光学基础知识简介PPT
光学基础知识详细版.pptx

2. 物像关系基础公式
• 高斯公式:
p 为物距,q 为像距,f 为焦距
在一般摄影时像距其实与焦距非常接近, 但是在微距摄影时,像距则可能大于焦距,此 时放大率会超过 1。利用高斯公式其实也可以 导出放大率公式:
放大率 M﹦p/q
2. 色差
• 透镜最主要像差一般为色差,大家都知道三棱 镜会将白光分散为光谱,透镜的侧面看来其实 也像棱镜,所以会有色差,红光波长较长,结 果红光焦点就比蓝光焦点长,因此焦点不在同 一平面上,所以目镜看红光影像清晰,蓝光影 像就不清晰,反之亦然,用没有消色差的透镜 当物镜就会看到物体镶了红边或蓝边,不够清 晰。
称轴线 今后我们主要研究的是共轴球面系统和平面镜、
二、成像基本概念 1、透镜类型 正透镜:凸透镜,中心厚,边缘薄,使光线会聚,也叫会聚透镜
会聚:出射光线相对于入射光线向光轴方向折转
负透镜:凹透镜,中心薄,边缘厚,使光线发散,也叫发散透镜
发散:出射光线相对于入射光线向远离光轴方向折转
2、透镜作用---成像
1. 焦距
在单透镜而言,如果窗外景物够远,那么透镜到倒立影像之距离 可视为焦距。如要更确实的量测,可以对着太阳在地面呈像,再 量测透镜到影像的距离。
• 要知道真正的焦距,还有一个方法,就是用物距与像距来计算, 因为物距与像距的比与物高与像高的比值是一样的,物高可以找 一个已知高度的物体,像高可以量测,物距可以量测,像距就可 以计算出来,而物距超过焦距五十倍以上时,算出来的像距已经 极接近焦距的数值。
第五节 光学系统类别和成像的概念
各种各样的光学仪器 显微镜:观察细小的物体 望远镜:观察远距离的物体
各种光学零件——反射镜、透镜和棱镜
光学系统:把各种光学零件按一定方式组合起来,满足一定的要求
《光学》全套课件 PPT

τ
cosΔ
dt =0
τ0
I = I1 +I2
叠加后光强等与两光束单独照射时的光强之和,
无干涉现象
2、相干叠加 满足相干条件的两束光叠加后
I =I1 +I2 +2 I1I2 cosΔ 位相差恒定,有干涉现象
若 I1 I2
I =2I1(1+cosΔ
)
=4I 1cos2
Δ 2
Δ =±2kπ I =4I1
r2
§1-7 薄膜干涉
利用薄膜上、下两个表面对入射光的反射和 折射,可在反射方向(或透射方向)获得相干光束。
一、薄膜干涉 扩展光源照射下的薄膜干涉
在一均匀透明介质n1中
放入上下表面平行,厚度
为e 的均匀介质 n2(>n1),
用扩展光源照射薄膜,其
反射和透射光如图所示
a
n1
i
a1 D
B
n2
A
n1 C
2、E和H相互垂直,并且都与传播方向垂直,E、H、u三者满 足右螺旋关系,E、H各在自己的振动面内振动,具有偏振性.
3、在空间任一点处
εE = μH
4、电磁波的传播速度决定于介质的介电常量和磁导率,
为
u= 1 εμ
在真空中u= c =
1 ≈3×108[m ε0μ0
s 1]
5、电磁波的能量
S
=E
×H ,
只对光有些初步认识,得出一些零碎结论,没有形
成系统理论。
二、几何光学时期
•这一时期建立了反射定律和折射定律,奠定了几何光学基础。
•李普塞(1587~1619)在1608年发明了第一架望远镜。
•延森(1588~1632)和冯特纳(1580~1656)最早制作了复 合显微镜。 •1610年,伽利略用自己制造的望远镜观察星体,发现了木星 的卫星。 • 斯涅耳和迪卡尔提出了折射定律
《光学》全套课件

干涉现象及其条件分析
干涉现象定义
干涉是指两列或几列光波在空间某些区域 叠加时,相互加强或减弱的现象。
干涉条件
两列光波的频率相同、振动方向相同、相 位差恒定。
常见干涉类型
杨氏双缝干涉、薄膜干涉等。
干涉现象应用
测量光波波长、检测光学元件表面质量等 。
衍射现象及其分类讨论
衍射现象定义
衍射是指光波在传播过程中,遇
黑体辐射概念及历史背景
01
阐述黑体辐射的定义、历史背景以及与经典物理学的矛盾。
普朗克黑体辐射公式
02
介绍普朗克为解决黑体辐射问题提出的能量量子化假设,以及
由此导出的黑体辐射公式。
公式验证及意义
03
通过实验验证普朗克公式的正确性,并探讨其在物理学史上的
重要意义。
光电效应实验原理及结果分析
1 2 3
光电效应实验装置及原理
到障碍物或穿过小孔时,偏离直
线传播的现象。
01
衍射分类
02 根据障碍物或孔的尺寸与光波长
的相对大小,可分为菲涅尔衍射
和夫琅禾费衍射。
常见衍射现象
单缝衍射、圆孔衍射、光栅衍射 等。 03
衍射现象应用
04 光谱分析、光学成像等。
偏振现象及其产生原因分析
偏振现象定义
偏振是指光波中电场矢量方向在传播过程中有规则变化的 现象。
介绍量子光学的研究内容,包括光的量子态、量子纠缠、量子通信等,
以及该领域的研究进展和未来发展方向。
03
量子光学在现代科技中应用前景
探讨量子光学在现代科技中的应用前景,如在量子计算、量子通信、量
子精密测量等领域的应用潜力。
05
非线性光学简介
高中光学知识点总结ppt

高中光学知识点总结ppt第一部分:光的传播1. 光的直线传播:光是以直线传播的,不受到障碍物的影响,而形成阴影。
这一原理在成像学中得到了广泛的应用,例如在相机、望远镜等光学仪器中。
2. 光的折射现象:当光从一个介质进入另一个介质时,由于介质的密度不同,导致光线的传播发生改变,这就是光的折射现象。
折射现象在光的导光器等光学器件中都发挥了重要作用。
3. 光的反射现象:当光线入射到一个介质表面上时,一部分光被反射,一部分光被折射,这就是光的反射现象。
反射现象在镜子、光学玻璃等器件中得到了广泛的应用。
4. 光的散射现象:当光线遇到介质内的不均匀粒子时,会发生光的散射现象,使得光线出现弯曲、偏折等现象。
这一现象在大气层中的光线散射、激光导引光等领域应用广泛。
第二部分:光的色散1. 光的色散现象:当光线通过介质时,由于不同波长的光在介质中传播的速度不同,导致光的发生色散现象,即不同波长的光线会具有不同的折射角度。
这一现象在光谱仪、分光计、色散棱镜等仪器中得到了广泛应用。
2. 光的偏振:当光线传播时,光的振动方向会发生变化,具有一定的振动特性。
这一性质在偏振镜、偏振片等光学器件中得到了广泛的应用。
第三部分:光的成像1. 光的成像原理:当光线通过透镜或反射镜时,会在焦点处形成清晰的像。
这一原理在相机、望远镜、显微镜等光学仪器中得到了广泛应用。
2. 透镜成像:透镜是一种能够成像的光学器件,根据透镜的形状、曲率等不同特性,可以实现不同的成像效果,例如放大、缩小、翻转等。
3. 反射镜成像:反射镜是一种利用光的反射原理成像的光学器件,根据反射镜的形状、表面特性等不同,在光学成像中也发挥了重要的作用。
第四部分:光的波动1. 光的波动特性:光具有波动特性,能够表现出干涉、衍射、偏振等现象。
这一特性在光学干涉仪、激光干涉仪、衍射光栅、偏振片等器件中得到了广泛的应用。
2. 光的波长和频率:光被认为是一种电磁波,具有一定的波长和频率,这一性质在波长和频率的测量、光的激发等领域得到了广泛应用。
《基础光学》PPT课件

n n 称为光焦度。
r
Φ与物、象位置无关,仅与两介质和界面有关
Φ 的单位为m-1, 用屈光度D表示,1D=1m-1
2.焦点和焦距
(1)光焦度
n n
r
r
n
n’
由 n n n n 有 P n
p p r
n
p
当p、n、n给定后,r P 。
光焦度Φ:表征折射球面的聚光本领。
① 是系统的固有特征量 表征折射面的聚光本领,它不因入射 光线的方向改变而改变。
A—B的路径应选择哪一条?
按费马原理C点的位置应使[ABC]为极值。 求路径 l 光程变分为0的条件:光线只取
x (n1l1 n2l2 ) 0
z
( n1l1
n2l2 )
0
的路径。
将l1、l2的表达式代入上式有
l ACB n1l1 n2l2
其中:
l1
y12 ( x x1 )2 z 2
v2
c
c
有 n1l1 n2l2
n1
n2
* 可见,光在不同的介质中,相同的时间内传
播的几何路程不同,但光程相同。
又有
t n1l1 n2l2
c
c
光程的概念可理解为: 光在介质中通过真实路程所需时间内,在真空中所能传播的距离。
借助光程,可将光在各种介质中走过的路程折算为在真空中的路程,便于比较光在 不同介质中传播所需时间长短。
光学
主讲 于国萍
武汉大学物理科学与技术学院 2010级
同 学 们 好!
主要参考书
• 赵凯华、钟锡华《光学》上下册 (北大) • 钟锡华《现代光学基础》(北大) • 郭永康、鲍培谛《基础光学》(四川大学) • 郭光灿、庄象萱《光学》(高教社) • 章志鸣、沈元华、陈惠芬《光学》(高教社) • 母国光、战元令《光学》(人民教育社) • E.赫克特;A.赞斯《光学》上下册 (高教社)
《大学物理光学》PPT课件

3
光学仪器的发展趋势 随着光学技术的不断发展,光学仪器正朝着高精 度、高灵敏度、高分辨率和自动化等方向发展。
03
波动光学基础
Chapter
波动方程与波动性质
波动方程
描述光波在空间中传播的数学模型,包括振幅、频率、波长等参现象,是波动光学的基础。
偏振现象及其产生条件
干涉仪和衍射仪使用方法
干涉仪使用方法
通过分束器将光源发出的光波分成两束,再经过反射镜反射后汇聚到一点,形成干涉图样。通过调整反射镜的位 置和角度,可以观察不同干涉现象。
衍射仪使用方法
将光源发出的光波通过衍射光栅或单缝等衍射元件,观察衍射现象。通过调整光源位置、衍射元件参数等,可以 研究光的衍射规律。
光的反射与折射现象
光的反射
光在两种介质的分界面上改变传播方向又返回原来 介质中的现象。反射定律:反射光线、入射光线和 法线在同一平面内,反射光线和入射光线分居法线 两侧,反射角等于入射角。
光的折射
光从一种介质斜射入另一种介质时,传播方向发生 改变的现象。折射定律:折射光线、入射光线和法 线在同一平面内,折射光线和入射光线分居法线两 侧,折射角与入射角的正弦之比等于两种介质的折 射率之比。
了解干涉条纹的形成和特点。
衍射光栅测量光谱线宽度
03
使用衍射光栅测量光谱线的宽度,掌握衍射光栅的工作原理和
测量方法。
量子光学实验项目注意事项
单光子源的制备与检测 了解单光子源的概念、制备方法及其检测原理,注意实验 过程中的光源稳定性、探测器效率等因素对实验结果的影 响。
量子纠缠态的制备与观测 熟悉量子纠缠态的基本概念和制备方法,掌握纠缠态的观 测和度量方法,注意实验中的环境噪声、探测器暗计数等 因素对纠缠态的影响。
《光学复习课》课件

光学在生活中的应用
01
02
03
04
照明
利用光学原理设计的灯具,提 供舒适、高效的照明。
显示技术
电视、电脑显示器等利用光学 技术实现图像显示。
光学通信
光纤技术用于高速、大容量的 数据传输。
摄影
记录生活点滴,分享美好时刻 。
光学在科技中的应用
量子光学
研究光与物质相互作用中的量 子现象,为量子计算和量子通
信等领域提供基础。
光刻技术
用于集成电路制造,是现代电 子工业的基础。
光学传感
检测物理、化学和生物等参数 ,广泛应用于环境监测、医疗 诊断等领域。
光学信息处理
利用光学原理实现快速、高效 的信息处理,应用于图像识别
、语音识别等领域。
THANKS FOR WATCHING
感谢您的观看
光的干涉和衍射
总结词
光的波动性质
详细描述
光的干涉是指两束或多束光波在空间某些区域相遇时,相互叠加产生加强或减弱的现象。而光的衍射 是指光波在传播过程中遇到障碍物时,光波发生弯曲的现象。这两种现象都是光波动性的表现。
02 光的干涉
干涉现象
光的干涉是指两束或多束相干 光波在空间某些区域相遇时, 相互叠加产生加强或减弱的现 象。
干涉现象是光学中的重要现象 ,在光学仪器、信息光学、量 子光学等领域有广泛应用。
干涉现象的发现和研究为光的 波动理论提供了重要的实验证 据。
干涉条件
相干性
参与干涉的光波必须是相干的,即具 有相同的频率、振动方向和相位关系 。
平行性
稳定性
光波传播过程中,光程差的变化必须 足够慢,以保证干涉现象的稳定。
《光学复习课》ppt课件
光学设计基础PPT课件

kSVi1源自k i1h2 z
h2
P 3J
k i1
h
2 z
h2
W
J
2
k i1
h z h
3 h
u n
n n n nr
J
2
k i1
1 h2
1 n2
精品课件
23
二、 从已有资料中选择初始结构的方法
随着计算机的发展和光学设计技术的提高, 人们已经设计出很多性能优良的各种光学系统, 并把这些资料载入技术档案和专利文献中。有些 光学设计手册也专门收集了有关设计资料。如能 从这些专利文献中选择一些光学特性与所设计的 物镜尽可能接近的结构做为初始结构,不但会给 设计者节省好多时间,而且也容易获得成功。尤 其是,设计高性能的复杂物镜时,一般都从专利 文献中选择初始结构。
小视场 显微物镜 大孔径 望远物镜
L,SC,lFC
大视场 目镜
小孔径
X
ts
,
X
t
,
X
s
KT, yFC,yZ
大视场 摄影物镜 全部七种象差 大孔径 投影物镜
精品课件
简单,双胶合 (双分离) 称小象差系统
无须校正轴上点象 差,主要为轴外点 象差,适当校正光 栏球差,比较复杂
复杂 称为大像差系统
14
第二章 光学系统设计过程
精品课件
3
象差研究: (1)象差的分类 (2)象差产生的原因及危害 (3)光学系统对象差的要求及象质评价
所以总的目的 --完成光学系统及光学元件的设计; 象差分析、象差平衡、象质评价
精品课件
4
(2)象差的分类与表示
分类
轴上点 单白色光 ::光 Ll'F',SC C'
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
像差 指在光学系统中由透镜材料的特性和折 射(反射)表面的几何形状引起的实际像和 理想像的偏差。
像差--实际光学系统成像的一系列缺陷
像差
球差 慧差 像散 场曲 畸变 轴向色差 垂轴色差
单色光像差
复色光像差
球差
轴上点发出的同心光束经光学系统中球面折 射后,将不为同心光束,不同倾角的光线交 光轴与不同的位置。 轴上点在像面得不到完善的像点,而是得到 一个弥散圆。 单正透镜产生负球差,单负透镜产生正球差
高 斯 像 面
e
c Bz ef ab
f
b
g
cd
gh
像散
轴外物点用细光束成像时形成两条相互垂 直且相隔一定距离的短线像的一种非对称像 差。 子午光束和弧矢光束分别成像为两条短线, 这两条短线不相交而相互垂直且隔一定距离
T’
S’
像 平 面
光阑 光学系统
场曲
物平面成曲面像的一种像差 实际光学系统不能使垂轴直线仍成像为垂轴 直线。 光学系统存在场曲时,不能使一个较大的平 面物体上的各点同时在同一个像面上成清晰 的像。若按中心调焦,中心清晰,边缘则模 糊,反之已然。
B
C A
畸变
横向(垂轴)放大率随视场的增大而变化所 引起的物像失去相似性的像差。
色差
白光由各种不同波长(颜色)的单色光组成 光学材料对不同波长的色光折射率不同,造 成了各色光之间成像位置和大小的差异。 由不同色光引起的像差称为色差。 轴向色差(位置色差) 垂轴色差(倍率色差)
光学玻璃
对折射率色散投射比光谱透射比和光吸收等光 学特性有特定要求,且光学性质均匀的玻璃。 按光学性质可分为冕牌玻璃和火石玻璃。各自 又分为多种,如:氟冕(FK)、冕(K)、钡 冕(BaK)、火石(F)、重火石(ZF) 冕牌玻璃低折射率,低色散。 火石玻璃高折射率,高色散。
光学玻璃一般有如下几种光学常 数: 折射率 nλ 阿贝常数 Vb=(nD-1)/(nF-nC) 中部色散 dn=nF-nC
物方视场角:在物空间中,入窗边缘对入瞳 中心的张角2。 像方视场角:在像空间中,出窗边缘对出瞳 中心的张角2 。 半视场角与可以表示光组视场的大小,因 此习惯上常把与称为视场角。
光学系统视场的表示方法
线视场:用能看到的物平面直径表示。 常用于近距离成像系统,如显微系统。 角视场:用物方视场角2和像方视场角2‘表 示。 常用于远距离成像系统,如望远镜,照相物 镜。
1
A
2
u1
A'
A
u1 u2
A'
1 2 A'
A
1
2
A
u1 u2
孔径光阑
限制成像光束的光阑。
1
A
2
u1
A'
A
u1 u2
A'
入瞳:孔径光阑被其前面光组在系统物空间 所成的像。 出瞳:孔径光阑被其后面光组在系统像空间 所成的像。 对于一定位置的物体而言,入瞳决定了能进 入系统成像的最大光束孔径,且是物面上各 点发出的成像光束进入系统的公共入口。
-U1
A
-u
U’
u’ A’
-δL’
O光束通过光学系统后,不会 聚在一点,而是呈彗星状图形的一种相对主 光线失对称的像差。 子午慧差和弧矢慧差 子午平面:由轴外物点和光轴所确定的平面 弧矢平面:过主光线且与子午平面垂直的平 面
K
a’ z’ Ok B a B d h b’ T
F/#
相对孔径的倒数。 F=f/D 光从无限远入射时的轴上有效焦距和近轴入 瞳孔径之比。
视场光阑
限制物体成像范围的光阑。
O
A1 A2
A3
入射窗:视场光阑被其前面光组在物空间所 成的像。 出射窗:视场光阑被其后面光组在像空间所 成的像。 入射窗限制物空间的成像范围。 出射窗限制像空间的成像范围。
轴向色差
同一透镜对不同色光有不同焦距,对一定物 距成像时,像距不同,按波长由短到长,像 点离开透镜由近到远地排列在光轴上。
A A’F O
1
O
k
A’c
垂轴色差
不同色光的焦距不等时,放大率也不等,因 而有不同的像高。
F D C A
B
实际光组中光束的限制
在实际光学系统中所用的光学零件总有 一定的大小,因此从一点出发能进入光学系 统的光束其立体角大小将取决于光学零件的 尺寸。 更确切地说,是夹持光学零件的金属框限 制了成像光束的大小,光学上把这种限制成 像光束的光孔称之为光阑
衍射极限
衍射极限指光学系统产生像差的原因不是设 计和制造缺陷,而是由于衍射物理效应。 简单说就是现有情况下所能达到的最好状况
光学传递函数OTF
把物的亮度分布分解为各种频率的谱(展成傅 立叶级数或傅立叶积分),研究光学系统对各 种空间频率亮度呈余弦分布目标传递能力。 调制传递函数MTF 相位传递函数PTF 高频部分反映对物体细节传递能力;中频反映 对物体层次传递能力;低频部分物体轮廓传递 能力。
数值孔径NA
显微和投影系统常用NA表示性能。 NA=n*sinUmax N为物方介质的折射率 物方孔径角越大,数值孔径越大,进入系统 的光能越多,理论分辨本领越高。
相对孔径A
望远和摄影系统常用相对孔径A表示性能。 A=D/f D是入瞳直径,f是物镜焦距 焦距一定时,入瞳直径越大,其相对孔径也 越大,表明能进入系统的光能也越多。
物方孔径角:轴上物点发出的过入瞳边缘的 光线与光轴的夹角U。 像方孔径角:由出瞳边缘射至轴上像点的光 线与光轴的夹角U 。 过入瞳中心的光线称为主光线。其也过孔径 光阑和出瞳的中心。
孔径光阑只是对一定的物体位置而言的。
1
A u1 u2
2
1 A'
A
B
2
B’
A'
孔径角是表征实际光学系统功能的重要参数 之一,它决定了像的照度与系统的分辨细节 的能力。 光学系统的几种与孔径角有关的性能参数。 数值孔径NA,相对孔径A,F#