+bc +ca.而ab +bc +ca≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)成立.所以原不等式成立.5.已知a 、b 都是正实数,且ab =2.求证:(1+2a)(1+b)≥9.证明:法一 因为a 、b 都是正实数,且ab =2,所以2a +b≥22ab =4. 所以(1+2a)(1+b)=1+2a +b +2ab≥9.法二 因为ab =2,所以(1+2a)(1+b)=(1+2a)⎝ ⎛⎭⎪⎫1+2a =5+2⎝ ⎛⎭⎪⎫a +1a . 因为a 为正实数,所以a +1a≥2a·1a=2.所以(1+2a)(1+b)≥9. 法三 因为a 、b 都是正实数,所以(1+2a)(1+b)=(1+a +a)·⎝ ⎛⎭⎪⎫1+b 2+b 2≥3·3a 2·3·3b 24=9·3a 2b 24.又ab =2,所以(1+2a)(1+b)≥9.思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野. 题型三 放缩法证明不等式6.已知0<a<1b ,且M =11+a +11+b ,N =a 1+a +b1+b,则M 、N 的大小关系是( A )A. M>NB. M<NC. M =ND.不能确定解析:∵0<a<1b,∴1+a>0,1+b>0,1-ab>0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.答案:A7.若a ,b∈R,求证:|a +b|1+|a +b|≤|a|1+|a|+|b|1+|b|.证明 当|a +b|=0时,不等式显然成立.当|a +b|≠0时,由0<|a +b|≤|a|+|b|⇒1|a +b|≥1|a|+|b|,所以|a +b|1+|a +b|=11|a +b|+1≤11+1|a|+|b|=|a|+|b|1+|a|+|b|=|a|1+|a|+|b|+|b|1+|a|+|b|≤|a|1+|a|+|b|1+|b|. 思维升华 (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有:①变换分式的分子和分母,如1k 2<1k k-1 ,1k 2>1k k+1 ,1k <2k +k -1,1k >2k +k +1.上面不等式中k∈N *,k>1; ②利用函数的单调性;③真分数性质“若0<a<b ,m>0,则a b <a +mb +m”.(2)在用放缩法证明不等式时,“放”和“缩”均需把握一个度.8.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明 由2n≥n+k>n(k =1,2,…,n),得 12n ≤1n +k <1n. 当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…,当k =n 时,12n ≤1n +n <1n,∴12=n 2n ≤1n +1+1n +2+…+12n <n n =1.∴原不等式成立. 题型四 用反证法证明不等式 9.设a>0,b>0,且a+b=.证明:(1)a+b≥2; (2)a 2+a<2与b 2+b<2不可能同时成立. 【解析】由a+b=,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2=2,即a+b≥2.(2)假设a 2+a<2与b 2+b<2同时成立,则由a 2+a<2及a>0得0<a<1;同理得0<b<1,从而ab<1, 这与ab=1矛盾.故a 2+a<2与b 2+b<2不可能同时成立.10.若a>0,b>0,且1a +1b=ab.(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.【解】(1)由ab =1a +1b ≥2ab,得ab≥2.当且仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.1.证明不等式的常用方法有五种,即比较法、分析法、综合法、反证法、放缩法.2.应用反证法证明数学命题,一般有下面几个步骤:(1)分清命题的条件和结论;(2)作出与命题结论相矛盾的假设;(3)由条件和假设出发,应用正确的推理方法,推出矛盾结果;(4)断定产生矛盾结果的原因在于开始所作的假设不真,于是原结论成立,从而间接地证明了命题为真.3.放缩法证明不等式时,常见的放缩法依据或技巧主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(母)异分母(子)的两个分式大小的比较.缩小分母、扩大分子,分式值增大;缩小分子、扩大分母,分式值减小;全量不少于部分;每一次缩小其和变小,但需大于所求;每一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩有时需便于求和.4.放缩法的常用措施:(1)舍去或加上一些项,如⎝⎛⎭⎫a+122+34>⎝⎛⎭⎫a+122;(2)将分子或分母放大(缩小),如1k2<1k(k-1),1k2>1k(k+1),1k<2k+k-1,1k>2k+k+1(k∈N*且k>1)等.1.设a、b是正实数,给出以下不等式:①ab>2aba+b;②a>|a-b|-b;③a2+b2>4ab-3b2;④ab+2ab>2,其中恒成立的序号为( D )A.①③B.①④C.②③D.②④[答案]D[解析]∵a、b∈R+时,a+b≥2ab,∴2aba+b≤1,∴2aba+b≤ab,∴①不恒成立,排除A、B;∵ab+2ab≥22>2恒成立,故选D.2.设M=1210+1210+1+1210+2+…+1211-1,则( B )A.M=1 B.M<1 C.M>1 D.M与1大小关系不定【解析】∵210+1>210,210+2>210,…,211-1>210,∴M=1210+1210+1+1210+2+…+1211-1<1210+1210+…+1210210个=1.【答案】B3.若不等式tt2+9≤a≤t+2t2在t∈(0,2]上恒成立,则a的取值范围是( B )A.⎣⎢⎡⎦⎥⎤16,1 B.⎣⎢⎡⎦⎥⎤213,1 C.⎣⎢⎡⎦⎥⎤16,413D.⎣⎢⎡⎦⎥⎤16,22【解析】由已知⎩⎪⎨⎪⎧a≥1t+9t,a≤1t+2⎝⎛⎭⎪⎫1t2,对任意t∈(0,2]恒成立,于是只要当t∈(0,2]时,⎩⎨⎧a≥⎝⎛⎭⎪⎪⎫1t+9tmax,a≤⎣⎢⎡⎦⎥⎤1t+2⎝⎛⎭⎪⎫1t2min,记f(t)=t+9t,g(t)=1t+2⎝⎛⎭⎪⎫1t2,可知两者都在(0,2]上单调递减,f(t)min=f(2)=132,g(t)min=g(2)=1,所以a∈⎣⎢⎡⎦⎥⎤213,1. 【答案】B4.已知a,b为实数,且a>0,b>0.则⎝⎛⎭⎪⎫a+b+1a⎝⎛⎭⎪⎫a2+1b+1a2的最小值为( C )A.7 B.8 C.9 D.10【解析】因为a>0,b>0,所以a+b+1a≥33a×b×1a=33b>0,①同理可证:a 2+1b +1a ≥33a 2×1b ×1a 2=331b>0.②由①②及不等式的性质得⎝ ⎛⎭⎪⎫a +b +1a ⎝ ⎛⎭⎪⎫a 2+1b +1a 2≥33b ×331b =9.【答案】C5.下列结论正确的是( B )A .当x >0且x≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x≥2时,x +1x 的最小值为2D .当0<x≤2时,x -1x无最大值解析:当0<x <1时,lg x +1lg x <0,∴A 错误;当x >0时,x +1x≥2x ·1x=2,∴B 正确; 当x≥2时,x +1x 的最小值为52,∴C 错误.当0<x≤2时,x -1x是增函数,最大值在x =2时取得,∴D 错误.答案:B6.若P =x 1+x +y 1+y +z1+z(x>0,y>0,z>0),则P 与3的大小关系为____ P<3____.【解析】∵1+x>0,1+y>0,1+z>0,∴x 1+x +y 1+y +z 1+z <1+x 1+x +1+y 1+y +1+z1+z=3.即P<3.【答案】P<37.某品牌彩电厂家为了打开市场,促进销售,准备对其生产的某种型号的彩电降价销售,现有四种降价方案:(1)先降价a%,再降价b%;(2)先降价b%,再降价a%;(3)先降价a +b 2%,再降价a +b2%;(4)一次性降价(a +b)%.其中a>0,b>0,a≠b,上述四个方案中,降价幅度最小的是__ x 3>x 1=x 2>x 4___.解析:设降价前彩电的价格为1,降价后彩电价格依次为x 1、x 2、x 3、x 4. 则x 1=(1-a%)(1-b%)=1-(a +b)%+a%·b% x 2=(1-b%)(1-a%)=x 1,x 3=⎝ ⎛⎭⎪⎫1-a +b 2%⎝ ⎛⎭⎪⎫1-a +b 2%=1-(a +b)%+14[(a +b)%]2, x 4=1-(a +b)%<1-(a +b)%+a%·b%=x 1=x 2,x 3-x 1=⎝ ⎛⎭⎪⎫a%+b%22-a%·b%>0,∴x 3>x 1=x 2>x 4.8.已知两正数x ,y 满足x +y =1,则z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y 的最小值为____254____. 【解析】z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y =xy +1xy +y x +x y =xy +1xy +(x +y )2-2xy xy =2xy +xy -2,令t =xy ,则0<t =xy≤⎝ ⎛⎭⎪⎫x +y 22=14. 由f(t)=t +2t 在⎝ ⎛⎦⎥⎤0,14上单调递减,故当t =14时f(t)=t +2t 有最小值334,所以当x =y =12时,z 有最小值254.【答案】2549.求证:112+122+…+1n 2<2(n∈R *).证明 ∵1k 2<1k (k -1)=1k -1-1k ,∴112+122+…+1 n 2<1+(1-12)+(12-13)+…+(1n -1-1n )=1+(1-1n )=2-1n<2. 10.设a 、b 、c 均为正实数,求证:1a +1b +1c ≥1ab +1bc +1ac ≥2b +c +2c +a +2a +b .【证明】 ∵a ,b ,c 均为正实数,∴1a +1b ≥2ab ≥4a +b 当a =b 时等号成立 1b +1c ≥2bc ≥4b +c 当b =c 时等号成立 1a +1c ≥2ac ≥4a +c当a =c 时等号成立 三个不等式相加即得 2a +2b +2c ≥2ab +2bc +2ac ≥4a +b +4b +c +4a +c 当且仅当a =b =c 时等号成立 即1a +1b +1c ≥1ab +1bc +1ac ≥2a +b +2b +c +2a +c . 11.已知函数f(x)=m -|x -2|,m ∈R ,且f(x +2)≥0的解集为[-1,1].(1)求m 的值;(2)若a ,b ,c 大于0,且1a +12b +13c=m ,求证:a +2b +3c≥9.【解】(1)∵f(x +2)=m -|x|,∴f(x +2)≥0等价于|x|≤m. 由|x|≤m 有解,得m≥0且其解集为{x|-m≤x≤m}. 又f(x +2)≥0的解集为[-1,1],故m =1.(2)证明:由(1)知1a +12b +13c=1,且a ,b ,c 大于0,a +2b +3c =(a +2b +3c)⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥3+22b a ·a2b+23c a ·a 3c+23c 2b ·2b3c=9. 当且仅当a =2b =3c =13时,等号成立.因此a +2b +3c≥9.12.设a ,b ,c ∈R +且a +b +c =1,试求:12a +1+12b +1+12c +1的最小值.解:∵a +b +c =1,a ,b ,c 为正数,∴⎝ ⎛⎭⎪⎫12a +1+12b +1+12c +1(2a +1+2b +1+2c +1)≥(1+1+1)2,∴12a +1+12b +1+12c +1≥95.当且仅当2a +1=2b +1=2c +1,即a =b =c 时等号成立,∴当a =b =c =13时,12a +1+12b +1+12c +1取最小值95.答案:方案(3)13.设a >0,b >0,a +b =1,(1)求证:ab +1ab ≥414 ;(2)探索猜想,并将结果填在以下括号内:a 2b 2+1a 2b 2 ≥( );a 3b 3+1a 3b3 ≥( );(3)由(1)(2)归纳出更一般的结论,并加以证明.解析:(1)证法一:ab +1ab ≥414⇔4a 2b 2-17ab +4≥0⇔(4ab -1)(ab -4)≥0.∵ab =(ab)2≤⎝⎛⎭⎫a +b 2 2=14,∴4ab ≤1,而又知ab ≤14<4,因此(4ab -1)(ab -4)≥0成立,故ab +1ab ≥414.证法二:ab +1ab =ab +142·ab +1542·ab ,∵ab ≤⎝⎛⎭⎫a +b 22=14,∴1ab ≥4,∴1542·ab ≥154 .当且仅当a =b =12时取等号.又ab +142·ab ≥2 ab·142·ab =12,当且仅当ab =142·ab ,即1ab =4,a =b =12 时取等号.故ab +1ab ≥24 +154=414 (当且仅当a =b =12时,等号成立).证法三:∵a>0,b>0, ∴1=a +b ≥2ab ,∴ab ≤14,令ab =t ⎝⎛⎭⎫t ≤14. 令y =ab +1ab =t +1t ⎝⎛⎭⎫0<t ≤14, y ′=1-1t 2,t ≤14,1t2≥16.∴y ′<0,∴y =t +1t 在(0,14]单调减.∴y ≥14+4=414,即ab +1ab ≥414.(2)猜想:当a =b =12 时,不等式a 2b 2+1a 2b 2 ≥( )与a 3b 3+1a 3b 3 ≥( )取等号,故在括号内分别填16116与64164.(3)由此得到更一般性的结论:a nb n +1a n b n ≥4n +14n .∵ab ≤⎝⎛⎭⎫a +b 2 2=14,∴1ab ≥4.证法一:∴a n b n +1a n b n =a n b n +142n ·a n b n +42n -142n ·a n b n ≥2 a n b n·142n ·a n b n +42n -142n ×4n=24n +42n-14n =4n +14n ,当且仅当ab =14 ,即a =b =12时取等号. 证法二:令ab =t ,由(1)知0<t ≤14,令y =1a n b n +a n b n =t n +1t n ,y ′=nt n -1-n tn +1=n ⎝⎛⎭⎫t n -1-1t n +1∵0<t ≤14,∴t n -1≤14n -1,1tn +1≥4n +1.∴y ′<0,∴y=t n+1t n在(0,14]单调减,∴y≥4n+14n,即an b n+1a nb n≥4n+14n.。