随钻测量

合集下载

第五节 随钻测量系统

第五节 随钻测量系统

3.实时检测钻头钻压、转数或扭矩
(3)钻井参数测量 在很多情况下,地面指重表显示的钻压存在误差 (如在大斜度井眼
中,由于井壁摩阻,井底钻压可能低于地面指示的20%)。而随钻测量系 统是近钻头的钻井参数测量,数据实时可靠。
三、随钻测量系统井下钻具组合
钻杆
钻铤
随钻测井 定向参数测量 钻井参数测量 井底马达 钻头第五节Biblioteka 随钻测量系统一、概述 1前言
30年代出现的电测技术对鉴别和评价地层起了很大作用。但是,它的 主要缺点是必须在起出钻柱后才能使用电缆下井测井。等到实际测井时, 由于钻井液侵入的影响,妨碍了地层真实特性的测量。当钻头钻穿不同地 层时,由于没有确定的方法辨别出岩性的变化,一些重要的层位可能没有 检测到。有时,后来的电测显示出错过了油层段顶部的取心点,或是钻头 钻得过深钻到了产油层下部的水层中。钻井液测井和监测钻速虽可提供一 些井底情况,但由于等到岩屑循环到地面的时间延误使这一过程效率太 低。所以,需要一种能够在钻井时瞬时而连续地监测地层的系统。
图5.5.2随钻测量系统钻具组合示意
随钻测量系统(Measurement-While-Drilling ,简称MWD)是指在钻 头附近测得某些信息,不需中断正常钻进操作而将信息实时传送到地面上 来过程。与随钻测斜仪(传统意义上的MWD)不同,随钻测量系统包含的信 息更多,信息(图5.5.1)的种类有: (1)定向数据 (井斜角,方位角,工具面角); (2)地层特性 (伽玛射线,电阻率测井)(LWD); (3)钻井参数 (井底钻压、扭矩、转数)。
地层参数
定向参数
钻井参数
图5.5.1 随钻测量系统测量的信息
二、MWD的用途
MWD用途主要有三种: 1.定向测量 井眼轨迹参数。此种用途占全部MWD工作的70% 。 2.随钻测井(Logging-While-Drilling) (1)利用伽玛射线确定页岩层来选择套管下人深度; (2)选定储层顶部开始取心作业; (3)钻进过程中与邻井对比; (4)识别易发生复杂情况的地层; (5)对电缆测井不太适合的大斜度井进行测井; (6)电阻率测井可发现薄气层; (7)在钻进时评估地层压力。

6随钻测量

6随钻测量

Li Qi 随钻测量与地质导向工具是一项钻井技术的“地下革命”定向钻井技术在勘探、开发中的功用海上或陆地丛大位移定Li Qi 第2页盐丘式井工程救险井因事故复杂进行侧钻多目标勘探与开发控制断层钻探水平井进行开发地面条件限制向井侧钻分支井6.1.1 6.1.1 随钻信息实时测量随钻信息实时测量--控制控制--通讯流程图6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi第3页(下行测量信息通道)6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi 第4页6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi 第5页 6.1.4 6.1.4 随钻测量数据传输系统随钻测量数据传输系统6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi 第6页z 声波遥传系统(声波遥传系统(ATS ATS)载波频段在)载波频段在400400~~2000Hz6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi第7页 6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi第8页探管脉冲发生器脉冲发生器6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi第9页由钻柱来的高速泥浆推动涡轮发电机叶轮旋转从而带动驱动磁铁旋转,驱动磁铁带动从动磁铁及固定连接在其上的主轴及旋转斜盘旋转,旋转斜盘转动使柱塞泵柱塞产生往复运动,实现柱塞泵工作。

在主轴斜盘下端镶有磁铁即转子磁铁,转子磁铁旋转时在其下的定子线流体压力作用下向上运动,进而带动蘑菇头向上运动,实现脉冲信号传输。

脉冲发生器本体系统6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi 第10页Li Qi 第11页脉冲发生器外围件系统6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi 第12页6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi第13页 6.1 6.1 随钻测量信息系统概述随钻测量信息系统概述Li Qi 第14页高粘泥浆环境蘑菇头牢牢粘死高粘泥浆将定子12个水眼中的8个堵死。

随钻测量

随钻测量
遥测系统工作时,在隔离器11的周围、钻柱9与接收天线12之间的岩石中将有电流流过,在地表装置中接收的信号是上述电流造成的电位差。接收装置2借助相关分析方法处理来自井底的信号,并把测得的参数显示在屏幕13上。
这种系统有几个优点:
(1)数据传输速度快,载波信息量大;
(2)受泥浆介质和水泵特性的影响小,即使在提下钻过程中也能检测数据。
(1)电传导(硬导线系统)
(2)电磁发射;
(3)地震(声)波;
(4)钻井液压力脉冲。
直到1960年,这些遥测系统的研究主要是为了随钻测井。定向井的日益增加,特别是花费高昂的近海地区,刺激了人们去开发既能处理定向测量数据又能处理地层评价数据的随钻测量系统。由于在海上平台中利用传统测量工具费用很高,人们不久就认识到使用定向随钻测量仪器更具有商业潜力。起初的MWD系统就只提供定向数据,紧接着就有了可以附加测量钻井参数和地层数据的另外—些工具。尽管有关其它3种遥测方法的研究还在继续着,但迄今为止却只有这些依靠钻井液压力脉冲的MWD系统在技术上和经济上是成熟的。
第二节
信号发射器和地面的信号接收、处理设备一起构成了钻井液压力脉冲式MWD信号传输系统。现有的钻井液脉冲传输系统的主要区别是采用哪种处理方法来传送数据。目前使用的钻井液压力脉冲式MWD主要采用三种方式在井底将数据编码、信号传输和在地面上译码,这三种钻井液脉冲传输方式井内仪器执行元件控制。
(1)坚固可靠的传感器,可在钻进动态条件下在钻头处或钻头附近测量需要的数据;
(2)将资料传送到地面的方法简单有效;
(3)可以方便地在任何钻机上安装并操作的系统,对正常钻进作业影响不大;
(4)成本合理,并能给作业者带来效益。
为开发满足这些要求的系统,人们作过多次尝试。主要问题是井下和地面之间的遥测传输系统。从1930年到1960年,人们研究了4种不同的遥测系统:

随钻测量与控制技术—概述

随钻测量与控制技术—概述
-13 -
DRI
国外发展历程与现状
DRI
1. 发展历程回顾 /随钻测井LWD
Schlumberger、Halliburton和Baker-Hughes三大石 油服务公司掌握先进的LWD随钻测井技术,拥有完 备的LWD系列装备
他们经历了几十年的发展和积累,是主要技术和专 利的拥有者,是主要装备的生产者,是服务的主要 提供者,是市场的主要占有者
地面可调弯角
-18 -
国外发展历程与现状
1. 发展历程回顾 /导向钻井技术
DRI
滑动导向
旋转导向
摩阻大 低钻速 低钻压
转盘旋转钻进过 程中随钻完成导 向功能
摩阻小 钻速高 实效高 井眼清洁
20世纪90年代国际上开始了旋转导向钻井 轨迹光滑
系统的研究。
延伸能力强
-19 -
国外发展历程与现状
DRI
1. 发展历程回顾 /导向钻井技术
DRI
-10 -
国外发展历程与现状
1. 发展历程回顾 /随钻测量MWD
DRI
智能钻柱系统
无线电磁波随钻测量(EM-MWD)
-11 -
声波随钻测量系统
国外发展历程与现状
1. 发展历程回顾 /工程参数测量
地面仪表 间接测量
钻压 压力 流量
-12 -
MWD
参数随钻 直接测量
压力 扭矩 温度 振动 转速
-26 -
国外发展历程与现状
DRI
2. 国外发展现状 /随钻测量MWD /Halliburton
ABI Sensor-近钻头井斜传感器
PWD-随钻压力测量系统
-27 -
国外发展历程与现状
DRI
2. 国外发展现状 /随钻测量MWD /BakerHugues

电磁波随钻测量系统

电磁波随钻测量系统

发射机连接图
第三部分 现场操作




施工准备 仪器连接 开机测试 井口安装 入井测试 出井测试 注意事项
施工准备




在到达井场后,将接收机及计算机放进仪器房,确认仪 器房与钻机的距离,距离太远不能进行安装; 在钻机上找一个接触比较良好的地方安装接收天线连钳; 以井口为中心,便于连接接收机方向找一个湿润的地方, 将地锚砸入地中,在接线口安装上连接线缆; 将连接线缆安全高架,注意防碰、防损,连接线不允许 打直角弯,以防折断;
电 磁 波 随 钻 测 量 系 统
今后发展方向
1.高数据传输率随钻测量系统 采用数据压缩技术、高效编码技术的EM-MWD系统。 2.地质导向技术 大量的测井技术转化为随钻测井工具,实现随钻实时地 质评价,通过测井信息与井眼轨迹信息结合,使得钻井轨迹 能够准确行进在储层中最佳位置。 3.提高综合井控能力 随钻测量系统携带大量的地质信息、工程参数、井眼轨 迹信息,更多的工程信息井下化对于安全井控意义重大,利 于工程事故早期准确预报。
e)
f)
仪器主体外径:Φ48mm;电路骨架直径:Φ35mm;
测量范围和精度: 井斜角: 0~180° ±0.2° 方位角: 0~360° ±3.0°(井斜角 <5°) ±2.0°(5°≤井斜角≤9°) ±1.5°(井斜角>9°) 工具面角: 0~360° ±1.5°
下密封盖帽
下密封盖帽安装在仪器测量串的最下端,其材料为优质钛 合金,其外径为: Φ48mm,有效长度为:175mm。
第二部分
电磁波随钻测量系统原理和组成
一.系统概述
电磁波随钻测量系统是以电磁波形式将井下随钻测 量参数通过地层向地面传输的随钻测量系统。 测量参数:井斜、方位、工具面、温度

随钻测井及地质导向钻井技术

随钻测井及地质导向钻井技术

泥浆
立管压力
叶片连续转动,波形连续变化
时间
二、随钻测量技术
随钻测井及地质导向钻井技术
报告提纲
一、地质导向钻井技术概述 二、随钻测量技术 三、LWD地质导向仪器 四、地质导向技术应用实例 五、结论与认识
一、地质导向钻井技术概述
按照预先设计的井眼轨道钻井。
任务是对钻井设计井眼轨道负责,使
实钻轨迹尽量靠近设计轨道,以保证

几何导向
井眼准确钻入设计靶区。(由于地质
(2)井口设备:进行随钻测量时, 必须要用电缆把探管送至井下, 并通 过电缆给井下仪器供电, 同时把井下探管测量到的那些数据信息输送到地面 计算机。另外, 随钻测量时井下采用动力钻具, 循环泥浆。因此, 井口设备 完成两个功能: I.电缆密封;Ⅱ.保证泥浆正常循环。
二、随钻测量技术
2、MWD技术
MWD(Measurement While Drilling)无线随钻测量仪,是对 定向井、水平井井眼轨迹随钻监测并指导完成井眼轨迹控制的测量 仪器。 MWD无线随钻测量仪器在油田勘探开发各个阶段中,为高难 度定向井、水平井、大位移井、分支井提供高精度导向测量。同时 由于实时无电缆传输的优势,满足了滑动钻井和旋转钻井的要求, 为各种井型提供高效率的井下工程及地质数据传输,从而大幅度地 提高钻井效率和降低整体钻井成本。并为后续多地质参数的测量提 供了挂接条件和数据结构平台,使随钻测井进而实现地质导向成为 可能。
二、随钻测量技术
1、有线随钻测量技术
探管工作原理
探管坐标系及参数定义 井斜角(INC):井眼轴线上任一点的井眼切线方向线,与通过该点的重 力线之间的夹角。
G2 INCarctg X
GY2
GZ

随钻测量技术的研究与认识

随钻测量技术的研究与认识

随着钻井技术的不断发展,定向井工艺技术的出现推动了随钻测量技术的不断发展。

从上世纪50年代,随钻测量技术就已经开始使用,到上世纪70年代无线随钻测量技术研发并现场试验成功,引起了人们的关注,使其迅速发展。

伴随着水平井施工任务的不断增加,高难度井的数量也在不断增加,随钻测量技术也突破一个又一个难题发展到现在的随钻测井技术和旋转导向技术。

一、随钻测量技术的分类随钻测量技术就是指在钻进过程中通过井下测量仪器测量所需的井眼轨迹数据,然后利用各种不同的方式将数据传输至地面,地面系统接收后进行解码得到井下所测数据。

目前,随钻测量技术根据其功能可以分为随钻测井技术(LWD)、随钻测量技术(MWD)等,其中随钻测量技术主要是测量轨迹控制所需要的参数,如井斜角、方位角、工具面角等;而随钻测井技术除要提供上述参数外,还要测量所钻地层的地质参数,如自然伽马、电阻率、中子密度等。

随钻测量技术根据其采用的数据传输方式不同,可以分为有线随钻测量技术、无线随钻测量技术和其他方式。

有线随钻测量技术具有传输速率高,测量项目齐全等优势,但是其施工不方便,需要停止钻井作业才能施工,因此会耽误较多时间。

无线随钻测量技术又可以根据其传输介质分为泥浆脉冲方式、电磁波方式、声波方式;其中泥浆脉冲方式技术最为成熟,使用受限较小,所以其应用最为广泛,但是它受到泥浆性能的影响严重,比如在泡沫欠平衡钻井中就无法使用;电磁波传输方式不受钻井液性能的影响,所以适合于欠平衡钻井,但是它的传输深度受到地层电阻率的限制,所以其应用范围并不广泛,只能在某些区块应用较多;声波传输方式目前还处于研发阶段,最近也有报道该方式现场试验成功的案例,但是还没有形成商业规模;其他的无线随钻测量技术主要是指智能钻杆,其传输速率快,同时不受泥浆性能的限制,但是其生产成本高,现在只处于试验阶段,距离规模化商业应用还有一段时间。

二、随钻测量技术的研究现状近年来,国内外石油企业和高校对在不断的研发更加先进高效的随钻测量仪器,所以随钻测量技术也在不断的快速发展。

煤矿井下随钻测量定向钻进技术

煤矿井下随钻测量定向钻进技术

东翼胶带巷 东翼回风巷 东翼轨道巷
113槽回运风料顺道 113工作面一号联络巷 113工作面二号联络巷
实 例——陕西彬长亭南煤矿试验
113运输顺槽
2-1分支孔
1-2分支孔 1-3分支孔
113回风顺槽
2#主孔 1#主孔
1-1分支孔
1# 主孔终孔深度1046m,创造了当时我国煤矿井下瓦斯抽放水平定向钻孔的最高记 录,并施工3个分支孔,1-1分支和1-3分支从回顺巷道中靶穿出; 2# 主孔深度822m,施 工1个分支孔,从运顺巷道中部中靶穿出。
随钻测量定向钻进设备组成
设备组成: 1.定向钻机 2.钻杆 3.钻头 4.泥浆泵 5.螺杆钻具 6.随钻测量系统
定向钻机
定向钻机: ZDY6000LD、ZDY6000LD(A)、ZDY4000LD
定向钻机
ZDY6000LD(A)钻机为整体式布局,由主机、电机泵 组、操纵装置、履带车体、稳固装置、电磁起动器、 泥浆泵八大部分组成,各部分之间用高压胶管和螺栓 连接。
煤矿井下随钻测量定向钻进分类
本煤层定向孔 煤矿井下随钻测量定向钻进技术适用于普氏硬度系数大
于等于1(f≥1)的较完整煤层,但不能在煤层断层带或煤层 陷落柱区域内钻进。 a 单孔抽放 b 主孔与分支孔联合抽放(羽状分支孔)
煤矿井下随钻测量定向钻进分类
梳状定向孔 煤层硬度系数较小,煤质松软,在煤层中难以成孔,采用
煤矿井下随钻测量定向钻进技术
中煤科工集团西安研究院钻探所
定向钻进定义
• 石油钻井中定向钻进的定义:沿着预先设计的井 眼轴线钻达目的层的钻井方法。
• 地质勘探中定向钻进的定义:利用钻孔自然弯曲 规律或采用人工造斜工具,使钻孔按设计要求进 行延伸钻到预定目标的一种钻进方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六部分随钻测量技术随钻测量与地质导向工具是一项钻井技术的“地下革命”盐丘定向钻井技术在勘探、开发中的功用海上或陆地丛式井工程救险井因事故复杂进行侧钻多目标勘探与开发控制断层钻探水平井进行开发地面条件限制大位移定向井侧钻分支井6.1 随钻测量信息系统概述随钻测量系统MWD EM ˙MWD FM ˙MWD实时动态数据测量储存系统井下动态信息测储设备近钻头测量系统LWD 空间姿态测量系统钻头前方探测系统SWD地面监测录井系统综合录井仪八参数仪地面模拟器地面与井下数据储存、分析与显示系统地面或远方决策与总控系统微电脑一微电脑二微电脑三(上行测量信息通道)6.1.1 随钻信息测量-控制-通讯流程图地面控制设备环空/钻柱井下控制机构井下执行机构钻头/工具6.1.2 随钻测量系统发展∙MWD ——measure while drilling∙EM.MWD ——eleetronic measure MWD∙FE.MWD ——formtion Evaluation MWD ∙DWD ——Diagnostic-While-Drilling∙LWD——logging while drilling∙SWD——seismic while drilling∙GST ——Geosteering Tool6.1.3 随钻测量参数∙井斜、方位、工具面、井下钻压、井下扭矩、马达转速∙井下振动、伽马射线、地层电阻率、密度∙方位中子密度、中子孔隙度、环室温度∙探测各种异常地层压力、预测钻头磨损状况∙探测井下异常情况及故障分析∙通过井下存储可实现测井的全井图像分析6.1.4 随钻测量数据传输系统泥浆脉冲传输方法●涡轮发电机给系统供电●接收系统、接收各部分传感器采集的数据●连续脉冲波发生器由转子和定子组成,转子与定子之间切割泥浆产生不同的泥浆压力差。

利用钻杆传播应力波(声波)方法Burne和Kirkwood(1972)、Drumheller(1989)奠定了理论基础;Lee和Ramarao(1995)分析了充液钻杆中声波传输问题;哈里伯顿(2000)开发了声波遥传系统AST(Acoustic Telemetry System)最有潜力的高速传输方式●电磁波(EM)遥传系统载波频率一般在30Hz以下●泥浆脉冲遥传系统载波频率一般在100Hz以下●声波遥传系统(ATS)载波频段在400~2000Hz6.2 MWD 随钻测量系统井下传感器组装工具A/D 转换板温度校正换算,标定钻压校正加速度X,Y,Z钻压,钻头扭矩环空压力井眼压力温度磁力仪X 、Y1000赫兹16位为研究用的仪表面板储存器1000赫兹16位1000赫兹16位0.2赫兹0.2赫兹0.2赫兹格式变换数字低频滤波付立叶变换处理集成平均值计算转换诊断处理记录速度200,100,40赫钻压扭矩弯矩转速环定压力井眼压力加速度静态矩(平方根、立方根)温度1跳钻2 粘/滑3涡动、反转4扭振5轴向加速度6横向加速度7弯矩8钻头切削效率传输到地面0.2赫兹诊断标志静态的数据检测数字信号处理数据监测和处理框图Sandia National LaboratoriesMeasurement Sub:•Three-axis acceleration•High-frequency axial acceleration•Angular acceleration•Magnetometer (rotary speed)•Weight on bit, torque on bit, bending moment•Drill pipe and annulus pressure•Drill pipe and annulus temperatureSandia National Laboratories Data-transmission formatA stream of digital, bi-phase encoded framesData linkDigital data rate = 200,000 bits per secondA commercially available data link called Wet-connect wireline is chosed Surface display6.3 LWD 随钻测井系统6.3.1 与电缆测井的比较∙使测井在地层被破坏或被污染之前完成∙部分信息能实时测量,可使钻井过程更有效∙使测井更安全保险(某些井环境恶劣、下电缆困难)∙避免了仪器落入井中又无法回收等事故∙几乎能完成所有电缆测井工作,且有相同的测量精度∙成本高、尺寸大∙海上钻井作业中,使用LWD的比例高达95%∙每年随钻测井服务产值已占整个测井行业产值的25%6.3.2 系统组成及性能CDN——补偿中子密度CDR——补偿双电阻率指向性6.3.3 随钻测井工具(1)补偿双电阻率CDR (Compensated Dual Resistivity)∙高频感应能在各种泥浆中工作∙补偿井眼的影响∙伽马射线能谱分析∙探测两种深度:(中深RPS(?)是相位测量,深RAD(放射的)是通过衰感测量,使用目的是对比所钻地层,对地层进行评估)Integrated Drilling Evaluation and Logging (IDEAL)——ARC5 Array Resistivity CompensatedThe ARC5 Array Resistivity Compensated tool provides 2-MHz borehole-compensated phase and attenuation(衰减) resistivity measurements with multiple depths of investigation in slimholes.Benefits of the ARC5 tool∙Formation evaluation measurements while drilling in slimholes.∙Accurate Rt up to 200 ohm-m with wide range of borehole fluids.∙Invasion profiling to identify permeable zones.∙High-quality real-time measurements available for correlation and geosteering.Integrated Drilling Evaluation and Logging (IDEAL)——ARC5 Array Resistivity CompensatedFeatures of the ARC5 tool∙Five transmitters and two receiverscombine to give 10 vertically matched,borehole-compensated, 2-MHzresistivities.∙Total gamma ray sensor for lithologyestimation and correlation.∙Downhole memory and batteries allowtool to be run while drilling or whiletripping.∙Real-time data transmission with Slim1* MWD system∙Data processing provides horizontaland vertical resistivities (R h, R v), mudresistivity (R m), phase caliper(井径仪)andinvasion profile.6.3.3 随钻测井工具(2)补偿中子密度CDN (Compensated Density Neutron)由两个中子源、一个中子探测器、一个密度探测器、一个扶正器和电子线路构成。

∙使用两个探测器的目的是补偿井眼的影响∙补偿热中子密度∙补偿岩石的密度6.3.3 随钻测井工具(3)方位中子密度ADN(Azimuthal Density Noutron)由中子源、中子探测器、密度源、密度探测器和超声探测器等构成∙世界首创方位核子测井工具∙方位核子测量能认识非均匀性地层,并在不规则井眼中很好应用∙与电缆测量的密度和孔隙度的精度相同∙可用超声进行偏离间隙测量∙可允许大泥浆排量∙放射源易于安装打捞Integrated Drilling Evaluation and Logging(IDEAL)——AND Azimuthal Density Neutron∙是提供方位核子测量的第一个随钻测井工具;∙AND tool measures borehole-compensated formation density, neutron porosity, photoelectric factor (光电因子)and ultrasonic standoffs(间隙).∙These are individually measured in four quadrants (象限) around the borehole --top, bottom, left and right --along with averagemeasurements around the borehole.∙Quadrant readings allow detection of bed boundaries and6.3.3 随钻测井工具(4)近钻头电阻率RAB(Resistivity At Bit)由打捞柱、电池、上发射器、方位电极、电极环、方位伽马射线、钻头电阻率探测器和现场可换扶正器构成∙可定向地测量钻头处的方位电阻率∙可对地层倾角和井眼间隙补偿采用近钻头测量的原因∙实现地层对比∙实现地层评价∙保证测井数据更能真实反映地层情况∙得到比电缆测井效果更好的测井数据Integrated Drilling Evaluation and Logging(IDEAL)——RAB Resistivity-at-the-Bit方位电极应用:•地层评价(Formation evaluation)-盐水泥浆或高电阻率地层可精确测量电阻率-High vertical resolution(分辨率)(几英寸)-方位电阻率井眼成像探测电阻率各向异性-Sensor at bit to ensure minimum possible invasion-Total gamma ray sensor for lithology estimation-Battery power and downhole memory to log while trippingIntegrated Drilling Evaluation and Logging(IDEAL)——RAB Resistivity-at-the-Bit应用•相关性(Correlation)-Resistivity at the bit for instantaneous detection of casing and coring points,using the bit as the measurement electrode•钻井/机械(Drilling/mechanical)-The RAB tool can be run either slick or with a sleevestabilizer-Built into a short, independent sub for minimal interference with HBA design-Shock measurement to allow the driller to adjust weight on bitIntegrated Drilling Evaluation and Logging(IDEAL)——ISONIC Tool (90年代)在钻头上12米处的钻铤内装置发射和阵列接收探头,钻进时发射探头产生声脉冲,声波通过泥浆和地层传播到达4接受探头阵列,ISONIC 工具获得声波波形(acoustic waveform )记录在井下存储器中,传输时间(transit time )(地层时差)实时发送到地面,用于确定地层孔隙性(porosity )、评价岩性、估测孔隙压力、并作为(synthetic seismograms)的输入值;实时钻井和测井数据可与3维地震数据一起放在计算机工作站上,声波数据可以来将钻头位置标示在地震图上。

相关文档
最新文档