信息论与编码课件第三章2分析
合集下载
精品课课件信息论与编码(全套讲义)

拓展应用领域 信息论的应用领域将进一步拓展,如生物信息学、 量子信息论等新兴领域,以及与人工智能、大数 据等技术的结合。
跨学科交叉融合
信息论将与更多学科进行交叉融合,如物理学、 化学、社会学等,共同推动信息科学的发展。
编码技术的发展趋势
高效编码算法
随着计算能力的提升,更高效的编码算法将不断涌现,以提高数据 传输和存储的效率。
智能化编码
借助人工智能和机器学习技术,编码将实现智能化,自适应地调整 编码参数以优化性能。
跨平台兼容性
未来的编码技术将更加注重跨平台兼容性,以适应不同设备和网络环 境的多样性。
信息论与编码的交叉融合
理论与应用相互促进
信息论为编码技术提供理论支持, 而编码技术的发展又反过来推动 信息论的深入研究。
共同应对挑战
精品课课件信息论与编码(全套 讲义)
目
CONTENCT
录
• 信息论基础 • 编码理论 • 信道编码 • 信源编码 • 信息论与编码的应用 • 信息论与编码的发展趋势
01
信息论基础
信息论概述
信息论的研究对象
研究信息的传输、存储、处理和变换规律的科学。
信息论的发展历程
从通信领域起源,逐渐渗透到计算机科学、控制论、 统计学等多个学科。
卷积编码器将输入的信息序列按位输入到一个移位寄存器中,同时根据生成函数将移位寄存 器中的信息与编码器中的冲激响应进行卷积运算,生成输出序列。
卷积码的译码方法
卷积码的译码方法主要有代数译码和概率译码两种。代数译码方法基于最大似然译码准则, 通过寻找与接收序列汉明距离最小的合法码字进行译码。概率译码方法则基于贝叶斯准则, 通过计算每个合法码字的后验概率进行译码。
04
跨学科交叉融合
信息论将与更多学科进行交叉融合,如物理学、 化学、社会学等,共同推动信息科学的发展。
编码技术的发展趋势
高效编码算法
随着计算能力的提升,更高效的编码算法将不断涌现,以提高数据 传输和存储的效率。
智能化编码
借助人工智能和机器学习技术,编码将实现智能化,自适应地调整 编码参数以优化性能。
跨平台兼容性
未来的编码技术将更加注重跨平台兼容性,以适应不同设备和网络环 境的多样性。
信息论与编码的交叉融合
理论与应用相互促进
信息论为编码技术提供理论支持, 而编码技术的发展又反过来推动 信息论的深入研究。
共同应对挑战
精品课课件信息论与编码(全套 讲义)
目
CONTENCT
录
• 信息论基础 • 编码理论 • 信道编码 • 信源编码 • 信息论与编码的应用 • 信息论与编码的发展趋势
01
信息论基础
信息论概述
信息论的研究对象
研究信息的传输、存储、处理和变换规律的科学。
信息论的发展历程
从通信领域起源,逐渐渗透到计算机科学、控制论、 统计学等多个学科。
卷积编码器将输入的信息序列按位输入到一个移位寄存器中,同时根据生成函数将移位寄存 器中的信息与编码器中的冲激响应进行卷积运算,生成输出序列。
卷积码的译码方法
卷积码的译码方法主要有代数译码和概率译码两种。代数译码方法基于最大似然译码准则, 通过寻找与接收序列汉明距离最小的合法码字进行译码。概率译码方法则基于贝叶斯准则, 通过计算每个合法码字的后验概率进行译码。
04
信息论与编码课件第三章

离散无记忆信道的信道容量
I( x
0;Y )
2 j 1
p(b j
0) log
p(b j 0) p(b j )
log 2
I( x 2;Y ) log 2
而I( x
1;Y )
2 j 1
p(b j 1) log
p(b j 1) p(b j )
0
1
I( x 0;Y ) I( x 2;Y ) log 2, p(0) p(2) 0
C
I ( x ai ;Y )
m j 1
p(b j ai ) log
p(b j ai ) p(b j )
特殊DMC的信道容量
例:准对称信道
准对称信道
0.8 0.1 0.1 P3 0.1 0.1 0.8
1 p(a1 ) p(a2 ) 2
n
p(b j ) p(ai ) p(b j ai ) i 1
H (Y
|
a2 )
H(Y | an )
P 1 M
C
log
n
ห้องสมุดไป่ตู้
2
j
j1
P P 1 C p(bj ) p(ai )
达到信道容量时输入、输出概率分布的唯一性
例:
1 / 2 1 / 2 0 0
P
0
1/2 1/2
0
0 0 1/ 2 1/ 2
1 / 2 0 0 1 / 2
取
p(a1 )
p(a3 )
1, 2
p(a2 ) p(a4 ) 0
4
C
信息论及编码理论基础(第三章)讲诉

2018/11/16
9
§3.2 离散无记忆(简单)信 源的等长编码
(9)在无错编码的前提下,编码的最低代价 当R≥logK时,能够实现无错编码。 (DN≥KL) 当R<H(U1)时,无论怎样编码都是有错编码。这是因为 R<H(U1)≤logK。 (DN<KL) (如果H(U1)=logK,则以上两种情形已经概括了全部情形。 但如果H(U1)<logK,则还有一种情形) 当logK>R>H(U1)时,虽然无论怎样编码都是有错编码, 但可以适当地编码和译码使译码错误的概率pe任意小。这 就是所谓“渐进无错编码”。
EV1 qk loga
k 1
2018/11/16
qk
H (U1 )
13
§3.2 离散无记忆(简单)信 源的等长编码
取IL是(V1V2…VL)的如下函数: I L
1 L Vl L l 1
则 ① IL最终是(U1U2…UL)的函数; ② 1 L 1 L 1 EI L EVl H (U1 ) DI L D Vl 2 L l 1 L l 1 L
2018/11/16
12
§3.2 离散无记忆(简单)信 源的等长编码
设…U-2U-1U0U1U2…是离散无记忆(简单)信源的输出随机变 量序列。设U1的概率分布为
a1 a2 aK U1 ~ q q q K 1 2
取Vl是Ul的如下函数:当Ul=ak时, Vl=loga(1/qk)。则 ①随机变量序列…V-2V-1V0V1V2…相互独立,具有相同的概率 分布; K ② 1
2018/11/16 5
§3.2 离散无记忆(简单)信 源的等长编码
例:离散无记忆简单信源发出的随机变量序列为:…U-2U1U0U1U2…。其中U1的事件有3个:{晴, 云, 阴}。 (U1U2)有9个事件 {(晴晴),(晴云),(晴阴),(云晴),(云云), (云阴),(阴晴),(阴云), (阴阴)}。 用字母表{0, 1}对(U1U2)的事件进行2元编码如下: (晴晴)→0000,(晴云)→0001,(晴阴)→0011, (云晴)→0100,(云云)→0101,(云阴)→0111, (阴晴)→1100,(阴云)→1101,(阴阴)→1111。
信息论与编码全部课件-PPT精选文档398页

• 通常取对数的底为2,单位为比特(bit)。
37
2.1.1 自信息量
• 三个单位间的转换关系为:
• 1奈特=log2e 1.433比特 • 1哈特莱=log210 3.332比特
• 自信息量非负且单调递减。
f(x)
log2x
f(x)
34
2.1.1 自信息量
• 应用概率空间的概念分析上例,设取红球
的状态为x1,白球为x2,黑球为x3,黄球为 x4,则概率空间为:
• (1)
• (2)
PX(x)0x1.99 PX(x)0x1.5
x2 0.01
x2 0.5
• (3) P X (x) 0 x1 .250.x 2 2 5x30.25x0 4.25
• (7)按生成领域分:宇宙信息、自然信息、社会信息、 思维信息等。
• (8)按应用部门分:工业信息、农业信息、军事信息、 政治信息、科技信息、文化信息等。
(9)按信息源的性质分:语声信息、图像信息、文 字信息、数据信息、计算信息等。 (10)按载体性质分:电子信息、光学信息、生物信 息等。 (11)按携带信息的信号形式分:连续信息、离散信 息、半连续信息等。
19
1.2.2 数字信息传输系统
• 优点:
• (1)抗干扰能力强,特别在中继传输中尤为明 显。
• (2)可以进行差错控制,提高了信息传输的灵 活性。
(3)便于使用现代计算机技术对信号进行处 理、存储和变换。 (4)便于加密,实现保密信息传输。
20
1.2.2 数字信息传输系统
• (5)易于与其他系统配合使用,构成综合 业务信息传输网。
35
2.1.1 自信息量
• 结论: • (1)不确定度与信源概率空间的状态数及
37
2.1.1 自信息量
• 三个单位间的转换关系为:
• 1奈特=log2e 1.433比特 • 1哈特莱=log210 3.332比特
• 自信息量非负且单调递减。
f(x)
log2x
f(x)
34
2.1.1 自信息量
• 应用概率空间的概念分析上例,设取红球
的状态为x1,白球为x2,黑球为x3,黄球为 x4,则概率空间为:
• (1)
• (2)
PX(x)0x1.99 PX(x)0x1.5
x2 0.01
x2 0.5
• (3) P X (x) 0 x1 .250.x 2 2 5x30.25x0 4.25
• (7)按生成领域分:宇宙信息、自然信息、社会信息、 思维信息等。
• (8)按应用部门分:工业信息、农业信息、军事信息、 政治信息、科技信息、文化信息等。
(9)按信息源的性质分:语声信息、图像信息、文 字信息、数据信息、计算信息等。 (10)按载体性质分:电子信息、光学信息、生物信 息等。 (11)按携带信息的信号形式分:连续信息、离散信 息、半连续信息等。
19
1.2.2 数字信息传输系统
• 优点:
• (1)抗干扰能力强,特别在中继传输中尤为明 显。
• (2)可以进行差错控制,提高了信息传输的灵 活性。
(3)便于使用现代计算机技术对信号进行处 理、存储和变换。 (4)便于加密,实现保密信息传输。
20
1.2.2 数字信息传输系统
• (5)易于与其他系统配合使用,构成综合 业务信息传输网。
35
2.1.1 自信息量
• 结论: • (1)不确定度与信源概率空间的状态数及
信息论与编码 第三章1-9节

信源 X =X1 ×X2 的概率分布 p(α1)=p(a1a1)=p(a1)p(a1)=1/4×1/4=1/16 p(α2)=p(a1a2)=p(a1)p(a2)=1/4×1/2=1/8 p(α3)=p(a1a3)=p(a1)p(a3)=1/4×1/4=1/16 p(α4)=p(a2a1)=p(a2)p(a1)=1/2×1/4=1/8 p(α5)=p(a2a2)=p(a2)p(a2)=1/2×1/2=1/4 p(α6)=p(a2a3)=p(a2)p(a3)=1/2×1/4=1/8 p(α7)=p(a3a1)=p(a3)p(a1)=1/4×1/4=1/16 p(α8)=p(a3a2)=p(a3)p(a2)=1/4×1/2=1/8 p(α9)=p(a3a3)=p(a3)p(a3)=1/4×1/4=1/16
例3.1
设离散平稳无记忆信道X的信源空间为 X: a1 a2 ½
2
a3 ¼
[X . P]:{ p(x): ¼
X 则信源X的二次扩展信源 =X1 ×X2 的符号集为
α1=a1×a1 α2=a1×a2 α3=a1×a3
2
α4=a2×a1 α5=a2×a2 α6=a2×a3
α7=a3×a1 α8=a3×a2 α9=a3×a3
2
p ( 2 )
பைடு நூலகம்
r
N
p ( r N )
i ( a i1 , a i 2 a iN )
a i1 , a i 2 a iN a 1 , a 2 , , a r
i1, i 2 , iN 1, 2 , r
i 1, 2 , , r
N
0 p ( i ) p ( a i1 a i 2 a iN ) 1
信息论与编码第三版 第3章

(2)增强通信的可靠性: 综上所述,提高抗干扰能力往往是以降低信息传输效率为代价
信息论与编码
信源编码的概念:对信源的原始符号按一定的数学规则进行变换的一种
代码。
信源编码包括两个功能:
(1)将信源符号变换成适合信道传输的符号; {b1, b2,…, bD}是适合 编码输出码字cm = cm1 cm2 … {a1, a2, …, (2)压缩信源冗余度,提高传输效率。 ak}为信 信道传输的D个符号, cmn, c mk∈{b1, b2,…, bD}, 源符号集,序列中 用作信源编码器的 k = 1, 2 , …, n ,n表示码字 每一个符号uml都取 信源编码模型: 编码符号。 长度,简称码长。 自信源符号集。
1 1 1 n 2 2 2 3 4 4 2.75 (码元/符号) 4 8 16
RD
H X n
2.75 1 (比特/码元时间) 2.75
信息论与编码
§3.2 等长码及等长编码定理
一.等长编码定理
考虑对一简单信源S进行等长编码,信源符号集有K个符号,码符号集 含D个符号,码字长度记为n。对信源作等长无差错编码,要得到惟一可译 码,必须满足下式:
扩展信源
信源编码器
信道符号(码符号)集{b1,b2,...bD}
信源符号集{a1,a2,...ak}
原码的N次扩展码是将信源作N次扩展得到的新信源符号序列u(N) =u1 …uN = (u11 u12 … u1L) … (uN1 uN2 … uNL),对应码符号序列c(N) =c1 …cN = (c11 c12 … c1n) … (cN1 cN2 … cNn) ,记集合C (N) = {c1(N), c2(N), …},C (N) 即原码C的N次扩展码。
《信息论与编码全部》课件

添加副标题
信息论与编码全部PPT课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 信息度量与熵
02 信息论与编码的基 本概念
04 信源编码
05 信道编码
06 加密与解密技术
07 信息安全与认证技 术
添加章节标题
信息论与编码的基本概 念
信息论的发展历程
1948年,香农提出信 息论,奠定了信息论
提高安全性
优点:安全性 高,速度快,
易于实现
应用:广泛应 用于电子商务、 网络通信等领
域
发展趋势:随 着技术的发展, 混合加密技术 将更加成熟和
完善
信息安全与认证技术
数字签名技术
数字签名:一种用于验证信息来源和完整性的技术 数字签名算法:RSA、DSA、ECDSA等 数字证书:用于存储数字签名和公钥的文件 数字签名的应用:电子邮件、电子商务、网络银行等
汇报人:PPT
熵越小,表示信息量越小,不确 定性越小
熵是概率分布的函数,与概率分 布有关
信源编码
定义:无损信源编码是指在编码过 程中不丢失任何信息,保持原始信 息的完整性。
无损信源编码
应用:无损信源编码广泛应用于音 频、视频、图像等媒体数据的压缩 和传输。
添加标题
添加标题
添加标题
添加标题
特点:无损信源编码可以保证解码 后的信息与原始信息完全一致,但 编码和解码过程通常比较复杂。
古典密码学:公元前400年,古希腊人使用替换密码 近代密码学:19世纪,维吉尼亚密码和Playfair密码出现 现代密码学:20世纪,公钥密码体制和数字签名技术出现 当代密码学:21世纪,量子密码学和后量子密码学成为研究热点
信息论与编码全部PPT课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 信息度量与熵
02 信息论与编码的基 本概念
04 信源编码
05 信道编码
06 加密与解密技术
07 信息安全与认证技 术
添加章节标题
信息论与编码的基本概 念
信息论的发展历程
1948年,香农提出信 息论,奠定了信息论
提高安全性
优点:安全性 高,速度快,
易于实现
应用:广泛应 用于电子商务、 网络通信等领
域
发展趋势:随 着技术的发展, 混合加密技术 将更加成熟和
完善
信息安全与认证技术
数字签名技术
数字签名:一种用于验证信息来源和完整性的技术 数字签名算法:RSA、DSA、ECDSA等 数字证书:用于存储数字签名和公钥的文件 数字签名的应用:电子邮件、电子商务、网络银行等
汇报人:PPT
熵越小,表示信息量越小,不确 定性越小
熵是概率分布的函数,与概率分 布有关
信源编码
定义:无损信源编码是指在编码过 程中不丢失任何信息,保持原始信 息的完整性。
无损信源编码
应用:无损信源编码广泛应用于音 频、视频、图像等媒体数据的压缩 和传输。
添加标题
添加标题
添加标题
添加标题
特点:无损信源编码可以保证解码 后的信息与原始信息完全一致,但 编码和解码过程通常比较复杂。
古典密码学:公元前400年,古希腊人使用替换密码 近代密码学:19世纪,维吉尼亚密码和Playfair密码出现 现代密码学:20世纪,公钥密码体制和数字签名技术出现 当代密码学:21世纪,量子密码学和后量子密码学成为研究热点
信息论与编码课件第三章

入侵检测技术
利用信息论中的信号分析原理,检 测网络中的异常流量和行为,及时 发现和防范网络攻击。
THANKS FOR WATCHING
感谢您的观看
解码卷积码的方法包括最大似然解码、维特比解 码等,其中维特比解码算法具有较低的复杂度。
03 第三章 加密编码
加密编码的基本概念
加密编码是信息隐藏的一种形式, 通过将信息转化为难以理解的形 式,保护信息的机密性和完整性。
加密编码的基本要素包括明文、 密文、加密算法和解密算法。
加密编码的目标是确保只有授权 用户能够解密和读取密文,而未 经授权的用户无法获取明文信息。
离散无记忆信源的熵计算公式为$H(X) = - sum p(x) log_2 p(x)$,其中 $p(x)$表示输出符号$x$的概率。
离散无记忆信源的熵
离散无记忆信源的熵是用来度量其信 息量的一个重要参数,它表示在给定 概率分布下,输出符号所包含的平均 信息量。
离散有记忆信源的熵
离散有记忆信源的定义
信息论与编码课件第三章
contents
目录
• 第三章 信源编码 • 第三章 信道编码 • 第三章 加密编码 • 第三章 信息论与编码的应用
01 第三章 信源编码
信源编码的基本概念
01
信源编码的定义
信源编码是对信源输出的符号序列进行变换,使其满足某种特定规则的
过程。
02
信源编码的目的
信源编码的主要目的是在保证通信质量的前提下,尽可能地压缩信源输
对称密钥密码体制
对称密钥密码体制是指加密和 解密使用相同密钥的密码体制。
对称密钥密码体制的优点是加 密和解密速度快,适合于大量 数据的加密。
常见的对称密钥密码体制包括 AES(高级加密标准)和DES (数据加密标准)。
利用信息论中的信号分析原理,检 测网络中的异常流量和行为,及时 发现和防范网络攻击。
THANKS FOR WATCHING
感谢您的观看
解码卷积码的方法包括最大似然解码、维特比解 码等,其中维特比解码算法具有较低的复杂度。
03 第三章 加密编码
加密编码的基本概念
加密编码是信息隐藏的一种形式, 通过将信息转化为难以理解的形 式,保护信息的机密性和完整性。
加密编码的基本要素包括明文、 密文、加密算法和解密算法。
加密编码的目标是确保只有授权 用户能够解密和读取密文,而未 经授权的用户无法获取明文信息。
离散无记忆信源的熵计算公式为$H(X) = - sum p(x) log_2 p(x)$,其中 $p(x)$表示输出符号$x$的概率。
离散无记忆信源的熵
离散无记忆信源的熵是用来度量其信 息量的一个重要参数,它表示在给定 概率分布下,输出符号所包含的平均 信息量。
离散有记忆信源的熵
离散有记忆信源的定义
信息论与编码课件第三章
contents
目录
• 第三章 信源编码 • 第三章 信道编码 • 第三章 加密编码 • 第三章 信息论与编码的应用
01 第三章 信源编码
信源编码的基本概念
01
信源编码的定义
信源编码是对信源输出的符号序列进行变换,使其满足某种特定规则的
过程。
02
信源编码的目的
信源编码的主要目的是在保证通信质量的前提下,尽可能地压缩信源输
对称密钥密码体制
对称密钥密码体制是指加密和 解密使用相同密钥的密码体制。
对称密钥密码体制的优点是加 密和解密速度快,适合于大量 数据的加密。
常见的对称密钥密码体制包括 AES(高级加密标准)和DES (数据加密标准)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C max I(X ;Y)(单位为bit/符号) p(ai )
Ct
1 T
max I (X ;Y )(单位为bit
p(ai )
/
秒)
13
• 无嗓无损信道
C
max
p(ai )
I
(
X
;Y
)
max
H
(
X
)
max
H
(Y
)
log
2
n
• 有嗓无损信道
C
max
p(ai )
I
(
X
;Y
)ห้องสมุดไป่ตู้
max
H
(Y
)
log
2
m
• 无嗓有损信道
p(Y|X)
X
Y
信道
• 对于无记忆离散序列信道,其信道转移概率为
L
p(Y | X ) p(Y1,YL | X1, X L ) p(Yl | Xl )
– 仅与当前输入有关。若信道是平稳l的1
p(Y | X ) pL ( y | x) 4
• 定理:若信道的输入和输出分别是L长序列X
和Y,且信道是无记忆的,亦即信道传递概率为
• BSC信道容量 C 1 H ( p) 15
• 离散序列无记忆信道容量
L
L
CL
max PX
I (; )
max PX
l 1
I ( X l ;Yl )
C(l)
l 1
• 独立并联信道容量
C1,2,L max I ( X ;Y )
L
C1 C2 CL Cl
• 高斯白噪声加性信道单位时间的信l1道容量
y(t) = x(t) + n(t)
x(t) 信 道 y(t)
– n(t):信道的加性高斯白噪声
n(t)
• 一个受加性高斯白噪声干扰的带限波形信道的 容量,由香农(1948)正式定义:
C max{I (X ,Y )} p(x) 10
连续信道及其容量
• 高斯白噪声加性信道单位时间的信道容量
Ct
lim max 1 T T p( xi )
C
max
p(ai )
I
(
X
;Y
)
max
H
(
X
)
log
2
n
14
• 对称DMC信道容量
C log m H ( p1, p2 pm )
m
log m pij log pij j 1
• 强对称信道的信道容量
C
log
2
n
H
(1
p,
n
p ,, 1
n
p) 1
• 准对称信道的信道容量
r
C log n H ( p1, p2 pm ) Nk log M k k 1
Ct
lim max 1 T T p( xi )
I ( X ;Y )
W
log(1
Ps N0W
)
16
• 若信源与信道都是无记忆的
L
I (Χ ;Υ ) I (Xl ;Yl ) l 1
• L次扩展信道的信道容量
L
L
CL
max PX
I (;)
max PX
l 1
I ( Xl ;Yl )
l 1
C(l)
• 当信道平稳时: CL LC1
6
• 例3-7.BSC信道二次
扩展转移概率矩阵
X
00
Y
00
01
(1 p)2 p(1 p) p(1 p) p2
L
p(Y | X ) p(Yl | X l ) l 1
• 则存在
L
I (Χ ;Υ ) I (Xl ;Yl ) l 1
• 定理:若信道的输入和输出分别是L长序列X
和Y,且信源是无记忆的,亦即
L
p(X ) p(Xl )
• 则存在
l 1
L
I (Χ ;Υ ) I (Xl ;Yl )
l 1
5
离散序列信道及容量
01
P
p(1
p)
(1 p)2
p2
p(1
p)
10 11
p(1 p) p2 (1 p)2 p(1 p)
10 11
p2
p(1 p)
p(1 p)
(1
p)
2
• 2次扩展信道的信道容量
C2 log2 4 H[(1 p)2,(1 p),(1 p), p2] • 若 p = 0.1
• 则 C2=(2-0.938)bit/序列 = 1.062bit/序列
p(Y2|X2) 信道
Y2
…
C1,2,L max I ( X ;Y )
XL
L
C1 C2 CL Cl
l 1
p(YL|XL) 信道
YL
8
3.3 连续信道及其容量
9
连续信道及其容量
• 连续信道的容量不容易计算。 • 当信道为加性连续信道时,情况简单一些。 • 设信道的输入和输出信号是随机过程x(t) 和y(t)
C1 = log2 2 H[1 p, p] =0.531bit/序列
7
独立并联信道
• 设有L个信道,它们的输入、输出分别是:
X1,X2…XL; Y1,Y2…YL
• 每一个信道的输出Yl只与本 信道的输入Xl有关,与其他信
X1
p(Y1|X1) 信道
Y1
道的输入、输出都无关。 X 2
• 独立并联信道的信道容量
I ( X ;Y )
W
log(1
Ps N0W
)
其中,w为带宽,p为输入信号功率,N0为功谱率密度
这就是著名的 香农公式
11
• 3-1 • 3-3 • 3-4 • 3-10
习题
12
第三章小结
信道分类 有干扰,无干扰
信道条件概率矩阵(转移概率) P(Y|X)或者反信道转移概率P(X|Y) 信道容量
第三章
信道与信道容量
内容
3.1 信道分类和表示参数 3.2 离散单个符号信道及其容量 3.3 离散序列信道及其容量 3.4 连续信道及其容量
2
3.3 离散序列信道及容量
3
离散序列信道及容量
• 设信道的输入X=(X1, X2 … Xi,… ), Xi ∈{a1 … an}
输出Y= (Y1, Y2 … Yj,…), Yj ∈{b1 … bm}