王镜岩生物化学下册复习总结
生物化学知识点汇总(王镜岩版)

生物化学知识点汇总(王镜岩版)————————————————————————————————作者:————————————————————————————————日期:生物化学讲义(2003)孟祥红绪论(preface)一、生物化学(biochemistry)的含义:生物化学可以认为是生命的化学(chemistryoflife)。
生物化学是用化学的理论和方法来研究生命现象。
1、生物体是有哪些物质组成的?它们的结构和性质如何?容易回答。
2、这些物质在生物体内发生什么变化?是怎样变化的?变化过程中能量是怎样转换的?(即这些物质在生物体内怎样进行物质代谢和能量代谢?)大部分已解决。
3、这些物质结构、代谢和生物功能及复杂的生命现象(如生长、生殖、遗传、运动等)之间有什么关系?最复杂。
二、生物化学的分类根据不同的研究对象:植物生化;动物生化;人体生化;微生物生化从不同的研究目的上分:临床生物化学;工业生物化学;病理生物化学;农业生物化学;生物物理化学等。
糖的生物化学、蛋白质化学、核酸化学、酶学、代谢调控等。
三、生物化学的发展史1、历史背景:从十八世下半叶开始,物理学、化学、生物学取得了一系列的重要的成果(1)化学方面法国化学家拉瓦锡推翻“燃素说”并认为动物呼吸是像蜡烛一样的燃烧,只是动物体内燃烧是缓慢不发光的燃烧——生物有氧化理论的雏形瑞典化学家舍勒——发现了柠檬酸、苹果酸是生物氧化的中间代谢产物,为三羧酸循环的发现提供了线索。
(2)物理学方面:原子论、x-射线的发现。
(3)生物学方面:《物种起源——进化论》发现。
2、生物化学的诞生:在19世纪末20世纪初,生物化学才成为一门独立的科学。
德国化学家李比希:1842年撰写的《有机化学在生理与病理学上的应用》一书中,首次提出了新陈代谢名词。
另一位是德国医生霍佩赛勒:1877年他第一次提出Biochemie这个名词英文译名是Biochemistry(orBiologicalchemistry)汉语翻译成生物化学。
王镜岩生物化学下册复习总结材料

第十九章代谢总论新陈代谢(metabolism)是生命最基本的特征之一,泛指生物与周围环境进行物质交换、能量交换和信息交换的过程。
同化作用(assimilation):生物一方面不断地从周围环境中摄取能量和物质,通过一系列生物反应转变成自身组织成分。
异化作用(dissimilation ):将原有的组成成份经过一系列的生化反应,分解为简单成分重新利用或排出体外。
特点:特异、有序、高度适应和灵敏调节、代谢途径逐步进行。
新陈代谢是生物体内所有化学变化的总称;是生物体表现其生命活动的重要特征之一;它是由多酶体系协同作用的化学反应网络。
新陈代谢的功能:①从周围环境中获得营养物质。
②将外界引入的营养物质转为自身需要的结构元件。
③将结构元件装配成自身的大分子。
④形成或分解生物体特殊功能所需的生物分子。
⑤提供机体生命活动所需的一切能量。
代谢过程是通过一系列酶促反应完成的。
完成某一代谢过程的一组相互衔接的酶促反应称为代谢途径(metabolic pathways)。
代谢途径特点:1.没有完全可逆的代谢途径。
物质的合成与分解,有的要完全不同的两条代谢途径(如脂肪酸的代谢);有的要部分地通过单向不可逆反应(如糖代谢)。
2.代谢途径的形式是多样的,有直线型的,有分支型的,也有环形的。
3.代谢途径有确定的细胞定位。
酶在细胞内有确定的分布区域,所以每个过程都是在确定的区域进行的。
例如,糖酵解在细胞质中进行,三羧酸循环在线粒体基质中进行,氧化磷酸化在线粒体内膜进行。
4.代谢途径是相互沟通的。
5.代谢途径之间有能量关联。
6.代谢途径的流量可调控。
代谢是酶促过程,可通过控制酶的活力与数量来实现。
每个代谢途径的流量,都受反应速度最慢的步骤的限制,这个步骤称为限速步骤,或关键步骤,这个酶称为限速酶或关键酶。
新陈代谢包括分解代谢和合成代谢两个方面。
分解代谢:机体将营养物质转变为较小、较简单的物质,又称异化作用,是指机体将自身物质转化为代谢产物,排出体外合成代谢是机体利用小分子或大分子的结构元件建造成大分子。
生物化学王镜岩朱圣庚笔记

生物化学王镜岩朱圣庚笔记
以下是《生物化学(王镜岩、朱圣庚)》的部分笔记,仅供参考:
1.1998年8月美国众议院通过了“营养标识和教育法案”,规定从1999年
11月15日起,所有在美国销售的食物外包装上都必须注明卡路里含量,并标注出5种必须标明的营养素(脂肪、饱和脂肪、胆固醇、钠和碳水化合物)。
2.酶的专一性是指一种酶只能催化一种或一类化学反应的进行,按照酶的专
一性可将酶分成三种类型:绝对专一性、相对专一性和立体异构专一性。
3.酶促反应动力学主要研究酶促反应的速率及影响酶促反应速率的各种因素。
通过米氏方程来表达速率与底物浓度之间的关系。
4.维生素是一类调节物质,它们既不是构成细胞的主要原料,也不是能量的
来源,而是一类参与机体代谢过程和生化反应的必需的有机物。
5.维生素B1又称抗脚气病维生素,是白色针状结晶或白色粉末,有微弱的特
异臭和味苦,易溶于水,遇碱易分解。
6.维生素C又称抗坏血酸,是无色晶体,易溶于水,水溶液呈酸性,具有强
还原性。
7.蛋白质是一切生命的物质基础,没有蛋白质就没有生命。
8.氨基酸是组成蛋白质的基本单位,在生物体内蛋白质通过特定的氨基酸序
列形成多肽链,再经过特定的化学键连接形成具有一定空间结构的蛋白质。
9.酶是由生物体产生的具有生物活性的蛋白质,能够降低生化反应所需要的
活化能,具有高度的专一性、温和的反应条件以及反应的可调控性等特点。
10.维生素是生物体正常生长和代谢所必需的微量有机物,分为脂溶性维生素
和水溶性维生素两类。
以上仅为部分内容,建议查阅教材或者查阅考研论坛等网站获取更全面和准确的信息。
王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解

内容简介王镜岩主编的《生物化学》(第3版)是我国高校生物类广泛采用的权威教材之一,也被众多高校(包括科研机构)指定为考研考博专业课参考书目。
为了帮助参加研究生入学考试指定参考书目为王镜岩主编的《生物化学》(第3版)的考生复习专业课,我们根据该教材的教学大纲和名校考研真题的命题规律精心编写了王镜岩《生物化学》(第3版)辅导用书(均可免费试读,阅读全部内容需要单独购买):1.王镜岩《生物化学》(第3版)(上册)笔记和课后习题(含考研真题)详解2.王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解3.王镜岩《生物化学》(第3版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】4.王镜岩《生物化学》(第3版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】本书是王镜岩主编的《生物化学》(第3版)(下册)的学习辅导电子书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的所有知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对王镜岩主编的《生物化学》(第3版)(下册)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了归纳和延伸。
(3)精编考研真题,培养解题思路。
本书精选详析了部分名校近年来的相关考研真题,这些高校均以该教材作为考研参考书目。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
(4)免费更新内容,获取最新信息。
本书定期会进行修订完善。
对于完善的内容,均可以免费升级获得。
目录第19章代谢总论19.1复习笔记19.2课后习题详解19.3名校考研真题详解第20章生物能学20.1复习笔记20.2课后习题详解20.3名校考研真题详解第21章生物膜与物质运输21.1复习笔记21.2课后习题详解21.3名校考研真题详解第22章糖酵解作用22.1复习笔记22.2课后习题详解22.3名校考研真题详解第23章柠檬酸循环23.2课后习题详解23.3名校考研真题详解第24章生物氧化—电子传递和氧化磷酸化作用24.1复习笔记24.2课后习题详解24.3名校考研真题详解第25章戊糖磷酸途径和糖的其他代谢途径25.1复习笔记25.2课后习题详解25.3名校考研真题详解第26章糖原的分解和生物合成26.1复习笔记26.2课后习题详解26.3名校考研真题详解第27章光合作用27.1复习笔记27.2课后习题详解27.3名校考研真题详解第28章脂肪酸的分解代谢28.1复习笔记28.2课后习题详解28.3名校考研真题详解第29章脂类的生物合成29.1复习笔记29.2课后习题详解29.3名校考研真题详解第30章蛋白质降解和氨基酸的分解代谢30.1复习笔记30.2课后习题详解30.3名校考研真题详解第31章氨基酸及其重要衍生物的生物合成31.1复习笔记31.2课后习题详解31.3名校考研真题详解第32章生物固氮32.1复习笔记32.2课后习题详解32.3名校考研真题详解第33章核酸的降解和核苷酸代谢33.1复习笔记33.2课后习题详解33.3名校考研真题详解第34章DNA的复制和修复34.2课后习题详解34.3名校考研真题详解第35章DNA的重组35.1复习笔记35.2课后习题详解35.3名校考研真题详解第36章RNA的生物合成和加工36.1复习笔记36.2课后习题详解36.3名校考研真题详解第37章遗传密码37.1复习笔记37.2课后习题详解37.3名校考研真题详解第38章蛋白质合成及转运38.1复习笔记38.2课后习题详解38.3名校考研真题详解第39章细胞代谢与基因表达调控39.1复习笔记39.2课后习题详解39.3名校考研真题详解第40章基因工程及蛋白质工程40.1复习笔记40.2课后习题详解40.3名校考研真题详解第19章代谢总论19.1复习笔记一、新陈代谢概述1.定义(1)新陈代谢(metabolism)简称代谢,是营养物质在生物体内所经历的一切化学变化总称,是生物体表现其生命活动的重要特征之一。
(NEW)王镜岩《生物化学》(第3版)(下册)笔记和课后习题(含考研真题)详解 (2)

2.生物催化剂—酶 (1)定义 酶是推动生物体内全部代谢活动的工具。
(2)特点 ①高度专一性
酶对催化的反应和反应物有严格的选择性,往往只能催化一种或一类反 应。
②很高的催化效率
③活性受到调节
每种特殊的酶都有其调节机制,使错综复杂的新陈代谢过程成为高度协 调的、高度整合在一起的化学反应网络。
(3)将结构元件装配成自身的大分子,例如蛋白质、核酸、脂类以及 其他组分;
(4)形成或分解生物体特殊功能所需的生物分子;
(5)提供生命活动所需的一切能量。
二、分解代谢与合成代谢
1.分解代谢(catabolism)
(1)分解代谢
分解代谢是指从外界环境获得的或自身贮存的有机营养物通过一系列反 应步骤转变为较小的、较简单的物质的过程,与分解代谢相伴随的是能 量的释放。
(2)分解代谢途径
分解代谢途径是指分解代abolism)
合成代谢又称生物合成,是生物体利用小分子或大分子的结构元件建造 成自身大分子的过程。由小分子建造成大分子是使分子结构变得更为复 杂。这种过程都是需要提供能量的。
3.分解代谢与合成代谢途径的异同点
(1)不同点 ①同一种物质,其分解代谢和合成代谢途径一般是不相同的,他们并非 可逆反应,而是通过不同的中间反应或不同的酶来实现;
种化学反应的核苷酸类分子有ATP、GTP、UTP以及CTP等。
(3)自然界以ATP形式贮存的自由能的用途
①提供生物合成做化学功时所需的能量;
②是生物机体活动以及肌肉收缩的能量来源;
③供给营养物逆浓度梯度跨膜运输到机体细胞内所需的自由能;
④在DNA、RNA和蛋白质等生物合成中,保证基因信息的正确传递, ATP也以特殊方式起着递能作用。
生物化学(王镜岩主编)下册复习纲要

生物化学(下)复习纲要1.丙氨酸-葡萄糖循环:肌肉中的氨基酸将氨基转给丙酮酸生成丙氨酸,后者经血液循环转运至肝脏经过联合脱氨基作用再脱氨基,放出的氨用于合成尿素;生成的丙酮酸经糖异生转变为葡萄糖后再经血液循环转运至肌肉重新分解产生丙酮酸,丙酮酸再接受氨基生成丙氨酸。
丙氨酸和葡萄糖反复地在肌肉和肝之间进行氨的转运,股将这一循环过程称为丙氨酸-葡萄糖循环。
2.光合磷酸化:由光照引起的电子传递与磷酸化作用相偶联而生成ATP的过程称为光合磷酸化。
3.底物水平磷酸化:是指A TP的形成直接与一个代谢中间物(如PEP)上的磷酸基团转移相偶联的作用。
4.酶的共价修饰调节:某些酶蛋白肽链上的侧链基团在另一酶的催化下可与某种化学基团发生共价结合或解离,从而改变酶的活性,这一调节酶的活性的方式成为酶的共价修饰调节。
5.酮体:乙酰CoA可在肝细胞形成乙酰乙酸、β-羟丁酸、丙酮,这三种物质统称为酮体。
6.P/O比值:呼吸过程中无机磷酸(Pi)消耗量和原子氧(O)消耗量的比值称为磷氧比。
7.脂肪酸的β-氧化:脂肪酸在体内氧化时在羧基端的β-碳原子上进行氧化,碳链逐次断裂,每次断下一个二碳单位,即乙酰CoA,该过程称作β-氧化。
8.暗反应:是利用光反应所产生的化学能,即NADPH(H+)的还原能和ATP的水解能,来促进CO2的固定并还原生成有机物(主要是糖)的过程,是不需光的酶促反应过程。
9.光反应:是在光下才能进行的光物理和光化学反应,需光合色素作媒介,是将光能吸收、传递和转化为化学能的过程。
光反应包括光合磷酸化和水的光氧化反应。
10.转氨基作用:指的是一种α-氨基酸的α-氨基转移到一种α-酮酸上的过程。
转氨基作用是氨基酸脱氨基作用的一种途径。
其实可以看成是氨基酸的氨基与α-酮酸的酮基进行了交换。
11.脂肪动员:脂肪组织中贮藏的脂肪释放出游离脂肪酸,并转移到肝脏的过程。
12.EMP途径:糖酵解是将葡萄糖降解为丙酮酸并伴随着ATP生成的一系列反应,是生物体内普遍存在的葡萄糖降解的途径。
王镜岩.沈同 . 生物化学知识点 全解析

绪论•1 生物化学定义Biochemistry•2 生物化学研究的主要内容2.1 生物体的物质组成2.2 物质代谢及其调控糖代谢电子传递和氧化磷酸化脂代谢氨基酸代谢核苷酸代谢代谢调控DNA的合成RNA的合成和加工蛋白质合成基因表达调控2.3 物质的分子结构与功能的关系•3 生物化学在生物科学中的地位和作用Membership Statistics as of February 1, 2004: Totals by Membership TypeMember (active) 1,890Member (emeritus) 91Foreign Associate 336Total 2,317Totals by Scientific disciplineAnimal, Nutritional, and Applied Microbial Sciences 46 Anthropology 74Applied Mathematical Sciences 50Applied Physical Sciences 88Astronomy 81Biochemistry 166Biophysics 60Cellular and Developmental Biology 88Cellular and Molecular Neuroscience 48Chemistry 200Computer and Information Sciences 35Economic Sciences 58Engineering Sciences 84Environmental Sciences and Ecology 51Evolutionary Biology 41Genetics 84Geology 86Geophysics 90Human Environmental Sciences 19Immunology 54Mathematics 118Medical Genetics, Hematology, and Oncology 100Medical Physiology and Metabolism 59Microbial Biology 47Physics 186Physiology and Pharmacology 56Plant Biology 58Plant, Soil, and Microbial Sciences 48Psychology 56Social and Political Sciences 44Systems Neuroscience 42Total 2,317•4 生物化学和人类生活的关系及在工农业﹑畜牧业和医药业上的意义日常生活血清检验药物研制HIV(structure)吸烟损害公众健康!•5如何学习生物化学对教材内容作全面了解,分析比较,明确概念; 从化学本质和结构特点出发,联系物质的性质和功能;对每章的重点内容应深入钻研,弄懂,记熟, 轮番复习﹑默念以加强记忆。
生物化学复习(上下册)王镜岩版资料

生物化学复习第一章 糖类 1、 什么叫糖多羟基醛或多羟基酮及其聚合物和衍生物。
一般构型:D 型 四大类生物大分子:糖类、脂质、蛋白质和核酸 2、 分成哪几类单糖:是不能被水解成更小分子的糖类,也称简单糖,如葡萄糖、果糖、核糖和丙糖(三碳糖)、丁糖(四碳糖)、戊糖(五碳糖)、己糖等(六碳糖)。
寡糖(低聚糖):能水解产生少数几个单糖的糖类,如麦芽糖、蔗糖、乳糖(水解生成2分子单糖,称双糖或二糖)和棉子糖(水解生成3分子单糖)。
多糖:是水解时产生20个以上单糖分子的糖类,包括同多糖(水解时只产生一种单糖或单糖衍生物)如淀粉、糖原、壳多糖等;杂多糖(水解时产生一种以上的单糖或/和单糖衍生物)如透明质酸、半纤维素等。
3、 单糖的开链结构离最远的—OH 在左边的是L 型;在右边的是D 型 D 型和L 型是一对对映体Fischer 投影式表示单糖结构竖线表示碳链;羰基具有最小编号, 并写在投影式上端;一短横线代表手性碳上的羟基。
单糖的差向异体:这种仅一个手性碳原子的构型不同的非对映异构体称为差向异构体 4、单糖的环状结构α-异构体:半缩醛羟基与氧桥在同侧;或半缩醛羟基与C5上的羟基在链同侧 β-异构体:半缩醛羟基与氧桥在异侧;或半缩醛羟基与C5上的羟基在链异侧。
β-D-(+)-吡喃葡萄糖 β-D-(+)-呋喃葡萄糖 α-D-呋喃葡萄糖 α-D-吡喃葡葡萄糖 Fischer 式转换Haworth 式C-2差向异构C-4差向异构体α-D-吡喃葡萄糖β-D-吡喃葡萄糖β-D-吡喃葡萄糖β-L-吡喃葡萄D-型:CH2OH在环上方;L-型:CH2OH在环下方。
D-型糖中:α-异构体:半缩醛羟基在环的下方;β-异构体:半缩醛羟基在环的上方。
L-型糖中:情况相反。
β-D-呋喃果糖α -D-呋喃果糖β-D-呋喃葡萄糖D-吡喃葡萄糖β-D-吡喃葡萄糖α-D-吡喃葡萄糖5、单糖的性质(1)物理性质旋光性:当平面偏振光通过手性化合物溶液后,偏振面的方向就被旋转了一个角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章代谢总论新陈代谢(metabolism)是生命最基本的特征之一,泛指生物与周围环境进行物质交换、能量交换和信息交换的过程。
同化作用(assimilation):生物一方面不断地从周围环境中摄取能量和物质,通过一系列生物反应转变成自身组织成分。
异化作用(dissimilation ):将原有的组成成份经过一系列的生化反应,分解为简单成分重新利用或排出体外。
特点:特异、有序、高度适应和灵敏调节、代谢途径逐步进行。
新陈代谢是生物体内所有化学变化的总称;是生物体表现其生命活动的重要特征之一;它是由多酶体系协同作用的化学反应网络。
新陈代谢的功能:①从周围环境中获得营养物质。
②将外界引入的营养物质转为自身需要的结构元件。
③将结构元件装配成自身的大分子。
④形成或分解生物体特殊功能所需的生物分子。
⑤提供机体生命活动所需的一切能量。
代谢过程是通过一系列酶促反应完成的。
完成某一代谢过程的一组相互衔接的酶促反应称为代谢途径(metabolic pathways)。
代谢途径特点:1.没有完全可逆的代谢途径。
物质的合成与分解,有的要完全不同的两条代谢途径(如脂肪酸的代谢);有的要部分地通过单向不可逆反应(如糖代谢)。
2.代谢途径的形式是多样的,有直线型的,有分支型的,也有环形的。
3.代谢途径有确定的细胞定位。
酶在细胞内有确定的分布区域,所以每个过程都是在确定的区域进行的。
例如,糖酵解在细胞质中进行,三羧酸循环在线粒体基质中进行,氧化磷酸化在线粒体内膜进行。
4.代谢途径是相互沟通的。
5.代谢途径之间有能量关联。
6.代谢途径的流量可调控。
代谢是酶促过程,可通过控制酶的活力与数量来实现。
每个代谢途径的流量,都受反应速度最慢的步骤的限制,这个步骤称为限速步骤,或关键步骤,这个酶称为限速酶或关键酶。
新陈代谢包括分解代谢和合成代谢两个方面。
分解代谢:机体将营养物质转变为较小、较简单的物质,又称异化作用,是指机体将自身物质转化为代谢产物,排出体外合成代谢是机体利用小分子或大分子的结构元件建造成大分子。
又称同化作用,是指机体从环境中摄取营养物质,把它们转化为自身物质;这种过程是需能过程。
第二十二章糖酵解糖酵解是酶将葡萄糖降解为丙酮酸并伴随ATP生成的过程。
是一切有机体中普遍存在的葡萄糖降解途径。
糖酵解的过程在细胞质中进行,是不可逆(irreversible)反应过程,全部过程从葡萄糖开始,经过10步反应10种酶催化。
全部在细胞质中进行。
反应分2个阶段进行:第一阶段为耗能的准备阶段;第二阶段为放能的收入阶段。
糖酵解的反应糖酵解小结(1)反应部位:胞液(2)关键酶:己糖激酶,6-磷酸果糖激酶-1,丙酮酸激酶(3)能量的净生成:2ATP消耗ATP 的步骤:生成ATP 的步骤:反应全过程中有三步不可逆的反应糖酵解中酶的反应类型磷酸果糖激酶(PFK) 别构调节 别构激活剂:AMP; ADP; F-2,6-BP NADH;脂肪酸; H +丙酮酸激酶 1. 别构调节别构激活剂:1,6-双磷酸果糖 别构抑制剂:ATP, 丙氨酸 糖酵解的生理意义 1. 是机体在缺氧情况下获取能量的有效方式。
2. 是某些细胞在氧供应正常情况下的重要供能途径。
① 无线粒体的细胞,如:红细胞② 代谢活跃的细胞,如:白细胞、骨髓细胞要 点新陈代谢 合成代谢 分解代谢 糖酵解新陈代谢的功能?代谢途径特点?糖酵解途径及意义?糖酵解能量的计算及调控?1,3-二磷酸甘油酸 ATP 3-磷酸甘油酸磷酸烯醇式丙酮酸 ATP 丙酮酸G G-6-P AT ADP 己糖激酶 AT ADP F-6-F-1,6-2P 磷酸果糖激酶 ADP ATP PE 丙酮酸 丙酮酸激酶?氧化还原酶(1种):3-磷酸甘油醛脱氢酶 ?转移酶(4种):己糖激酶、磷酸果糖激酶、磷酸甘油酸激酶、丙酮酸激酶 糖酵解中产生的能量 净生成ATP 的计算:消耗ATP=2个(G 6-P-G ;6-P-F 1,6-2P-F ); 生成ATP=2×1+2×1=4个(1,3-二磷酸甘油酸3-磷酸甘油酸;磷酸烯醇式丙酮酸丙酮酸)即底物水平磷酸化;净生成ATP= -2=2个 产生NADH=2 ×1(3-磷酸甘油醛1,3-磷酸甘油酸)葡萄糖+2Pi +2ADP +2NAD +——2丙酮酸+2ATP +2NADH +2H ++2H2O生物学意义 ★是葡萄糖在生物体内进行有氧或无氧分解的共同途径,通过糖酵解,生物体获得生命活动所需要的能量; ★形成多种重要的中间产物,为氨基酸、脂类合成提供碳骨架; ★为糖异生提供基本途径。
糖酵解的调节: –磷酸果糖激酶催化的反应是糖酵解的限速步骤,该酶受ATP 和柠檬酸的抑制,受AMP 和2,6-二磷酸-果糖激活。
此酶有二个结合ATP 的部位: ① 活性中心底物结合部位(低浓度时)丙酮酸的去路?23章柠檬酸循环1、概念:在有氧的情况下,葡萄糖酵解产生的丙酮酸氧化脱羧形成乙酰CoA。
乙酰CoA经一系列氧化、脱羧,最终生成CO2和H22、糖的有氧氧化(aerobic oxidation)指在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。
是机体主要供能方式。
部位:胞液及线粒体3、糖的有氧分解实际上是丙酮酸在有氧条件下的彻底氧化,因此无氧酵解和有氧氧化是在丙酮酸生成以后才开始进入不同的途径。
•有氧氧化的反应过程:第一阶段:酵解途径第二阶段:丙酮酸的氧化脱羧第三阶段:三羧酸循环第四阶段:氧化磷酸化原核生物:①-④阶段在胞质中•真核生物:①在胞质中,②-④在线粒体a\丙酮酸的氧化可分为两个阶段丙酮酸氧化为乙酰-CoAb、乙酰-CoA的乙酰基部分经过三羧酸循环被彻底氧化为CO2和H2O,同时释放出大量能量。
4、丙酮酸脱氢酶复合体的组成E1:丙酮酸脱氢酶E2:二氢硫辛酰胺转乙酰酶E3:二氢硫辛酰胺脱氢酶丙酮酸转化为乙酰-CoA特点:该反应既脱氢又脱羧,故称氧化脱羧•它本身并不属于三羧酸循环,而是连接糖酵解与三羧酸循环的桥梁与纽带•是丙酮酸进入三羧酸循环的必经之路•此反应在真核细胞的线粒体基质中进行,这是连接糖酵解与TAC的中心环节5、乙酰CoA即是柠檬酸循环的入口物质,又是合成脂类的起始物质(如胆固醇的生物合成)•TAC中第一个调节酶,是限速酶,异柠檬酸脱氢酶为第二个调节酶,第三个调节酶α-酮戊二酸脱氢酶复合体步骤:1、乙酰COA与草酰乙酸缩合形成柠檬酸(单向不可逆,可调控的限速步骤)2、柠檬酸异构化成异柠檬酸(顺乌头酸酶)3、由异柠檬酸氧化脱羧生成α-酮戊二酸(异柠檬酸脱氢酶)TCA中第一次氧化作用、脱羧过程,异柠檬酸脱氢酶为第二个调节酶4、α-酮戊二酸氧化脱羧成为琥珀酰COA(α-酮戊二酸脱氢酶复合体)(TCA中第二氧化作用、脱羧过程)α-酮戊二酸脱氢酶系,TAC循环中的第三个调节酶:并同样受产物NADH、琥珀酰-CoA及ATP、GTP的反馈抑制。
先脱羧,后脱氢。
5、琥珀酰COA转化成琥珀酸,并产生GTP(TCA中唯一底物水平磷酸化直接产生高能磷酸化合物的步骤)6、琥珀酸脱氢生成延胡索酸(琥珀酸脱氢酶是TAC循环中唯一嵌入线粒体内膜的酶,TCA中第三次氧化的步骤, 丙二酸为该酶的竞争性抑制剂开始四碳酸之间的转变)7、延胡索酸被水化生成苹果酸(延胡索酸酶)•8、苹果酸脱氢生成草酰乙酸(苹果酸脱氢酶)(TCA中第四次氧化的步骤,最后一步,反应在能量上不利,平衡有利于逆反应,但生理条件下,反应产物草酰乙酸不断合成柠檬酸,其在细胞中浓度极低,少于10-6 mol/L,使反应向右进行)。
)6、异柠檬酸脱氢酶有两种•一种以NAD+为辅酶:对NAD+专一的酶位于线粒体中,它是三羧酸循环中重要的酶。
能量高时活性被抑制。
•另一种则以NADP+为辅酶:对NADP+专一的酶既存在于线粒体中,也存在于细胞质中,它有着不同的代谢功能。
7、?总反应式:丙酮酸?+?4NAD+?+?FAD?+?GDP??→?4NADH?+?FADH2?+?GTP?+?3CO2?+?H2O乙酰CoA?+?3NAD+?+?FAD?+?GDP?→?3NADH?+?FADH2?+?GTP?+?2CO2?+?H2O8、一次底物水平的磷酸化、二次脱羧反应,三个调节位点,四次脱氢反应。
3NADH、FADH2进入呼吸链。
1次底物水平磷酸化琥珀酰CoA转变成琥珀酸时发生的底物水平磷酸化生成1分子GTP。
GTP可将分子未端的高能磷酸键转移给ADP生成ATP。
2次脱羧反应异柠檬酸脱氢酶和?–酮戊二酸脱氢酶复合体催化。
?–酮戊二酸脱氢酶复合体的组成和催化反应过程与前述的丙酮酸脱氢酶复合体类似。
三步不可逆反应即草酰乙酸与乙酰CoA缩合生成柠檬酸、异柠檬酸转变成?–酮戊二酸和?–酮戊二酸氧化脱羧反应,保证三羟羧酸循环向一个方向进行。
4次脱氢反应异柠檬酸、?–酮戊二酸和苹果酸脱下的氢均被NAD+接受生成NADH+H+每对氢原子氧化后可生成2.5分子ATP供线粒体外利用琥珀酸脱氢酶的辅基为FAD,接受2H后,生成FADH2。
通过FAD递氢,每对氢原子氧化后可生成1.5分子ATP 供线粒体外利用。
胞浆内反应阶段糖酵解:葡萄糖→葡糖-6–磷酸﹣1果糖–6–磷酸→果糖–1,6–二磷酸﹣1甘油醛–3–磷酸→ 1,3–二磷酸甘油酸 2×2.5或2×1.5 * 1,3–二磷酸甘油酸→ 3–磷酸甘油酸 2×1磷酸烯醇式丙酮酸→烯醇式丙酮酸 2×1线粒体内反应阶段丙酮酸→乙酰CoA三羧酸循环:异柠檬酸→?–酮成二酸2×2.5?–酮戊二酸→琥珀酰CoA 2×2.5琥珀酰CoA →琥珀酸2×1琥珀酸→延胡索酸2×1.5苹果酸→草酰乙酸小结:①三羧酸循环的概念:指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。
② TAC过程的反应部位是线粒体。
③三羧酸循环的要点经过一次三羧酸循环,–消耗一分子乙酰CoA,–经四次脱氢,二次脱羧,一次底物水平磷酸化。
–生成1分子FADH2,3分子NADH+H+,2分子CO2, 1分子GTP。
④整个循环反应为不可逆反应8、三羧酸循环不仅是产生ATP的途径,它的中间产物也是生物合成的前体,这些过程均可导致草酰乙酸浓度下降,从而影响三羧酸循环的运转,因此必须不断补充才能维持其正常进行,这种补充称为回补反应(anaplerotic reaction)。
9、回补反应之间的转换:三羧酸循环的调节调节三羧酸循环的关键因素•[NADH]/[NAD+]的比值•[ATP]/[ADP]的比值•草酰乙酸、乙酰CoA等代谢物的浓度三羧酸循环的调控位点及相应调节物三羧循环的生物学意义是有机体获得生命活动所需能量的主要途径?是三大营养物质氧化分解的共同途径;是三大营养物质代谢联系的枢纽?为呼吸链提供H+ + e?形成多种重要的中间产物;在植物体内,三羧酸循环中间产物如柠檬酸、苹果酸等既是生物氧化基质,也是一定生长发育时期特定器官中的积累物质,如柠檬、苹果分别富含柠檬酸和苹果酸。