统计学第八章 时间序列分析
统计学 第8章 时间序列分析

第八章时间序列分析

第⼋章时间序列分析第⼋章时间序列分析与预测【课时】6学时【本章内容】§ 时间序列的描述性分析时间序列的含义、时间序列的图形描述、时间序列的速度分析§ 时间序列及其构成分析时间序列的构成因素、时间序列构成因素的组合模型§ 时间序列趋势变动分析移动平均法、指数平滑法、模型法§ 时间序列季节变动分析[原始资料平均法、趋势-循环剔除法、季节变动的调整§ 时间序列循环变动分析循环变动及其测定⽬的、测定⽅法本章⼩结【教学⽬标与要求】1.掌握时间序列的四种速度分析2.掌握时间序列的四种构成因素3.掌握时间序列构成因素的两种常⽤模型4.掌握测定长期趋势的移动平均法5.了解测定长期趋势的指数平滑法6.;7.掌握测定长期趋势的线性趋势模型法8.了解测定长期趋势的⾮线性趋势模型法9.掌握分析季节变动的原始资料平均法10.掌握分析季节变动的循环剔出法11.掌握测定循环变动的直接法和剩余法【教学重点与难点】1.对统计数据进⾏趋势变动分析,利⽤移动平均法、指数平滑法、线性模型法求得数据的长期趋势;2.对统计数据进⾏季节变动分析,利⽤原始资料平均法、趋势-循环剔除法求得数据的季节变动;3.对统计数据进⾏循环变动分析,利⽤直接法、剩余法求得循环变动。
【导⼊】;很多社会经济现象总是随着时间的推移不断发展变化,为了探索现象随时间⽽发展变化的规律,不仅要从静态上分析现象的特征、内部结构以及相互关联的数量关系,⽽且应着眼于现象随时间演变的过程,从动态上去研究其发展变动的过程和规律。
这时需要⼀些专门研究按照时间顺序观测的序列数据的统计分析⽅法,这就是统计学中的时间序列分析。
通过介绍⼀些时间序列分析的例⼦,让同学们了解时间序列的应⽤,并激发学⽣学习本章知识的兴趣。
1.为了表现中国经济的发展状况,把中国经济发展的数据按年度顺序排列起来,据此来研究。
2.公司对未来的销售量作出预测。
这种预测对公司的⽣产进度安排、原材料采购、存货策略、资⾦计划等都⾄关重要。
统计学罗文宝主编 第八章时间序列分析单选题多选题参考答案

第八章 时间序列分析二、单项选择题1.根据时期数列计算序时平均数应采用( C )。
A 、几何平均法 B.加权算术平均法 C.简单算术平均法 D.首末折半法2.间隔相等的时点数列计算序时平均数应采用(D )。
A.几何平均法B.加权算术平均法C.简单算术平均法D.首末折半法3.数列中各项数值可以直接相加的时间数列是(B )。
A.时点数列B.时期数列C.平均指标动态数列D.相对指标动态数列4.时间数列中绝对数列是基本数列,其派生数列是(D )。
A. 时期数列和时点数列B. 绝对数时间数列和相对数时间数列C. 绝对数时间数列和平均数时间数列D.相对数时间数列和平均数时间数列5.下列数列中哪一个属于动态数列( D )。
A.学生按学习成绩分组形成的数列B.工业企业按地区分组形成的数列C.职工按工资水平高低排列形成的数列D.出口额按时间先后顺序排列形成的数列6.已知某企业1月、2月、3月、4月的平均职工人数分别为190人、195人、193人和201人。
则该企业一季度的平均职工人数的计算方法为(B )。
7.说明现象在较长时期内发展的总速度的指标是(C )。
A 、环比发展速度 B.平均发展速度 C.定基发展速度 D.环比增长速度8.已知各期环比增长速度为2%、5%、8%和7%,则相应的定基增长速度的计算方法为(A )。
A.(102%×105%×108%×107%)-100%B. 102%×105%×108%×107%C. 2%×5%×8%×7%D. (2%×5%×8%×7%)-100%4201193195190+++、A 3193195190++、B 1422011931952190-+++、C 422011931952190+++、D9.平均发展速度是( C )。
A.定基发展速度的算术平均数B.环比发展速度的算术平均数C.环比发展速度的几何平均数D.增长速度加上100%10.若要观察现象在某一段时期内变动的基本趋势,需测定现象的( C )。
时间序列分析课件讲义

3.5E+09 3.0E+09 2.5E+09 2.0E+09 1.5E+09 1.0E+09
5.0E+08 99:01 99:07 00:01 00:07 01:01 01:07 02:01 02:07
Y
8
单变量时间序列分析
趋势模型
确定型趋势模型
平滑模型 季节模型
水平模型
加法模型
9
乘法模型
ARMA模型 ARIMA模型 (G)ARCH类模型
42
(2)ADF检验 DF检验只对存在一阶自相关的序列适用。 ADF检验 适用于存在高阶滞后相关的序列。 y = y t 1 + t
表述为
y t = y t 1 + t
t
存在高阶滞后相关的序列,经过处理可以表述为 y t = y t 1 + 1yt 1+ 2yt 2 + ....... + p1yt p1 + t 上式中,检验假设为
34
特别地,若 其中,{ t }为独立同分布,且E( t ) = 0,
D( t )
2 = <
yt= y t 1+ t
t = 1,2,......
,则{
(random waik process) 。可以看出,随机游动过程是 单位根过程的一个特例。
yt }为一随机游动过程
(2) 季节差分
3. 随机性
23
(四)ARMA模型及其改进 1. 自回归模型 AR(p) 模型的一般形式
( B) yt
=
et
AR (p) 序列的自相关和偏自相关 rk :拖尾性 k :截尾性
时间序列分析

时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。
它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。
本文将介绍时间序列分析的基本概念、常见的方法和应用领域。
一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。
它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。
时间序列的分析要求数据点之间存在一定的相关性和规律性。
二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。
趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。
三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。
常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。
2. 平稳性检验平稳性是时间序列分析的基本假设。
平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。
常见的平稳性检验方法有单位根检验和ADF检验。
3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。
常用的时间序列模型有ARIMA模型、AR模型和MA模型等。
通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。
4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。
常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。
根据诊断结果,我们可以对模型进行改进,提高预测的准确性。
四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。
在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。
在金融学中,它可以帮助我们预测股票价格和利率走势。
在气象学中,时间序列分析可以用于预测天气变化和自然灾害。
在市场营销中,它可以帮助我们预测销售量和用户行为。
统计学 时间序列分析

三 11.0
四 12.6
五 14.6
六 16.3
七 18.0
月末全员人数(人) a 2000 2000 2200 2200 2300
b
要求计算:①该企业第二季度各月的劳动生产率 ; ②该企业第二季度的月平均劳动生产率; ③该企业第二季度的劳动生产率。
6.2 时间序列分析的水平指标
6.2.1 发展水平与平均发展水平 --相对数(平均数)时间序列
时间 1月1日 5月31日 8月31日 12月31日
社会劳动者 人数
362
390
416
420
解:则该地区该年的月平均人数为:
362390539041634164204
y 2
2
2
534
39.765万人
6.2 时间序列分析的水平指标
6.2.1 发展水平与平均发展水平 --相对数(平均数)时间序列
月份 工业增加值(万元)
6.1 时间序列概述
6.1.2 时间序列的种类
绝对数序列
时期序列
时
派生
时点序列
间
序 列
相对数序列
平均数序列
6.1 时间序列概述
6.1.2 时间序列的种类
年 份 1992 1993 1994 1995 1996 1997
职工工资总额 3939.2 4916.2 6656.4 8100.0时90期80数.0数94列05.3 (亿元)
解:①第二季度各月的劳动生产率:
四月份: y12 10 .6 2 0 1 20 0 00 0 2 0 0 603元 0人 0
五月份: y22 10 .6 4 0 1 20 0 20 0 2 0 0 60 9.4 5 元 2 人
统计学第八章 时间序列分析

季节指数
乘法模型中的季节成分通过季节指数来反映。 季节指数(季节比率):反映季节变动的相
对数。 1、月(或季)的指数之和等于1200%(或
400%) 。 2、季节指数离100%越远,季节变动程度
越大,数据越远离其趋势值。
用移动平均趋势剔除法计算季节指数
1、计算移动平均值(TC),移动期数为4或 12,注意需要进行移正操作。
移动平均的结果 4000 3500 3000 2500 2000 1500 1000 500 0
Example 2
移动平均法可以作为测定长期趋势的一种 较为简单的方法,在股市技术分析中有广 泛的应用。比如对某只股票的日收盘价格 序列分别求一次5日、10日、一个月的移动 平均就可以得到其5日、10日、一个月的移 动平均股价序列,进而得到5日线、10日线、 月线,用以反映股价变动的长期趋势。
1987 1800 1992 1980 1997 2880
1988 1620 1993 2520 1998 3060
1989 1440 1994 2559 1999 2700
4000
3500
销售收入
3000
2500
2000
1500
1000
500
0
年份
2000 2001 2002 2003 2004
销售 收入 3240 3420 3240 3060 3600
部分数据
销售 收入
t
1985 1080
1
1986 1260
2
1987 1800
3
1988 1620
4
1989 1440
5
……
…
2003 3060
19
统计学中时间序列分析的基础知识

MAE是预测误差绝对值的平均数 均方误差
均方误差是计算预测误差平方的平均数 MSE是预测误差平方和的平均数
平均绝对百分数误差 平均绝对百分数误差计算每一个预测的百分数误差 MAPE是百分数预测误差的绝对值的平均数
统计学中时间序列分析的基础知识
时间序列
时间序列分析的目的是在历史资料或时间序列中发现规律性的模式,然后将这个模 式外推未来 预测方法
定量方法 被预测变量过去的信息可以使用 使用的信息可以量化 过去的模式将会持续到未来的假定合理
定性方法 定性方法通常利用专家判断,当被预测变量的历史数据不适合或者难以获得 时,可以使用定性方法
非线性趋势回归 二次趋势方程 T=b0+b1*t+b2*t² 指数趋势方程 T=b0*(bt)^t
时间序列分解法
用时间序列分解法可以将一个时间序列分隔或分解出季节、趋势和不规则成分 加分法模型:趋势成分+季节成分+不规则或误差成分 乘法分解模型:趋势值*季节值*t期的不规则值
计算季节指数 先计算移动平均数,从数据中剔除组合在一起的季节和不规则影响,留给我们的 时间序列只包含趋势和移动平均没有剔除的随机波动
季节模式是指在超过一年的周期内,由于季节的影响,时间序列呈现重复模 式 趋势与季节模式 时间序列同时包含趋势模式和季节模式 循环模式 如果时间序列图显示出持续时间超过一年的在趋势线上下交替的点序列,则 存在循环模式 时间序列的循环成分归因于多年的经济周期
预测精度
预测误差=实际值-预测值 平均预测误差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中央财经大学统计学院 19
4000
3500
Example 2
移动平均法可以作为测定长期趋势的一种 较为简单的方法,在股市技术分析中有广 泛的应用。比如对某只股票的日收盘价格 序列分别求一次5日、10日、一个月的移动 平均就可以得到其5日、10日、一个月的移 动平均股价序列,进而得到5日线、10日线、 月线,用以反映股价变动的长期趋势。
4000 3500 3000 2500 2000 1500 1000 500 0
中央财经大学统计学院 28
Example 2: 销售额时间序列
ˆ Yt 40.851 0.009t 0.003t 2
中央财经大学统计学院 29
8.1.4 时间序列季节变动分析
测定目的: 确定现象的季节变化规律以用于预测 消除时间序列中的季节因素 测定季节变动,一般需要先从原时间序列中 剔除可能存在的长期趋势,因此需要在一定 的模型假定下进行,也有不同的计算方法。 实际中乘法模型较为常用,下面以乘法模型 为例,介绍移动平均剔除法(ratio-tomoving-average method) 。
中央财经大学统计学院 5
长期趋势
800 700 600 500 400 300 200 100 0 2000
观测值 趋势值
现象在较长时期内 持续发展变化的一 种趋向或状态 可以分为线性趋势 和非线性趋势
2001 2002 2003 2004
中央财经大学统计学院
6
季节变动( S )
由于季节的变化引起的现象发 展水平的规则变动。季节变动 产生的原因主要有两个: 自然因素; 人为因素: 法律、习俗、 制度等 “季节变动”也用来指周期小 于一年的规则变动,例如24小 时内的交通流量。
中央财经大学统计学院 3
8.1 时间序列的分解
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6
时间序列的构成成分 时间序列分解模型 时间序列长期趋势分析 时间序列季节变动分析 时间序列循环变动分析 时间序列分解预测法
中央财经大学统计学院
4
8.1.1 时间序列的构成成为最近一 期(第t期)的趋势值:
M
(1) t
1 (Yt Yt 1 Yt N 1 ) N
中央财经大学统计学院
15
中心化移动平均
把时间序列连续 N 期的平均数作为 N 期的中间一期 的趋势值。 如果N为奇数,则把N期的移动平均值作为中间一期 的趋势值。 如果N为偶数,须将移动平均数再进行一次两项移 动平均,以调整趋势值的位置,使趋势值能对准某 一时期)。相当于对原序列进行一次N+1 项移动平均, 首末两个数据的权重为0.5,中间数据权重为1。
Yt Tt S t Ct I t
中央财经大学统计学院 10
乘法模型
乘法模型是假设时间序列中每一个指标数 值都是长期趋势、季节变动、循环变动和 不规则变动四种成分的乘积。在乘法模型 中, 四种成分之间保持着相互依存的关系。 一般而言,长期趋势成分用绝对量表示, 具有和时间序列本身相同的量纲,其它成 分则用相对量表示。
2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985
中央财经大学统计学院 17
中心移动平均法
销售 收入 1985 1986 1080 1260 1380 3年移 动平均 销售 4年移动平 收入 均 1080 1260 移正
1620
1440 … 3060 3600
26
4
5 … 19 20
中央财经大学统计学院
Excel的计算结果
回归统计 Multiple R R Square 0.944964 0.892958
Adjusted R Square
标准误差 观测值
0.887011
248.0092 20
Signific F ance F 150.1578 3.6E-10
一个时间序列中可能包含以下四个(或者 几个)组成成分: 长期趋势 (Secular trend ,T) 季节变动 (Seasonal Variation , S) 循环波动 (Cyclical Variation , C) 不规则波动 (Irregular Variation, I )
中央财经大学统计学院 2
为什么要进行时间序列分析?
个人、企业和政府都需要根据历史数据(时间序 列)对现象的未来发展作出预测并采取相应的决策, 时间序列分析为我们提供了相应的分析工具。 我国每年年初都要对当年的主要经济指标作出预 测,每个五年计划中要对未来五年的经济和社会 发展进行预测。 股票经纪人要对股票市场的未来走势作出及时的 预测并相应作出买入或卖出的决策。 企业经理人员的决策中经常需要对 未来的市场供求进行预测。
b n tY ( t )( Y ) n t 2 ( t ) 2
a Y bt
中央财经大学统计学院 25
Example 1: 新卫机械厂的销售收入
部分数据 销售 收入 1985 1080 1986 1987 1260 1800
t
1 2 3
1988
1989 … 2003 2004
1987 1800
1988 1620 1989 1440
4000 3500 3000 2500 2000 1500 1000 500 0
1992
1993 1994
1980
2520 2559
1997
1998 1999
销售收入
2880
3060 2700
2002
2003 2004
3240
3060 3600
M tN / 2 1 (0.5Yt Yt 1 Yt N 1 0.5Yt N ) ( N为偶数) N
中央财经大学统计学院 16
Example 1
新卫机械厂的销售收入(万元):
年份 销售 收入 1985 1080 1986 1260 年份 1990 1991 销售 收入 2160 2340 年份 1995 1996 销售 收入 2160 2340 年份 2000 2001 销售 收入 3240 3420
中央财经大学统计学院 22
2、时间回归法(趋势方程法)
使用回归分析中的最小二乘法,以时间t 或t的函数为自变量拟合趋势方程。 习惯上t的取值为从1到n。也可以取其他值, 不同取值方法不会影响到方程的拟合效果。 常用的趋势方程包括: ˆ 线性趋势方程 Y a bt
二次曲线
指数曲线
由于众多偶然因素 对时间序列造成的 影响。 不 规 则 变动是 不 可预测的。
中央财经大学统计学院
9
8.1.2 时间序列分解模型
时间序列的组成成分之间可能是乘法或加法的关 系,因此,时间序列可用多种模型进行分解,常 见的有加法模型、乘法模型和加乘混合模型。 加法模型假设时间序列中每一个指标数值都是长 期趋势、季节变动、循环变动和不规则变动四种 成分的总和,在加法模型中,四种成分之间是相 互独立的。某种成分的变动并不影响其他成分的 变动。各个成分都用绝对量表示,并且具有相同 的量纲。
1 移动平均法
移动平均法:在原时间序列内依次求连 续若干期的平均数作为其某一期的趋势 值,如此逐项递移求得一系列的移动平 均数,形成一个新的、派生的平均数时 间序列。 在新的时间序列中偶然因素的影响被削 弱,从而呈现出现象在较长时间的基本 发展趋势。
中央财经大学统计学院 14
N 期移动平均数
中央财经大学统计学院 12
8.1.3 时间序列长期趋势分析
研究目的:
通过测定和分析过去一段时间之内现象的 发展趋势,来认识和掌握现象发展变化的 规律性; 通过分析现象的长期趋势,为统计预测提 供必要的条件; 消除原有时间序列中长期趋势的影响,更 好地研究季节变动和循环变动等问题。
中央财经大学统计学院 13
ˆ a bt ct 2 Y ˆ abt Y
中央财经大学统计学院 23
趋势线的选择
1、根据散点图观察数据的特点,结合理 论分析和经验确定。 2、 比较不同回归模型的决定系数、估计 标准误等指标。
中央财经大学统计学院
24
趋势方程的估计方法
趋势方程可以使用回归分析中的最小二乘 法进行估计。 对于线性趋势方程,根据回归分析中推导 出的结果,有
1987 1988
1989
1800 1620
1440
1560 1620
1740
1800 1620
1440
中央财经大学统计学院 18
1440 1530 1755
1485 1642.5
1822.5
1890
移动平均的结果
2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985
Coefficien 标准误差 ts
t Stat
P-value
Intercept
t
1185.52
117.85
115.21
9.62
27
10.29
12.25
0.0000