模糊数学 数学建模竞赛
2013年数学建模竞赛培训内容(新)

2013年数学建模竞赛培训内容建模竞赛概论(论文撰写,论文评阅及其注意事项)
一、图论
图论算法(包括最短路、网络流、二分图等算法)
二、数学软件
1.Matlab
2. 优化模型建立与求解及lingo软件运用
3.统计软件
SPSS统计软件聚类分析的基本操作介绍
SPSS统计软件主成分分析、因子分析的基本操作介绍
三、数据处理
1.数据的统计分析与描述
2.基于matlab的海量数据的处理方法
3.近年来全国大学生数学建模竞赛中大型数据的处理范例分析
四、运筹学:线性规划、动态规划、排队论
五、多项式插值、最小二乘曲线拟合、微分方程数值解法及其在数学建模中的应用
1.多项式插值的基本原理及MATLAB的实现
2.数据插值建模案例的分析与求解
3.最小二乘曲线拟合的基本原理及MATLAB实现
4.曲线拟合建模案例的分析与求解
5.微分方程数值解法及其MATLAB实现
6.微分方程建模案例分析与求解
六、模糊数学理论简介、灰色系统理论
1.模糊综合评价方法及应用案例
2.数学建模中常用的预测方法
3.灰色预测模型及其应用
4.评价与决策的数学模型
5.长江水质的综合评价分析
七、优化智能算法
1.模拟退火法算法、神经网络算法、遗传算法的Matlab实现
2.真题模型的遗传算法求解。
全国大学生数学建模竞赛常用建模方法总结

邯郸学院本科毕业论文题目全国大学生数学建模竞赛常用建模方法探讨学生柴云飞指导教师闫峰教授年级2009级本科专业数学与应用数学二级学院数学系(系、部)邯郸学院数学系2013年6月郑重声明本人的毕业论文是在指导教师闫峰的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.论文经“中国知网”论文检测系统检测,总相似比为5.80%.毕业论文作者(签名):年月日全国大学生数学建模竞赛常用建模方法探讨摘要全国大学生数学建模竞赛作为全国高校规模最大的基础性学科竞赛,越来越受到人们的重视,所以建模竞赛的方法也就变得尤为重要.随着竞赛的不断发展,赛题的开放性逐步增大,一道赛题可用多种解法,各种求解的算法有时会相互融合,同时也在向大规模数据处理方向发展,这就对选手的能力提出了更高的要求.由于建模方法种类众多,无法一一介绍,所以本文主要介绍了四种比较常用的数学建模竞赛方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论方法,并结合历年赛题加以说明.关键词:数学建模竞赛统计学方法数学规划图论Commonly Used Modeling Method ofChina Undergraduate Mathematical Contest in ModelingChai yunfei Directed by Professor Yan fengABSTRACTThe China undergraduate mathematical contest in modeling has been attention by more and more people as a basic subject of the largest national college competition. The method of modeling competition has become more and more important. Open questions gradually increased with the development of competition. Most of the games can be solved by lots of solutions. Sometimes these methods can be used together. And there is also a lot of data which puts forward higher requirement on the ability of players. The modeling methods is too numerous to mention, so this article mainly four kinds Commonly used modeling method are introduced that differential and difference equations modeling method, Mathematical programming modeling method, Statistics modeling method, graph theory and interprets with calendar year’s test questions.KEY WORDS:Mathematical contest in modeling Statistics method Mathematical programming Graph theory目录摘要 (I)英文摘要 (II)前言 (1)1微分方程与差分方程建模 (2)1.1微分方程建模 (2)1.1.1微分方程建模的原理和方法 (2)1.1.2微分方程建模应用实例 (3)1.2差分方程建模 (4)1.2.1 差分方程建模的原理和方法 (4)1.2.2 差分方程建模应用实例 (5)2数学规划建模 (5)2.1线性规划建模的一般理论 (6)2.2线性规划建模应用实例 (7)3统计学建模方法 (8)3.1聚类分析 (8)3.1.1 聚类分析的原理和方法 (8)3.1.2 聚类分析应用实例 (8)3.2回归分析 (9)3.2.1 回归分析的原理与方法 (9)3.2.2 回归分析应用实例 (10)4图论建模方法 (10)4.1两种常见图论方法介绍 (11)4.1.1 模拟退火法的基本原理 (11)4.1.2 最短路问题 (11)4.2图论建模应用实例 (12)5小结 (13)参考文献 (13)致谢 (14)前言全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛.参赛者需要根据题目要求,在三天时间内完成一篇包括模型假设、模型建立和求解、计算方法的设计和实现、模型结果的分析和检验、模型的改进等方面的论文.通过参加竞赛的训练和比赛,可以提高学生用数学方法解决实际问题的意识和能力,而且在培养团队精神和撰写科技论文等方面都会得到十分有益的锻炼.竞赛题目的涉及面比较宽,有工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等.竞赛选手不一定预先掌握深入的专业知识,而只需要学过高等数学的相关课程即可,并且题目具有较大的灵活性,便于参赛者发挥其创造能力.近年来,竞赛题目包含的数据较多,手工计算一般不能实现,所以就对参赛者的计算机能力提出了更高的要求,如2003年B题,某些问题的解决需要使用计算机软件;2001年A题,问题的数据读取需要计算机技术,并且对于给出的图像,需要用图像处理的方法获得;再如2004年A题则需要利用数据库数据,数据库方法,统计软件包等等.竞赛题目的总体特点可大致归纳如下:(1)实用性不断加强,问题和数据来自于实际,解决方法需要切合实际,模型和结果可以应用于实际;(2)综合性不断加强,解法多样,方法融合,学科交叉;(3)数据结构越来越复杂,包括数据的真实性,数据的海量性,数据的不完备性,数据的冗余性等;(4)开放性也越来越突出,题意的开放性,思路的开放性,方法多样,结果不唯一等.总体来说,赛题向大规模数据处理方向发展,求解算法和各类现代算法相互融合.纵观历年的赛题,主要用到的建模方法有:初等数学模型、微分与差分方程建模、组合概率、数据处理、统计学建模、计算方法建模、数学规划、图论方法、层次分析、插值与拟合、排队论、模糊数学、随机决策、多目标决策、随机模拟、计算机模拟法、灰色系统理论、时间序列等.本文不一一列举竞赛题目中涉及的所有方法,只是重点讨论其中一些比较常用的方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论建模方法,并结合案例说明建模方法的原理及应用.1 微分方程与差分方程建模在很多竞赛题目中,常常会涉及很多变量之间的关系,找出它们之间的函数关系式具有重要意义.可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但可以得到含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程. 建立微分方程或差分方程的数学模型是一种重要的建模方法.如1996年A 题“最优捕鱼策略”,1997年A 题“零件参数设计”,2003年A 题“SARS 的传播”,2007年A 题“中国人口增长预测”,2009年A 题“最优捕鱼策略”等赛题中,都用到了这种方法.1.1 微分方程建模1.1.1 微分方程建模的原理和方法一般来说,任何时变问题中随时间变化而发生变化的量与其它一些量之间的关系经常以微分方程的形式来表现.例1.1 有一容器装有某种浓度的溶液,以流量1v 注入该容器浓度为1c 的同样溶液,假定溶液立即被搅拌均匀,并以2v 的流量流出混合后的溶液,试建立反映容器内浓度变化的数学模型.解 注意到溶液浓度=溶液体积溶液质量,因此,容器中溶液浓度会随溶质质量和溶液体积变化而发生变化.不妨设t 时刻容器中溶质质量为()t s ,初始值为0s ,t 时刻容器中溶液体积为()t v ,初始值为0v ,则这段时间()t t t ∆+,内有⎩⎨⎧∆-∆=∆∆-∆=∆t v t v V t v c t v c s 212211, (1) 其中1c 表示单位时间内注入溶液的浓度,2c 表示单位时间内流出溶液的浓度,当t ∆很小时,在()t t t ∆+,内有≈2c =)()(t V t s tv v V t s )()(210-+. (2) 对式(1)两端同除以t ∆,令0t ∆→,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00212211)0(,)0(V V s s v v dtdV v c v c dt ds . (3) 即所求问题的微分方程模型.虽然它是针对液体溶液变化建立的,但对气体和固体浓度变化同样适用.实际应用中,许多时变问题都可取微小的时间段t ∆去考察某些量之间的变化规律,从而建立问题的数学模型,这是数学建模中微分方程建模常用手段之一.常用微分方程建模的方法主要有:(1)按实验定律或规律建立微分方程模型.此种建模方法充分依赖于各个学科领域中有关实验定律或规律以及某些重要的已知定理,这种方法要求建模者有宽广的知识视野,这样才能对具体问题采用某些熟知的实验定律.(2)分析微元变化规律建立微分方程模型.求解某些实际问题时,寻求一些微元之间的关系可以建立问题的数学模型.如例1.1中考察时间微元t ∆,从而建立起反应溶液浓度随时间变化的模型.此建模方法的出发点是考察某一变量的微小变化,即微元分析,找出其他一些变量与该微元间的关系式,从微分定义出发建立问题的数学模型.(3)近似模拟法.在许多实际问题中,有些现象的规律性并非一目了然,或有所了解亦是复杂的,这类问题常用近似模拟方法来建立问题的数学模型.一般通过一定的模型假设近似模拟实际现象,将问题做某些规范化处理后建立微分方程模型,然后分析、求解,并与实际问题作比较,观察模型能否近似刻画实际现象.近似模拟法的建模思路就是建立能够近似刻画或反映实际现象的数学模型,因此在建模过程中经常做一些较合理的模型假设使问题简化,然后通过简化建立近似反映实际问题的数学模型.1.1.2 微分方程建模应用实例例1.2(2003年高教社杯全国大学生数学建模竞赛A 题) SARS 传播的预测. 2003年爆发的“SARS ”疾病得到了许多重要的经验和教训,使人们认识到研究传染病的传播规律的重要性.题目给出了感病情况的三个附件,要求对SARS 的传播建立数学模型:(1)对SARS 的传播建立一个自己的模型,并说明模型的优缺点;(2)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测.问题求解过程分析 由于题目具有开放性,故选择文献[1]中的求解思路分析. 传染病的传播模式可近似分为自由传播阶段和控后阶段,然后将人群分为易感者S ,感病者I ,移出者R 三类.由三者之间的关系可得到下列微分方程:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=-=-=NR I S hI dt dR hI kIS dt dI kISdt dS , 利用附件中给出的数据,可以将上述方程变形为I hI kNI dtdI λ=-=, 其中h kN -=λ,其解为t e I t I λ-=0)(.其中0I 为初始值.但此模型只适用于病例数与总人口数具有可比性的情况,当病例数远小于总人口数时,感病人数将随时间以指数增长.这是按实验定律或规律建立的微分方程模型.为进一步改进模型,用计算机跟踪病毒的个体传播情况,又建立计算机模拟模型.然后用计算机模拟北京5月10日之前SARS 的传播情况,并对5月10日以后的传播情况进行预测.但是得到的有效接触率与实际统计数据有所偏差,所以统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立随机模拟模型.通过计算机编程,产生正态分布的随机数,并对传染情况进行500次模拟,即可进行预测,并可得出对SARS 疫情控制提出的相应建议.1.2 差分方程建模1.2.1 差分方程建模的原理和方法差分方程在数学建模竞赛中应用的频率极高,所以要对这种方法引起足够的重视.它针对要解决的目标,引入系统或过程中的离散变量.具体方法是:根据实际的规律性质、平衡关系等,建立离散变量所满足的关系式,从而建立差分方程模型.差分方程可以分为不同的类型,如一阶和高阶差分方程,常系数和变系数差分方程,线性和非线性差分方程等等.建立差分方程模型一般要注意以下问题:(1)注意题中的离散变化量,对过程进行分析,尤其要注意形成变化运动过程的时间或距离的分化而得到离散变量;(2)通过对具体变化过程的分析,列出满足题意的差分方程,其中入手点是找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程.1.2.2差分方程建模应用实例例1.3(2007年高教社杯全国大学生数学建模竞赛A题)中国人口增长预测.题目要求从中国的实际情况和人口增长的特点出发,参考附录中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,特别要指出模型中的优点与不足之处.问题求解过程分析由于题目具有开放性,故选择文献[2]中的求解思路分析.通过分析题中相关的数据,考虑到我国近年来人口发展的总趋势,因为涉及到人口的增长和变换,所以可以先用微分方程来建立模型,并对我国人口增长的中短期和长期趋势做出预测.首先,根据灰色系统理论,使用灰色关联分析模型法对人口系统结构进行关联分析,找出影响人口增长的主要因素;其次使用年龄推算法进行短期预测.在建立和求解长期预测模型时,根据人口阻滞增长模型(Logistic模型),可以考虑对中国人口老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素建立新的人口增长的差分方程模型.但是它仅给出了人口总数的变化规律,反映不出各类人口的详细信息,所以我们需要建立离散化的模型,并进一步可以得到全面系统地反应一个时期内人口数量状况的差分方程,可以用微分和差分方程理论来表现和模拟人口数量的变化规律.从而对人口分布的状况、变化趋势、总体特征等有更加详细和科学的了解.在模型的求解过程中,用到了MATLAB软件,并做参数估计,利用所得结果和题目给出的近五年来的人口数据,对我国人口发展趋势进行了预测,得到了在老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素影响下,未来我国人口发展预测情况.2 数学规划建模数学规划是指在一系列条件限制下,寻求最优方案,使得目标达到最优的数学模型,它是运筹学的一个重要分支.数学规划的内容十分丰富,包括许多研究分支,如:线性规划、非线性规划、整数规划、二次规划、0-1规划、多目标规划、动态规划、参数规划、组合优化、随机规划、模糊规划、多层规划问题等.在1993年A 题“非线性交调的频率设计”,1993年B 题“足球队排名”,1995年A 题“飞行管理问题”,1996年B 题“节水洗衣机”,1997年A 题“零件的参数设计”,1998年A 题“一类投资组合问题”,1999年B 题“钻井布局”,2001年B 题“公交车调度问题”,2002年A 题“车灯线光源的优化”,2006年A 题“出版社书号问题”,2007年B 题“城市公交线路选择问题”等赛题中,都用到了规划的方法.在此以线性规划为例,对规划的方法进行探讨.2.1 线性规划建模的一般理论线性规划建模方法主要用于解决生产实际中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法.一般的优化问题是指用“最好”的方式,使用或分配有限的资源即劳动力、原材料、机器、资金等,使得费用最小或利润最大.优化模型的一般形式为:()m ax m in 或 ()x f z = (4)().0..≤x g t s ()m i ,,2,1 = (5)()()12,,T n x x x x =,.由(4)、(5)组成的模型属于约束优化.若只有(4)式就是无约束优化.()x f 称为目标函数,()0g x ≤称为约束条件.在优化模型中,如果目标函数()x f 和约束条件中的()g x 都是线性函数,则该模型称为线性规划.建立实际问题线性规划模型的步骤如下:(1)设置要求解的决策变量.决策变量选取得当,不仅能顺利地建立模型而且能方便地求解,否则很可能事倍功半.(2)找出所有的限制,即约束条件,并用决策变量的线性方程或线性不等式来表示.当限制条件多,背景比较复杂时,可以采用图示或表格形式列出所有的已知数据和信息,从而避免“遗漏”或“重复”所造成的错误.(3)明确目标要求,并用决策变量的线性函数来表示,标出对函数是取极大还是取极小的要求.需要特别说明的是,要使用线性规划方法来处理一个实际问题,必须具备下面的条件:(1)优化条件:问题的目标有极大化或极小化的要求,而且能用决策变量的线性函数来表示.(2)选择条件:有多种可供选择的可行方案,以便从中选取最优方案.(3)限制条件:达到目标的条件是有一定限制的(比如,资源的供应量有限度等),而且这些限制可以用决策变量的线性等式或线性不等式表示出来.此外,描述问题的决策变量相互之间应有一定的联系,才有可能建立数学关系,这一点自然是不言而喻的.线性规划模型的求解可用图解法或单纯形法.随着计算机的普及和大量数学软件的出现,可以利用现成的软件MATLAB或LINGO等求解,在此不再叙述.2.2线性规划建模应用实例例2.1(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目给出了美国某艾滋病医疗试验机构公布的两组数据,数据涉及到了病人CD4和HIV的浓度含量的测试结果.根据所给的资料需要参赛者完成以下问题:(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间;(2)利用附件2的数据,评价4种疗法的优劣(仅以4CD为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间;(3)如果病人需要考虑4种疗法的费用,对评价和预测有什么影响.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.首先对题目所给数据进行分析,考虑到治疗的效果与患者的年龄有关,将患者按年龄分组,如25~35岁及45岁以上4组.每组中按照4种疗法和4个25岁,45~~14岁,35治疗阶段(如1020周,4030周),构造16个决策单元.取4~~~~0周,2010周,30种药品量为输入,治疗各个阶段末患者的4CD值的比值为输出.CD值与开始治疗时4然后建立相应的数学模型,利用相对有效性评价方法,建立分式规划模型并经过变换,转化为线性规划模型求解,对各年龄组患者在各阶段的治疗效率进行评价.计算结果:对第1年龄组疗法2和4在整个治疗中效率较高,在第4阶段仍然有效;对第2年龄组疗法1在第1,2阶段有效;对第3年龄组疗法1,2,3在第1阶段有效;对第4年龄组疗法1,2在第1,2阶段有效.表明只有2514岁的年4种轻患者,才能在治疗的最~后阶段仍然有有效的疗法.随后,由线性规划模型的对偶形式建立预测模型,对各年龄组各种疗法下一阶段的疗效进行预测.若由某决策单元得到的实际输出大于预测输出,则该决策单元相对有效;反之,说明该种疗法对该组患者在治疗的未来阶段不再有效,应该转换疗法.3 统计学建模方法在数学建模竞赛中,常常会涉及到大量的数据,因此,我们就需要用统计学建模方法对这些数据进行处理.此类方法主要包括统计分析、计算机模拟、回归分析、聚类分析、数据分类、判别分析、主成分分析、因子分析、残差分析、典型相关分析、时间序列等.如2004年A题“奥运会临时超市网点设计问题”,2004年B题“电力市场的输电阻塞管理问题”,2007年A题“人口增长预测问题”,2008年B题“大学学费问题”,2012年A题“葡萄酒的评价”等都用到了这种建模方法.在此选取其中两类方法进行阐述.3.1聚类分析3.1.1聚类分析的原理和方法该方法说的通俗一点就是,将n个样本,通过适当的方法选取m聚类中心,通过研究各样本和各个聚类中心的距离,选择适当的聚类标准,通常利用最小距离法来聚类,从而可以得到聚类.结果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图.这种模型的的特点是直观,容易理解.聚类分析的类型可分为:Q型聚类(即对样本聚类)和R型聚类(即对变量聚类).通常聚类中有相似系数法和距离法两种衡量标准.聚类方法种类多样,有可变类平均法、中间距离法、最长距离法、利差平均和法等.在应用时要注意,在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理.主要的方法步骤大致如下:(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵;(3)重新计算类间距离,得到衡量矩阵;(4)重复第2步,直到只剩下一个类.3.1.2聚类分析应用实例例3.1(2012年高教社杯全国大学生数学建模竞赛A题)葡萄酒的评价.题目的附件中给出了某一年份一些葡萄酒的评价结果,和该年份这些葡萄酒的和酿酒葡萄的成分数据.要求参赛者建立数学模型解决以下问题:(1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信;(2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;(3)分析酿酒葡萄与葡萄酒的理化指标之间的联系;(4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.问题求解过程分析由于题目具有开放性,故选择文献[4]中的求解思路分析.由于给定了酿酒葡萄的理化指标,首先可将附录2和附录3中的一些数据进行处理.并可以据此对各种酿酒葡萄进行聚类分析,但是,由于题目中所给的数据庞大,所以可通过主成分分析法,简化并提取大部分有效信息,再用聚类分析对酿酒葡萄进行分级.最后根据酿酒葡萄对应葡萄酒质量的平均值大小进行比较,排序分级.接下来针对问题中分析酿酒葡萄与葡萄酒理化指标之间的联系,及上面整理好的数据,采用回归分析原理,在SPSS中得到酿酒葡萄与葡萄酒的理化指标之间的联系.再通过相关分析,得出相应的相关系数,从而得到相应的判断结论.在分析酿酒葡萄与葡萄酒的理化指标之间的联系时,还用到了多元线性回归分析.该模型用于生活实践中,也可以解决很多实际问题.3.2回归分析回归分析是利用数据统计原理,对大量数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程,并加以外推,用于预测今后的因变量的变化的分析方法.3.2.1回归分析的原理与方法回归分析是在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型;对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制.回归分析主要包括一元线性回归、多元线性回归、非线性回归.回归分析的主要步骤为:(1)根据自变量和因变量的关系,建立回归方程.(2)解出回归系数.(3)对其进行相关性检验,确定相关系数.(4)当符合相关性要求后,便可与具体条件结合,确定预测值的置信区间.需要注意的是,要尽可能定性判断自变量的可能种类和个数,并定性判断回归方程的可能类型.另外,最好应用高质量的统计数据,再运用数学工具和相关软件定量定性判断.3.2.2回归分析应用实例例3.2(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目同例2.1.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.问题2的解决就用到回归模型.首先分析数据知,应建立时间的一次与二次函数模型,并经过统计分析比较,确定哪种较好.所以可建立一个统一的回归模型,也可对每种疗法分别建立一个模型.以总体回归模型为例,分别用一次与二次时间函数模型进行比较,可知疗法3~1用一次模型较优,且一次项系数为负,即4CD在减少,从数值看疗法3优于疗法2和1;疗法4用二次模型较优,即4t左右达到最大.可以通过4条回归CD先增后减,在20曲线进行比较,显示疗法4在30周之前明显优于其它.最后再用检验法作比较,结果是疗法1与2无显著性差异,而疗法1与3,2与3,3与4均有显著性差异.4 图论建模方法图论建模方法在建模竞赛中也经常涉及,应用十分广泛,并且解法巧妙,方法灵活多变.如1990年B题“扫雪问题”,1991年B题“寻找最优Steiner树”,1992年B题“紧急修复系统的研制”,1993年B题“足球队排名”,1994年A题“逢山开路问题”,1994年B题“锁具装箱问题”,1995年B题“天车与冶炼炉的作业调度”,1997年B题“截断切割的最优排列”,1998年B题“灾情巡视最佳路线”,1999年B题“钻井布局”,2007年B题“城市公交线路选择问题”等都应用到了图论的方法.图论近几年来发展十分迅速,在物理、化学、生物学、地理学、计算机科学、信息论、控制论、社会科学、军事科学以及计算机管理等方面都有着广泛的应用.因此图论越来越受到了全世界数学界和工程技术界乃至经营决策管理者的重视.同时也成为了数学建模中一种十分重要的方法.图论问题算法很多,包括最短路、最大流、最小生成树、二分匹配、floyd、frim等.。
数学建模竞赛涉及的知识体系

数学建模竞赛涉及的知识体系
数学建模竞赛主要涉及的知识体系包括:
1.数学分析:涵盖极限、微积分、线性代数、多任务规划等;
2、统计学:涵盖概率统计、参数估计、判别分析、假设检验等;
3、计算机科学:涵盖算法设计与分析、数据结构、操作系统、计算机网络等;
4、优化计算理论:涵盖模糊数学、规划设计、复杂网络、组合优化与混合整数规划等;
5、系统信息论:涵盖动态系统、随机系统、稳定性与稳定性分析、分布式系统等;
6、应用建模:涵盖计算机模拟、仿真、智能技术、组织路径规划分析等;。
7、开放性题目建模:涵盖模式识别、数值分析、经济学、管理学、理论力学、智能技术等;
8. 技术应用:涵盖C、C++、Java、Matlab、汇编等语言的应用编程技术,以及Excel、Visio等软件的使用;
9、建模方法:涵盖模型的建立、数据的收集与分析、解题思路的选定、解释模型的验证与调整等。
数学建模与数学建模竞赛简介

全国大学生数学建模竞赛简介数学建模就是根据客观的实际问题抽象出它的数学形式,用以分析、研究和解决实际问题的一种科学方法。
它强调的是以解决实际问题为背景的数学方法和计算手段。
随着计算机技术的普及和发展,使得数学得以进入了科研工作的各个领域。
人们逐渐认识到,在诸如化学、生物、医药、地质、管理、社会科学等传统领域中,不是没有数学的用武之地,而是由于计算手段的不足而影响到数学在这些领域中的应用。
计算机技术的不断发展,为数学进入这些领域提供了强有力的计算手段。
这不仅为数学的应用提供了广阔的发展空间,也为数学本身提出了众多新的课题。
“高技术本质上是一种数学技术”很早就在美国的科技界得到了共识。
传统的数学教育已经不能适应对未来科技人才需求。
基于这种前瞻性考虑,1985年美国数学教育界出现了一个名为Mathematical Competition in Modeling(数学建模竞赛)的一种通讯竞赛活动。
其目的就是以赛促教。
随着网络技术的发展,这项活动很快发展为一项国际性的竞赛。
我国的部分高校于1989年参加了国际大学生数模竞赛活动,1992年举行了首届全国联赛。
1994年教育部高教司正式发文,要求在全国普通高校陆续开展数学建模、机械设计、电子设计等三大竞赛。
自此,在一些社会单位的资助下大学生数学建模活动在全国迅猛发展起来。
大多数的本科高等院校相继开设了这门课程。
据统计,全国大学生数学建模竞赛的参赛队由1993年的420个发展到2008年的12836个,遍及全国31个省/市/自治区(包括香港)1022所院校。
数学建模竞赛的题目都来自各个领域的实际问题,如:“钻井布局”、“节水洗衣机”;有些还是来自当今前沿领域中的问题,如:“投资的收益和风险”、“DNA序列分类”。
与一般的竞赛活动不同,竞赛题目本身有些没有固定的答案。
评价建模工作看重的是建模的合理性、创造性、和使用的数学方法、算法等。
全国大学生数学建模竞赛面向全国大专院校的学生,不分专业(分甲、乙两组,甲组竞赛所有大学生均可参加,乙组竞赛只有大专生可以参加)。
数学建模优秀论文基于层次分析法的模糊综合评价模型

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): _________________________ 我们的参赛报名号为(如果赛区设置报名号的话):_______________________________ 所属学校(请填写完整的全名):广东金融学院____________________________________ 参赛队员(打印并签名):1.曾彬_______________________________________________2. 曾庆达 _______________________________________3. 陈佳玲 _______________________________________指导教师或指导教师组负责人(打印并签名):_____________________日期:2013年8_月22日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):高校学生评教系统改进的研究摘要本文是研究关于高等学校学生评价教师的评价系统问题,用层次分析法确定了十项指标的权值, 并给出了一个新的评教分数的计分模型-模糊综合评价模型。
本文亮点在于采用基于层次分析法的模糊数学模型。
数学建模成绩评价

E题数学建模竞赛成绩评价与预测摘要本体是关于评价比较与预测问题,是对数学建模开展以来各高校建模水平的评价和比较以及预测。
第一,分析给出的各高校的获奖数据,统计,进行综合量化评价,运用的方法是层次分析法,综合评判和线性分析。
最后,以学校的建模水平进评比。
对于四个问题,对各高校建模获奖数据进行了统计分析。
在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的一级评判模型把所给学校的国家一等奖、国家二等奖,省一等奖、省二等奖,省三等奖,成功参赛奖作为因素集。
在用模糊综合评判方法时,确定评判矩阵和权重分配是两项关键性的工作,求权重分配时,通过往年评分标准确定数据后用层次分析法计算权重;对于评判矩阵,通过对整理的各高校每个等级奖项数目对各高校获奖总数的比重建立评价矩阵。
通过C语言编程处理得出的各高校建模水平,通过线性回归,预测十二五期间的建模水平,从而解决问题。
关键字:综合评判;层次分析法;统计分析;线性回归;C语言编程;画图软件;一、问题的重述近20年来,CUMCM的规模平均每年以20%以上的增长速度健康发展,是目前全国高校中规模最大的课外科技活动之一。
2011 年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1251所院校、19490个队(其中本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。
在数学建模活动开展20周年之际,有必要对以往的数学建模工作进行总结及对未来的发展进行预测。
通过某高校2006-2011年数学建模成绩,建立合理的评价模型,对该校十一五期间数学建模工作进行评价,并对该校十二五期间的数学建模成绩进行预测;试建立评价模型,给出吉林赛区十一五期间各校建模成绩的科学、合理的排序;并给出吉林赛区各院校十二五期间的建模成绩进行预测;给出全国各院校的自建模竞赛活动开展以来建模成绩的科学、合理的排序;并对全国各院校十二五期间的建模成绩进行预测;你认为如果科学、合理地进行评价和预测,除全国竞赛成绩、赛区成绩外,还需要考虑那些因素?二、模型假设1、假设附表中的信息基本准确没有异常值并且数据是真实合理的。
学生宿舍设计方案的评价模型

学生宿舍设计方案的评价模型赵娟【期刊名称】《安徽科技学院学报》【年(卷),期】2011(025)006【摘要】本文运用模糊数学方法对学生宿舍设计方案进行评价。
首先对2010年全国大学生数学建模竞赛的D题就四种宿舍设计方案的经济性、舒适性、安全性三个指标使用模糊聚类分析法得到了4种宿舍设计方案关于上述三个指标的排序。
继而赋予经济性、舒适性、安全性三个指标以不同的权重,运用模糊综合决策对4种宿舍设计方案进行了综合排序。
%We present the evaluation for the student dormitory design scheme applying the fuzzy mathematics method. Firstly, according to the 2010 national university mathematical modeling competition topic D, we present fuzzy clustering analysis to give the sorted about four kinds of student dormitory design scheme. Then, we also give the comprehensive ranking about three indexes of the economy, the comfort and the safety applying the fuzzy comprehension evaluation.【总页数】6页(P55-60)【作者】赵娟【作者单位】宿州学院数学与统计学院,安徽宿州234000【正文语种】中文【中图分类】O224【相关文献】1.高职院校学生宿舍设计方案的综合评价模型 [J], 陈敏娜2.学生宿舍设计方案评价模型 [J], 吕林霞;赵锡英;董艳英;惠战强;索婷3.基于层次分析法的学生宿舍设计方案评价模型 [J], 余小飞;付木亮4.学生宿舍设计方案的评价模型 [J], 马宏锋;祁忠斌;王社军5.基于层次分析法的学生宿舍设计方案综合评价模型 [J], 冯国勇;郭先平因版权原因,仅展示原文概要,查看原文内容请购买。
【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】长江水质的评价和预测

长江水质的评价和预测李云锋王勇...本文利用长江流域近两年多主要城市水质检测数据,通过对原始数据进行归一化综合处理,确定了水质新的综合评判指标函数ψ。
在对整个长江流域所有观测站的位置关系作一定的简化假设后,得到长江综合评定函数值ψ=0.4331,水质为良好。
主要污染物为氨氮。
通过建立污染浓度的反应扩散方程,本文用三种方法反演出未知的污染源强迫函数f(x,t),并对,(x,t)的三种数据加以综合分析,分别给出了高锰酸钾盐和氨氮污染源的主要分布地区。
为了对长江未来水质污染发展趋势进行预测,本文建立了回归分析模型并对回归系数进行了F检验,结果是如果不采取有效的治理措施。
长江可饮用水将逐年下降,且10年后可饮用水所占长江水总量的比例将不到50%。
根据这一预测结果,我们进而使用二元线性回归模型。
通过对各种不可饮用水进行综合考虑,得到如下结果:要在未来10年内使长江干流的不可饮用水(IV类和V类水)的比例控制在20%以内,且没有劣V 类水,那么每年污水处理量至少为75.195亿吨长江水质的评价和预测.pdf (370.52 KB)水质的评价和预测模型张震张超...本文首先考虑到水质类别的差异和相同类别水质在数量上的差异对综合评价的影响。
构造“S”形的变权函数,对属于不同水质类别的同种污染指标进行“动态加权”,建立基于逼近理想点排序法的评价模型和利用灰色关联度的分析方法。
对长江水质状况做出了综合评价:其次,根据7个观测站的位置将干流分成8段,把每段河道内所有污染源都等效为一个段中央的连续稳定源,分别利用稳态条件下的一维水质模型及质量守恒定律。
得出中间6段每个月的排污量,综合比较各河段一年多来的总排污量得到主要污染源的分布区域:然后,用每年不可饮用类水的百分比之和刻画水质状况。
综合利用灰色GM(1,1)模型和时间序列分析方法,对变化趋势进行了预测:最后,建立不可饮用类水的百分比与长江水总流量和废水排放量的线性回归模型,计算在满足约束条件下排污量的极限值,用排污量的预测值减去极限值,得到未来10年的污水处理量水质的评价和预测模型.pdf (283.07 KB)长江水质的评价预测模型谯程骏张东辉...本问题是一个对长江的水质进行综合评价、预测和控制的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取论域U={全岛刮胡子的人},
集合A={不给自己刮胡子的人},用特征函数刻画为
A(某人)
1, 0,
某人不给自己刮胡子 某人给自己刮胡子
问题:显然理发师 U,那么理发师是否属于A?
模糊集合及其运算
二、模糊集合及其运算 美国控制论专家Zadeh教授正视了经典集合描述的
“非此即彼”的清晰现象,提示了现实生活中的绝大多数 概念并非都是“非此即彼”那么简单,而概念的差异常以 中介过渡的形式出现,表现为“亦此亦彼”的模糊现象。 基于此,1965年, Zadeh教授在《Information and Control》杂志上发表了一篇开创性论文“Fuzzy Sets”, 标志着模糊数学的诞生。
模糊集合及其运算
(3)模糊矩阵的转置 定义:设 A (aij )mn称, AT (aijT为)mAn的
转置矩阵,其中 aijT a。ji
(4)模糊矩阵的 截矩阵
定义:设 A (aij )m对n, 任意的 [0称,1],
A (aij( ) )mn 为模糊矩阵A的 截矩阵,其中
aij( )
定义:设 A (aij )mn , B (bij都)m是n 模糊矩阵,定义 相等:A B aij bij 包含:A B aij bij
模糊集合及其运算
并: A B (aij bij )mn 交: A B (aij bij )mn 余: Ac (1 aij )mn
例:设A 1 0.1, B 0.4 0 ,则 0.2 0.3 0.3 0.2
主要 内容
模糊数学
模糊集合及其运算 模糊聚类分析 模糊综合评判 模糊线性规划 **模糊决策 模糊数学真题分析
模糊集合及其运算一、经典集合与特征函数 合:具有某种特定属性的对象集体。
通常用大写字母A、B、C等表示。
论域:对局限于一定范围内进行讨论的对象的全体。
通常用大写字母U、V、X、Y等表示。
论域U中的每个对象u称为U的元素。
A
~
和A
~
。
模糊集合及其运算
模糊子集通常简称模糊集,其表示方法有: (1)Zadeh表示法
A A( x1) A( x2 ) A( xn )
x1
x2
xn
这里 A( xi )表示 xi
x对i 模糊集A的隶属度是
A( xi。)
如“将一1,2,3,4组成一个小数的集合”可表示为
A 1 0.8 0.2 0 12 34
模糊集合及其运算
在论域U中任意给定一个元素u及任意给定一个
经典集合A,则必有 u A或者u A ,用函数表示为:
其中
A : U {0,1} u A(u),
A (u)
1, 0,
u A u A
函数 A称为集合A的特征函数。
模糊集合及其运算
罗素(Russell)悖论:在一个孤岛上唯一的一个 理发师,其工作是“专门替那些不给自己刮胡子的人 刮胡子”,现问理发师本人该不该给自己刮胡子?
A B 1 0.1 A B 0.4 0
0.3 0.3
0.2 0.2
Ac 0 0.9 0.8 0.7
Bc 0.6 1 0.7 0.8
模糊集合及其运算
(2)模糊矩阵的合成
定义:设 A (aij )ms , B (bij )称sn模, 糊矩阵 A B (cij )mn
可省略
模糊集合及其运算
(2)序偶表示法 A {( x1, A( x1)),( x2, A( x2 )),,( xn , A( xn ))}
(3)向量表示法 A ( A( x1), A( x2 ),, A( xn ))
若论域U为无限集,其上的模糊集表示为:
A A( x)
xU x
模糊集合及其运算
为A与B的合成,其中 cij max{(aik bkj )1 k。 s}
例:设A 0.4 0.1
0.5 0.2
0.6 , 0.3
B
0.1 0.3 0.5
0.2 0.4
,
则
0.6
A B 0.5 0.3
0.6 0.3
B
A
0.1 0.3
0.4
0.2 0.3 0.5
0.2 0.3 0.5
并: ( A B)(x) A( x) B( x),x U 表示取大; 交: ( A B)(x) A( x) B( x),x U 表示取小。 余: Ac ( x) 1 A( x),x U
模糊集合及其运算
几个常用的算子: (1)Zadeh算子 (,)
a b max{a,b},a b min{a,b} (2)取大、乘积算子 (,)
(6)Einstain算子 ( , )
a b
ab
,a b
ab
1 ab
1 (1 a)(1 b)
模糊集合及其运算
3、模糊矩阵 定义:设 R (rij )mn ,0 rij 称 1R, 为模糊矩阵。
当 rij只取0或1时,称R为布尔(Boole)矩阵。
当模糊方阵 R (rij )n的n 对角线上的元素 都rij 为1时, 称R为模糊自反矩阵。 (1)模糊矩阵间的关系及运算
模糊集合及其运算
1、模糊子集
定义:设U是论域,称映射
A : U [0,1],
~
x A( x) [0,1]
~
确定了一个U上的模糊子集 A。映射 A称为 A隶属函
~
~
~
数,A( x)称为 x对
~
A的隶属程度,简称隶属度。
~
模糊子集 A 由隶属函数 A唯一确定,故认为二者
~
~
是等同的。为简单见,通常用A来表示
a b max{a,b},a b ab (3)环和、乘积算子 (ˆ ,)
a ˆ b a b ab,a b ab
模糊集合及其运算
(4)有界和、取小算子 (,)
a b 1 (a b),a b min{a,b}
(5)有界和、乘积算子 (,)
a b 1 (a b),a b ab
★模糊集合A 完全由隶属函数 A(x)来刻画,当
A (x) = {0,1} 时, A 退化为一~ 个普通集。
~
不是表示积分的意思
xU
x A( x) x
不是分数,它表示点
i 对模糊集A 的隶属度
模糊集合及其运算
2、模糊集的运算 定义:设A,B是论域U的两个模糊子集,定义
相等: A B A( x) B( x),x U 包含: A B A( x) B( x),x U