光电探测实验报告
光电探测技术实验报告

光电探测技术实验报告班级:08050341X学号:28*****实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。
由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。
光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。
在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。
2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
分别测出两种光敏电阻的亮电流,并做性能比较。
图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。
按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。
将所测得的结果填入表格并作出V/I曲线。
注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。
光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。
实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。
实验数据及结果:1.暗电流L暗=V暗/R L=3.678V/0.47M=7.82*10-6亮电流L亮=V亮/R L=2.212V/22.68k=9.75*10-5 2.偏压4V偏压6V偏压8V偏压10V偏压12V光电探测技术实验报告班级:08050341X学号:28姓名:宫鑫实验二光敏管的应用-----光控电路实验目的:了解光敏管在控制电路中的具体应用。
光电探测实验报告

光电探测技术实验报告班级:10050341学号:05姓名:解娴实验一光敏电阻特性实验一、实验目的1.了解一些常见的光敏电阻的器件的类型;2.了解光敏电阻的基本特性;3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。
二、实验原理伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。
这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。
光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。
各种光敏电阻的非线性程度都是各不相同的。
大多数场合证明,各种光敏电阻均存在着分析关系。
这一关系为=ΦI kαΦ式中,K为比例系数;是永远小于1的分数。
光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。
这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。
光照的非线性特性并不是一切光敏半导体都必有的。
目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。
光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。
三、实验步骤1、光敏电阻的暗电流、亮电流、光电流按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。
则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
2、伏安特性光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。
按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。
将所测得的结果填入表格并做出V/I曲线。
图1光敏电阻的测量电路偏压2V4V6V8V10V12V 光电阻I四、实验数据实验数据记录如下:光电流:E/V246810U/V0.090.210.320.430.56I/uA1427.54255.270.5暗电流:0.5uA实验数据处理:拟合曲线如下:五、实验结论通过本次实验了解了一些常用的光敏电阻的类型、内部结构及其基本特性,也熟练掌握了光敏电阻的特性测试的方法。
光电测量技术实验报告

一、实验目的1. 了解光电测量技术的基本原理和实验方法;2. 掌握光电传感器的工作原理和应用;3. 通过实验验证光电测量技术的实际应用效果。
二、实验原理光电测量技术是利用光电效应将光信号转换为电信号,通过测量电信号的大小来反映光信号的强度、位置、频率等物理量。
本实验采用光电传感器作为测量工具,通过实验验证光电测量技术的实际应用效果。
三、实验器材1. 光电传感器;2. 光源;3. 信号发生器;4. 电压表;5. 数据采集器;6. 实验台。
四、实验步骤1. 将光电传感器固定在实验台上,确保传感器与光源的位置和距离符合实验要求;2. 打开信号发生器,设置合适的频率和幅度;3. 将光电传感器输出端连接到数据采集器,数据采集器连接到电脑;4. 打开数据采集器软件,设置采样频率和采集时间;5. 打开光源,观察光电传感器输出端电压的变化;6. 记录电压随时间的变化数据;7. 关闭光源,重复步骤5和6,观察光电传感器输出端电压的变化;8. 对实验数据进行处理和分析。
五、实验结果与分析1. 实验结果显示,在光源照射下,光电传感器输出端电压随着光源强度的增加而增加,随着光源距离的增加而减小;2. 在关闭光源的情况下,光电传感器输出端电压基本稳定,说明光电传感器具有较好的抗干扰能力;3. 通过对实验数据的处理和分析,可以得出以下结论:(1)光电测量技术可以有效地将光信号转换为电信号,实现对光强度的测量;(2)光电传感器具有较好的抗干扰能力,可以应用于实际测量场合;(3)光电测量技术具有测量精度高、响应速度快、非接触等优点。
六、实验总结1. 本实验验证了光电测量技术的实际应用效果,掌握了光电传感器的工作原理和应用;2. 通过实验,了解了光电测量技术在光强度、位置、频率等物理量测量中的应用;3. 实验过程中,学会了使用光电传感器、信号发生器、数据采集器等实验器材,提高了实验操作技能。
七、实验展望1. 深入研究光电测量技术的原理和应用,探索其在更多领域的应用前景;2. 优化实验方案,提高实验精度和可靠性;3. 探索光电测量技术与人工智能、大数据等领域的结合,推动光电测量技术的发展。
光电探测实验报告

实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。
由于半导体在光照的作用下, 电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成为了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。
光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构 ,用遮光罩将光敏电阻彻底掩盖,用万用表测得的电阻值为暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。
在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。
2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V 间选用,分别在暗光和正常环境光照下测出输出电压V 暗和 V 亮则暗电流 L 暗=V 暗/R L,亮电流 L 亮=V 亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
分别测出两种光敏电阻的亮电流,并做性能比较。
图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。
按照图(3)分别测得偏压为 2V、4V、6V、8V、10V、12V 时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。
将所测得的结果填入表格并作出 V/I 曲线。
偏压 2V 4V 6V 8V 10V 12V光电阻 I光电阻 II注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。
光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。
实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。
光电探测综合实验报告

一、实验目的1. 理解光电探测的基本原理和实验方法。
2. 掌握光电探测器的使用和调试技巧。
3. 学习光电探测实验的测量和分析方法。
4. 通过实验,加深对光电探测技术在实际应用中的理解和应用。
二、实验原理光电探测是利用光电效应将光信号转换为电信号的过程。
光电探测器是光电探测系统的核心部件,它将光信号转换为电信号,然后通过放大、滤波等电路处理后,输出可供进一步处理和利用的电信号。
本实验主要涉及以下光电探测器:光电二极管、光电三极管、光电耦合器等。
光电二极管是一种半导体器件,具有光电转换效率高、响应速度快、体积小等优点。
光电三极管是一种具有放大作用的光电探测器,它可以将微弱的光信号放大成较大的电信号。
光电耦合器是一种将输入信号的光电转换和输出信号的传输分开的器件,具有良好的隔离性能。
三、实验仪器与设备1. 光源:LED灯、激光笔等。
2. 光电探测器:光电二极管、光电三极管、光电耦合器等。
3. 放大器:运算放大器、低噪声放大器等。
4. 测量仪器:示波器、万用表等。
5. 连接线、测试板等。
四、实验内容及步骤1. 光电二极管特性测试(1)测试前准备:将光电二极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电二极管正向偏置,调整偏置电压,观察并记录光电二极管的伏安特性曲线。
② 将光电二极管反向偏置,调整偏置电压,观察并记录光电二极管的反向饱和电流。
③ 测量光电二极管的暗电流和亮电流。
2. 光电三极管特性测试(1)测试前准备:将光电三极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电三极管集电极、基极和发射极分别连接到电路中,调整基极偏置电压,观察并记录光电三极管的伏安特性曲线。
② 测量光电三极管的集电极电流、基极电流和发射极电流。
③ 测试光电三极管的电流放大倍数。
3. 光电耦合器特性测试(1)测试前准备:将光电耦合器、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电耦合器的输入端和输出端分别连接到电路中,调整输入端电压,观察并记录光电耦合器的传输特性曲线。
光电探测器特性测量实验报告

光电探测器特性测量实验报告实验目的:1.了解光电探测器的基本原理和工作方式;2.掌握光电探测器的特性测量方法;3.分析光电探测器的特性曲线。
实验仪器:1.光电探测器:用于将光信号转换为电信号,并测量光电流的大小。
2.光源:用于提供光信号,可以调节光强度。
3.测量设备:包括电流表、电压表和电阻箱,用于测量和调节光电流、光电压和负载电阻。
实验原理:光电探测器是一种能够将光信号转换为电信号的器件,其基本原理是利用光电效应。
当光照射到光电探测器的光敏面时,光子的能量会使光敏物质中的电子获得足够的能量而逸出,形成电子空穴对。
通过施加电场,将电子和空穴分离,形成电流,即光电流。
光电探测器的输出信号主要有光电流和光电压两种形式。
实验步骤:1.将光电探测器连接到电流表,将电阻箱调节到最大电阻,打开光源,并调节光强度到合适的数值。
2.记录电流表的读数,即为光电流的大小。
3.将光电探测器连接到电压表和负载电阻,调节电阻箱的电阻,使光电压维持一定的数值。
4.记录电压表和电流表的读数,并计算光电阻和负载电阻之间的电流。
5.将光电压和光电流绘制成特性曲线。
实验结果:根据记录的数据,得到了光电流和光电压的大小,并绘制了光电流-光电压特性曲线。
实验讨论:通过特性曲线的分析,可以看出光电探测器的工作特性。
在一定范围内,光电流随光电压的增加而增加,并呈线性关系。
当光电压达到一定值时,光电流趋于饱和,不再随光电压的增加而增加。
这是因为在较低的光电压下,光电子所带的能量与光电子轰击表面所需的能量相差较大,导致轰击效率较低。
而当光电压增加到一定值时,光电子所带的能量与光电子轰击表面所需的能量相差较小,导致轰击效率接近极限,几乎所有的光电子都能够轰击表面,所以光电流趋于饱和。
实验结论:本实验中,我们通过测量光电流和光电压的大小,得到了光电探测器的特性曲线,并根据曲线分析得出了光电探测器的工作特性。
实验结果与理论相符合,证明了光电探测器的基本原理和工作方式。
光电探测器实验报告

光电探测器实验报告光电探测器实验报告引言:光电探测器是一种能够将光信号转换为电信号的装置,广泛应用于光学通信、光电测量等领域。
本实验旨在通过实际操作,了解光电探测器的工作原理、特性以及应用。
一、实验目的本实验的目的是通过搭建实验电路,测量光电探测器的电流-电压特性曲线,了解其灵敏度、响应速度等参数,并探究不同波长光对光电探测器的影响。
二、实验装置与方法本实验所用的主要装置有光电探测器、光源、电流电压源、示波器等。
首先,将光电探测器与电流电压源相连接,然后将示波器与光电探测器并联,最后将光源对准光电探测器。
在实验过程中,我们将改变电流电压源的输出电压,记录光电探测器的输出电流,并观察示波器上的波形。
三、实验结果与分析通过实验测量,我们得到了光电探测器的电流-电压特性曲线,如图1所示。
从图中可以看出,当电压较小时,光电探测器的输出电流较小,随着电压的增加,输出电流逐渐增大。
当电压达到一定值后,输出电流基本保持稳定。
这是因为在低电压下,光电探测器的内部电场较弱,电子-空穴对的产生较少,因此输出电流较小。
随着电压的增加,内部电场增强,电子-空穴对的产生增多,导致输出电流增大。
当电压达到一定值后,内部电场已经达到饱和,此时输出电流基本保持稳定。
图1 光电探测器的电流-电压特性曲线另外,我们还对不同波长光对光电探测器的影响进行了实验。
通过改变光源的波长,我们测量了不同波长下光电探测器的输出电流。
实验结果显示,当光源的波长与光电探测器的工作波长匹配时,输出电流最大。
这是因为光电探测器对特定波长的光敏感度最高,其他波长的光则会引起较小的输出电流。
这一特性使得光电探测器在光学通信等领域中具有重要的应用价值。
四、实验总结通过本次实验,我们深入了解了光电探测器的工作原理和特性。
光电探测器的电流-电压特性曲线反映了其灵敏度、响应速度等重要参数。
同时,不同波长光对光电探测器的影响也得到了验证。
这些实验结果有助于我们更好地理解光电探测器的应用和优化设计。
光电探测实验报告总结(3篇)

第1篇一、实验目的本次实验旨在通过实际操作,了解光电探测的基本原理和实验方法,掌握光电探测器的性能测试技术,并分析光电探测在现实应用中的重要性。
实验过程中,我们对光电探测器的响应特性、灵敏度、探测范围等关键参数进行了测试和分析。
二、实验原理光电探测器是一种将光信号转换为电信号的装置,广泛应用于光电通信、光电成像、环境监测等领域。
实验中,我们主要研究了光电二极管(Photodiode)的工作原理和特性。
光电二极管是一种半导体器件,当光照射到其PN结上时,会产生光生电子-空穴对,从而产生电流。
三、实验仪器与材料1. 光电二极管2. 光源(激光笔、LED灯等)3. 光电探测器测试仪4. 示波器5. 数字多用表6. 光纤连接器7. 光学平台8. 环境温度计四、实验步骤1. 光电二极管性能测试(1)将光电二极管与光源、测试仪连接,确保连接牢固。
(2)调整光源强度,观察光电探测器输出电流的变化,记录不同光照强度下的电流值。
(3)测试光电二极管在不同波长下的光谱响应特性,记录不同波长下的电流值。
2. 光电探测器灵敏度测试(1)调整环境温度,观察光电探测器输出电流的变化,记录不同温度下的电流值。
(2)改变光源距离,观察光电探测器输出电流的变化,记录不同距离下的电流值。
3. 光电探测器探测范围测试(1)在固定光源强度下,调整探测器与光源的距离,观察输出电流的变化,记录探测范围。
(2)在固定探测器与光源的距离下,调整光源强度,观察输出电流的变化,记录探测范围。
五、实验结果与分析1. 光电二极管性能测试实验结果表明,随着光照强度的增加,光电二极管输出电流逐渐增大。
在相同光照强度下,不同波长的光对光电二极管输出的电流影响不同,表明光电二极管具有光谱选择性。
2. 光电探测器灵敏度测试实验结果显示,随着环境温度的升高,光电二极管输出电流逐渐增大,表明光电探测器对温度具有一定的敏感性。
同时,在光源距离变化时,光电探测器输出电流也相应变化,说明光电探测器的探测范围与光源距离有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。
由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。
光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。
在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。
2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
分别测出两种光敏电阻的亮电流,并做性能比较。
图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。
按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。
将所测得的结果填入表格并作出V/I曲线。
偏压2V 4V 6V 8V 10V 12V光电阻I光电阻II实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。
光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。
实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。
实验二光敏管的应用-----光控电路实验目的:了解光敏管在控制电路中的具体应用。
实验所需部件:光敏二极管或光敏三极管、光控电路、光源、电压表、电阻器、三极管实验步骤:1.图(10)为一常用的由光敏管组成的光控电路,其原理与前述光敏电阻光控电路相似,电路接线时须注意光敏管的极性。
接通电源后调节控制电路,使其在自然光下负载发光管不亮。
2.分别用白纸\带色的纸\书本和遮光罩改变光敏管的光照,观察控制电路的亮灯情况。
实验三光纤传感器--------位移测试实验原理:本实验仪中所用的为传光型光纤传感器,光纤在传感器中起到光的传输作用,因此是属于非功能性的光纤传感器。
光纤传感器的两支多模光纤分别为光源发射及接收光强之用,其工作原理如图(22)所示。
光纤传感器工作特性曲线如图(23)所示。
一般都选用线性范围较好的前坡为测试区域。
实验所需部件:光纤、光电变换器、放大稳幅电路、近红外发射及检测电路(光纤变换电路内)、反射物(电机叶面)、电压表.实验步骤:1.将光纤、光电变换块与光纤变换电路相连接,注意同一实验室如有多台光电传感器实验仪,由于光电变换块中的光电元件特性存在不一致,则光纤变换电路中的发射\接收放大电路的参数也不一致,故请做实验之前将光纤\光电变换块和实验仪对应编号,不要混用,以免影响正常实验。
2.光纤探头安装于位移平台的支架上用紧定螺丝固定,电机叶片对准光纤探头,注意保持两端面的平行。
3.尽量降低室内光照,移动位移平台使光纤探头紧贴反射面,此时变换电路输出电压V o应约等于零。
4.旋动螺旋测微仪带动位移平台使光纤端面离开反射叶片,每旋转一圈(0.5毫米)记录V o值,并将记录结果填入表格,作出距离X与电压值mv的关系曲线。
从测试结果可以看出,光纤位移传感器工作特性曲线如图(23)所示分为前坡Ⅰ和后坡Ⅱ。
前坡Ⅰ范围较小,线性较好。
后坡工作范围大但线性较差。
因此平时用光纤位移传感器测试位移时一般采用前坡特性范围。
根据实验结果试找出本实验仪的最佳工作点。
(光纤端面距被测目标的距离)实验四. 光电位置敏感器件-----PSD传感器实验原理:PSD(position sensitive detector)是一种新型的横向光电效应器件,当入射光点照在器件光敏面上时,激发光生载流子而产生电流I,光生电流的大小与光点的大小无关,只和光点在器件上的位置有关系。
当光点位于器件中点(原点)时,光生电流I1=I2,根据这一原理,将PSD器件两极电流I1、I2变换成电压信号后再进行运算即可知道光点的位置。
PSD器件工作原理见图(27)实验所需器件:PSD基座(器件已装在基座上)、固体激光器、反射体、PSD处理电路单元、电压表实验步骤:1.通过基座上端圆形观察孔观察PSD器件及在基座上的安装位置,连接好PSD器件与处理电路,开启仪器电源,输出端Vo接电压表,此时因无光源照射,PSD前聚焦透镜也无因光照射而形成的光点照射在PSD器件上,V o输出的为环境光的噪声电压,试用一块遮光片将观察圆孔盖上,观察光噪声对输出电压的变化。
2.将激光器插头插入“激光电源”插口,激光器安装在基座圆孔中并固定。
注意激光束照射到反射面上时的情况,光束应与反射面垂直。
旋转激光器角度,调节激光光点,(必要时也可调节PSD前的透镜)使光点尽可能集中在器件上。
3.仔细调节位移平台,用电压表观察输出电压V O的变化,当输出为零时,再分别测两路信号电压输出端V O1、V O2的电压值,此时两个信号电压应是基本一致的。
4.从原点开始,位移平台分别向前和向后位移10mm,因为PSD器件对光点位置的变化非常敏感,故每次螺旋测微仪旋转5格(1/10mm),并将位移值(mm)与输出电压值(V0)记录列表,作出V/X曲线,求出灵敏度S,S=△V/△X。
根据曲线分析其线性。
注意事项:实验中所用的固体激光器光点可调节,实验时请注意光束不要直接照射眼睛,否则有可能对视力造成不可恢复的损伤。
每一支激光器的光点和光强都略有差异,所以对同一PSD 器件,光源不同时光生电流的大小也是不一样的。
实验时背景光的影响也不可忽视,尤其是采用日光灯照明时,或是仪器周围有物体移动造成光线反射发生变化时,都会造成PSD光生电流改变,致使单元V0输出端电压产生跳变,这不是仪器的毛病。
如实验时电压信号输出较小,则可调节一下激光器照射角度,使输出达到最大。
实验五光敏三极管对不同光谱的响应实验原理:在光照度一定时,光敏三极管输出的光电流随波长的改变而变化,一般说来,对于发射与接收的光敏器件,必须由同一种材料制成才能有此较好的波长响应,这就是光学工程中使用光电对管的原因。
实验所需部件:光敏三极管、发光二极管(包括红外发射管、各种颜色的LED)、试件插座、直流稳压电源、电压表(自备4 1/2位)实验步骤:1、按图(14)接好光敏三极管测试电路,电路中的光敏三极管为红外接收管,电路中的光源采用红外发光二极管,必须注意发光二极管的接线方向。
发光二极管的光都是通过顶端的透镜发射的,因此实验时必须注意二极管与三极管的相对位置。
(顶端透镜相对)2、接好如图(15)所示的发光二极管电路,注意发光二极管限流电阻阻值的调节(电位器阻值的调节一定要按从大到小的原则),发光二极管可插在试件插座上。
实验中发光源可用多种颜色的LED。
3、用黑色胶管将发光二极管与光敏三极管对顶相连,并用遮光罩将它们罩住,如果光谱一致的话则测试电路输出端信号变化较大,反之则说明发射与接收不配对,需更换发光源。
4、调整发光二极管发光强度(可调节电位器)或改变与光敏管的相对位置,重复上述实验。
注意事项:发光二极管限流电阻一定不能太小,否则将损坏发光源。
实验六光栅衍射实验——光栅距的测定实验目的:了解光栅的结构及光栅距的测量方法。
实验所需部件:光栅、激光器、直尺与投射屏(自备)。
实验步骤:1、激光器放入光栅正对面的支座中用紧定螺丝固定,接通激光电源后使光点对准光栅中点。
2、在光栅后面安放好投射屏,观察到一组有序排列的衍射光斑,与激光器正对的光斑为中央光斑,依次向两侧为一级、二级、三级…衍射光斑。
如图(28)所示。
请观察光斑的大小及光强的变化规律。
3、根据光栅衍射规律,光栅距D与激光波长λ、衍射距离L、中央光斑与一级光斑的间距S存在下列的关系:(式中单位:L、S为mm,λ为nm, D为μm)根据此关系式,已知固体激光器的激光波长为650nm,用直尺量得衍射距离L、光斑距S,即可求得实验所用的光栅的光栅距。
(测出五组数据,取平均值)测距实验:1、按照光栅衍射公式,已知光栅距、激光波长、光斑间距,就可以求出衍射距离L。
SSLD22+=λ2、将激光对准衍射光栅中部,在投射屏上得到一组衍射光斑,根据公式求出L。
3、调整投射屏与光栅的距离,并尽可能试用不同的激光器,将测得的各参数L、S、D、λ填入表格,以验证公式。
实验数据表序号 1 2 3 4 5 L(mm)S(mm)D(μm)实验七光电池应用------光强计实验所需部件:光电池(或串或并均可)、光强测试电路单元实验步骤:1.图(20)为光电池测光实验电路单元的原理图。
光电池接入时请注意极性。
发光二极管已在电路中接入。
2.调节光电池受光强度,分别在光照很暗、正常光照和光照很强时观察两个发光二极管不亮、稍亮、两个都很亮,这样就形成了一个简易的光强计。
实验八电荷耦合图像传感器---CCD摄像法测径实验实验原理:电荷耦合器件(CCD)的重要应用是作为摄像器件,它将二维光学图像信号通过驱动电路转变成一维的视频信号输出。
当光学镜头将被摄物体成像在CCD 的光敏面上,每一个光敏单元(MOS电容)的电子势阱就会收集根据光照强度而产生的光生电子,每个势阱中收集的电子数与光照强度成正比。
在CCD电路时钟脉冲的作用下,势阱中的电荷信号会依次向相邻的单元转移,从而有序地完成载流子的运输—输出,成为视频信号。
用图像采集卡将模拟的视频信号转换成数字信号,在计算机上实时显示,用实验软件对图像进行计算处理,就可获得被测物体的轮廓信息。
实验所需部件:CCD摄像头、被测目标(圆形测标)、视频线、图像采集卡、实验软件实验步骤:1、根据图像采集卡光盘安装说明在计算机中安装好图像卡。
并按要求正确设置。
2、在被测物前安装好摄像头,连接CCD稳压电源,视频线正确连接图像卡与摄像头。
3、检查无误后进入测量程序,启动图像采集后,屏幕窗口即显示被测物的图像,适当地调节CCD的镜头前后位置,使目标图像最为清晰。
4、尺寸标定:先取一标准直径圆形目标(D0=10mm),根据测试程序测定其屏幕图像的直径D1(单位用象素表示),则测量常数K=D1/D0。
5、保持CCD镜头与位移平台距离不变,更换另一未知直径的圆形目标,利用测试程序测得其在屏幕上的直径,除以系数K,即得该目标的直径。