金相组织

合集下载

热处理金相组织判定标准

热处理金相组织判定标准

热处理金相组织判定标准
热处理金相组织的判定标准包括以下几个方面:
1. 碳化物的颗粒大小:理想的退火组织中,碳化物颗粒应细小,呈点状或细粒状。

2. 碳化物的分布均匀性:碳化物应均匀分布在铁素体基体上,不应出现局部的密集或稀少。

3. 碳化物的球化程度或形态:碳化物应呈球状或粒状,球化完全,且分布较均匀。

根据这些标准,可以将退火金相组织分为不同的等级。

具体如下:
1. 1级:细点状+细粒状珠光体+局部细片状珠光体。

这是不合格的组织,形成原因是加热不足,部分锻造组织被保留下来。

2. 2级:点状珠光体+细粒状珠光体。

这是优良的合格组织,碳化物颗粒细小呈点状和细粒状,圆度好,分布较均匀。

3. 3级:球状珠光体。

这是良好的合格组织,碳化物颗粒大于2级,球化完全,分布较均匀。

4. 4级:球状珠光体。

这是合格组织,碳化物颗粒较粗,均匀性较差,碳化物分布不均,有的区域密集,有的区域稀少。

在实际应用中,可以根据具体标准和需求对热处理金相组织进行判定。

如有需要,建议咨询专业人士获取准确的信息。

金相组织

金相组织

金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织.金相即金相学,就是研究金属或合金内部结构的科学。

不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。

所谓外部条件就是指温度、加工变形、浇注情况等。

所谓内在因素主要指金属或合金的化学成分。

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。

1.奥氏体-碳与合金元素溶解在γ-f e中的固溶体,仍保持γ-f e的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在a-f e中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿a c m线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到a r1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

金相组织

金相组织
6
T12钢
退火
P+Fe3CII。黑白相间的层片状基体为P。晶界上的白色网络为Fe3CII。T12为过共析钢,共析反应前,Fe3CII首先沿A晶界呈网络状析出。嗣后,随着温度的下降到共析温度,发生共析反应,剩余A全部转变为片条状P。网状Fe3CII可采用正火处理清除。
7
T12钢
退火
P+Fe3CII。用碱性苦味酸钠溶液浸蚀。Fe3C染成黑色,F仍保留白色。故黑色网络为Fe3CII,余为P。浸蚀浅,层片状P未显示呈灰白色。
37
ZGMn13
铸态
A+碳化物。白色基体为A,黑色网络为晶界,沿A晶界析出颗粒状碳化物。铸态高Mn钢沿A晶界分布的网状碳化物对铸件的机械性能及耐磨性将会产生不良影响。必须经过水韧处理,使碳化溶入A中。
38
ZGMn13
水韧处理
A.全部为A晶粒,晶粒大小不匀,有孪晶变形。铸态高Mn钢加热到1050-1100℃,使碳化物溶入基体,迅速冷却,获得单一A。具有良好的韧性,工作在承受较大的冲击载荷时,发挥出高耐磨性的特点。
10
过共晶生铁
铸态
Fe3CI+Ld`。由于Fe3CI首先结晶出来,结晶过程中不断成长,故呈白亮色粗大的板条状,而Ld`认为黑白相间的斑点状。
“C”曲线组织
序号
材料
状态
组织说明
11
T8
正火
S。细层片状F与Fe3C的机械混合物。光学显微镜放大倍数小于600X,层状分辨不清,有如天空中黑淡的云彩。只有放大到1500X以上,才能分辨其P的层片状特征。
24
45钢
1100℃水淬
过热淬水组织M粗。由于加热温度过高,A晶粒迅速长大,淬火后获得成排分布的粗大的中碳M。不同的晶粒内,平行排列的M位向是不同的。

金相组织观察实验报告

金相组织观察实验报告

一、实验目的1. 了解金相显微镜的基本原理和构造;2. 掌握金相试样的制备方法;3. 认识并分析金属材料的金相组织;4. 建立金相组织与材料性能之间的关系。

二、实验原理金相组织是指金属材料在显微镜下观察到的组织结构。

金相显微镜是一种利用光学原理对金属材料进行观察和分析的仪器。

通过观察金相组织,可以了解材料的微观结构,从而推断出材料的性能和加工工艺。

三、实验仪器与材料1. 仪器:金相显微镜、抛光机、砂轮机、金相试样制备设备(如砂纸、抛光布、脱脂棉、3~5硝酸酒精溶液等);2. 材料:金属材料试样(如钢铁、铝合金、铜合金等)。

四、实验步骤1. 试样制备(1)将金属材料试样切割成合适的尺寸,并进行打磨处理,去除表面的氧化层和杂质;(2)用不同型号的砂纸对试样进行粗磨、细磨和精磨,直至表面光滑;(3)将磨好的试样放入抛光机中进行抛光处理,直至表面呈现镜面效果;(4)将抛光后的试样进行腐蚀处理,以显示金相组织。

2. 金相显微镜观察(1)打开金相显微镜,调整光源和物镜,使视野明亮;(2)将腐蚀后的试样放置在显微镜载物台上,调整焦距,使金相组织清晰可见;(3)观察并记录金相组织的形态、分布和大小;(4)根据观察结果,分析金相组织与材料性能之间的关系。

五、实验结果与分析1. 实验结果通过金相显微镜观察,发现金属材料的金相组织主要包括晶粒、析出相、相变组织等。

2. 结果分析(1)晶粒:晶粒是金属材料的基本结构单元,其大小和形态对材料的性能有重要影响。

一般来说,晶粒越小,材料的强度、硬度、韧性等性能越好;(2)析出相:析出相是指在金属材料中形成的第二相,如碳化物、氮化物等。

析出相的形态、大小和分布对材料的性能有显著影响;(3)相变组织:相变组织是指在金属材料中发生的相变过程形成的组织,如珠光体、贝氏体等。

相变组织的形态和分布对材料的性能有重要影响。

六、实验总结本次实验通过金相显微镜观察金属材料的金相组织,了解了金相显微镜的基本原理和构造,掌握了金相试样的制备方法,认识并分析了金属材料的金相组织。

不同状态下金属的金相组织构成

不同状态下金属的金相组织构成

不同状态下金属的金相组织构成哎呀,聊聊金属的金相组织构成可真是一个挺有意思的话题啊!你可能会问,啥是金相组织?简单来说,金属的金相组织就是我们在显微镜下看到的金属内部结构,它决定了金属的性能,硬度,甚至是它能不能“顶得住”高温或者压力。

你想,金属就像咱们的身体一样,外面看着挺硬,实际上里面可复杂呢。

就像你看着一个煎蛋,外面黄黄的,底下脆脆的,里面全是液体。

金属也是如此,表面光亮,内部可千变万化,跟着状态不同,组织可大不相同。

要是你把金属“丢”到高温下,它可不像咱们洗澡一样,随便就会变。

金属可是“情绪化”的,温度一升,它就可能改变它的结构。

热处理就像是金属的心理疏导,帮助它找回内心的平衡。

比如说你把钢加热到高温,这时候钢里的铁原子就开始“跳舞”了,形成了不同的组织结构。

这时候的钢就会变得“软绵绵”的,像刚出炉的面包一样。

冷却下来,速度快慢又会影响钢的硬度,这时候我们就能得到各种各样的钢,既有像钢刀一样锋利的,也有像铁锅那样耐用的。

哎,你可别以为金属一旦冷却下来就没事了。

它可不是“死气沉沉”的,它的内部还在继续调整。

就像是你走进一个派对,突然发现有几个小团体在窃窃私语,经过一段时间,大家渐渐聚到一起,形成了所谓的“组织”。

钢铁的这种组织就是由很多“晶粒”组成的,每一个晶粒里,铁原子都按照一定的规律排布。

你可以想象,晶粒就像是一群聚在一起的小伙伴,大家紧密合作。

晶粒越小,金属的强度就越高,因为这些小伙伴之间没那么多“缝隙”,不容易被外力撕裂。

就像你在打篮球时,若大家队形紧密,反击就容易成功。

但是,晶粒的大小不是说变就能变的,这可需要耐心和技巧。

比如,你把钢慢慢冷却下来,晶粒就可能变得比较大,结果就是它变得比较脆弱。

反之,若你让它快速冷却,晶粒就变小,钢的硬度也提高了。

但硬度高了,也不意味着钢变得更好。

硬得像石头的东西,往往比较脆,容易裂开。

所以说,金属的金相组织就像是一块非常复杂的拼图,你需要根据实际需求来调配它们。

金相组织判定依据

金相组织判定依据

金相组织判定依据金相组织是指金属材料在显微镜下的显微结构。

通过对金属材料的金相组织进行观察和分析,可以了解材料的性质、组织特征以及可能的缺陷和损伤。

金相组织判定依据是指根据金相组织的特征和变化来判断材料的性质和质量。

本文将从不同角度介绍金相组织判定依据,包括晶粒尺寸、晶体形貌、晶界特征、相组成和显微硬度等方面。

1. 晶粒尺寸晶粒尺寸是金相组织中最基本的特征之一。

晶粒尺寸的大小和分布对材料的性能有着重要影响。

通过显微镜观察金相组织中晶粒的尺寸和分布情况,可以判断材料的晶粒长大程度、晶粒形貌和晶粒界面的特征。

一般来说,晶粒尺寸较大且均匀分布的材料具有较好的力学性能和导热性能。

2. 晶体形貌晶体形貌是金相组织中晶粒的外部形态特征。

不同材料的晶体形貌各不相同,常见的晶体形貌有等轴晶、柱状晶、板状晶等。

晶体形貌的不同反映了材料的凝固过程和热处理过程中的晶粒生长方式。

通过金相组织观察,可以判断材料的晶体形貌,进而推测材料的制备工艺和性能。

3. 晶界特征晶界是相邻晶粒之间的界面,是金相组织中的重要组成部分。

晶界的形状、取向和分布对材料的性能和行为有着重要影响。

通过金相显微镜观察晶界的特征,可以判断晶界的密度、取向和形状,从而推测材料的晶界强度、晶界迁移和晶界蠕变等性能。

4. 相组成相是指材料中具有相同化学组成和结构特征的区域。

金相组织中的相分布和相组成对材料的性能和用途有着重要影响。

通过金相组织观察和分析,可以判断材料中的相类型、相含量和相分布情况,进而推测材料的相变行为、相变温度和相变速率等性质。

5. 显微硬度显微硬度是指材料在显微尺度下的硬度性能。

金相组织中不同晶粒和相之间的硬度差异可以通过显微硬度测试来评估。

显微硬度测试可以通过显微镜观察硬度印痕的形貌和尺寸,从而判断材料的显微硬度分布和显微硬度差异。

显微硬度的差异反映了材料的组织均匀性和力学性能。

金相组织判定依据包括晶粒尺寸、晶体形貌、晶界特征、相组成和显微硬度等方面。

(完整版)常见金相组织

(完整版)常见金相组织

5-7、魏氏组织
魏氏组织 200×
魏氏组织 200×
珠光体+网状及针状铁素体,呈魏氏组织形态。 魏氏组织是指由晶界向内生长的针状铁素体或渗碳
体。魏氏组织铁素体一般在过热组织及焊接热影响区较 常见。
谢谢!
一般灰铸铁在共晶转变时,液相即与奥氏体又与石墨 接触,所以石墨呈片状生成。加镁铸铁在共晶转变时, 它只与奥氏体接触,在石墨周围形成奥氏体外壳,当铸 件凝固后碳是通过周围的奥氏体外壳向石墨堆集,使石 墨均匀生长成球状。
球墨铸铁中常见的石墨形态有球状、团状、开花、蠕 虫、枝晶等几类,最具代表性的形态是球状。
组织为珠光体+灰色条状石墨
2-2、可锻铸铁 可锻铸铁是一定成分的白口坯件,经过故态石墨化+
高温退火处理,使共晶渗碳体分解,形成团絮状石墨的 一种铸铁。
所谓“可锻”,仅说明它有一定的韧性和塑性,并不 等于
说它可以锻造。 按生产工艺不同,可锻铸铁通常分为白心可锻铸铁、
黑心可锻铸铁及珠光体可锻铸铁三类。 与直接从铁液中析出的石墨相比较,可锻铸铁的石墨
常见金相组织
1、铁碳平衡组织 2、铸铁组织 3、马氏体 4、贝氏体 5、其它金相组织
第一节 铁碳平衡组织
1、工业纯铁(含碳≤0.0218%) 2、亚共析钢(含碳0.218%~0.77%) 3、共析钢(含碳0.77%,T8钢) 4、过共析钢(含碳0.77%~2.11%) 5、白口铸铁(含碳2.11%~6.69%)
较松散,其间填充着未及撤离的金属基体。 常见的石墨形状为团絮状、絮状、团球状、聚虫状和
枝晶状等。
2-2、可锻铸铁
可锻铸铁 100×
可锻铸铁 200×
左图:铁素体基体+团絮状石墨 右图:珠光体基体+团絮状石墨

金相组织基本概念

金相组织基本概念

金相组织基本概念金相组织是指金属在宏观上呈现出的颗粒、晶粒和晶界等微观结构组成情况,是金属材料性质的重要因素。

金相组织研究的内容主要包括金属的晶体结构、晶体缺陷、晶粒形状、晶界形态、相组成及相分布等方面。

晶体结构是金相组织研究的核心内容之一。

金属晶体结构是由原子在晶体中的排列方式所决定的有序性结构,不同金属的晶体结构是不同的。

常见的金属晶体结构包括面心立方晶体结构、体心立方晶体结构、六方最密堆积晶体结构等。

晶体缺陷是指晶体结构中存在的各种缺陷,包括点缺陷、线缺陷和面缺陷。

在点缺陷中,最常见的是晶格缺陷,即原子在晶体中的位置存在偏移。

而在面缺陷中,则包括晶界和孪晶。

晶粒形状是指金属材料中晶粒在宏观上呈现出的形态特征。

晶粒的形状对材料的性能有重要影响,如晶粒尺寸越小,硬度越大、塑性越好。

晶粒形状的改变也会影响材料的性能,如晶粒长大会导致塑性降低而强度提高。

晶界形态是指晶粒和晶粒之间的边界形态。

不同形态的晶界对材料的性能影响也不同,如曲线形晶界有助于提高强度和塑性。

而宽晶界则容易引起材料的脆性断裂。

相组成及相分布是指金属材料中不同相的组成和分布情况。

金属材料中的相有多种,如铁碳相、铝铁相等。

不同相之间的化学成分和力学性能差异很大,相间界面处的特殊结构也影响着材料以及特殊属性,如相界面吸附能、界面能和迁移能等。

相分布和相间距等参数也是反映材料性能的重要参数之一。

总之,金相组织研究的目的是探究金属材料的微观结构,为材料的制备和选用提供依据。

同时,金相组织研究也为材料的性能分析和优化提供了途径。

因此,金相组织研究具有重要的理论和应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金相组织
金属平均晶粒度:
【001】金属平均晶粒度测定… GB 6394-2002
【010】铸造铝铜合金晶粒度测定…GB 10852-89
【019】珠光体平均晶粒度测定…GB 6394-2002
【062】金属的平均晶粒度评级…ASTM E112
【074】黑白相面积及晶粒度评级…BW 2003-01
【149】彩色试样图像平均晶粒度测定…GB 6394-2002
金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织.
金相即金相学,就是研究金属或合金内部结构的科学。

不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。

所谓外部条件就是指温度、加工变形、浇注情况等。

所谓内在因素主要指金属或合金的化学成分。

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。

1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处
奥氏体
2.铁素体-碳与合金元素溶解在a-fe中的固溶体。

亚共析钢中的慢冷铁素体呈块
状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

铁素体
3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿ac m线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到a r1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6 ~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。

转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。

6.下贝氏体-同上,但渗碳体在铁素体针内。

过冷奥氏体在350℃~ms的转变产物。

其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。

与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。

高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。

7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。

过冷奥氏体在贝氏体转变温度区的最上部的转变产物。

刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为m-a组织。

8.无碳化物贝氏体-板条状铁素体单相组成的组织,也称为铁素体贝氏体。

形成温度在贝氏体转变温度区的最上部。

板条铁素体之间为富碳奥氏体,富碳奥氏体在随后的冷却过程中也有类似上面的转变。

无碳化物贝氏体一般出现在低碳钢中,在硅、铝含量高的钢中也容易形成。

9.马氏体-碳在a-fe中的过饱和固溶体。

板条马氏体:在低、中碳钢及不锈钢中形成,由许多相互平行的板条组成一个板条束,一个奥氏体晶粒可转变成几个板条束(通常3到5个)。

片状马氏体(针状马氏体):常见于高、中碳钢及高Ni的Fe-Ni合金中,针叶中有一条缝线将马氏体分为两半,由于方位不同可呈针状或块状,针与针呈120°角排列,高碳马氏体的针叶晶界清楚,细针状马氏体呈布纹状,称为隐晶马氏体。

10.回火马氏体-马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a -相混合组织它由马氏体在150~250℃时回火形成。

这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。

11.回火屈氏体-碳化物和a-相的混合物。

它由马氏体在350~500℃时中温回火形成。

其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。

12.回火索氏体-以铁素体为基体,基体上分布着均匀碳化物颗粒。

它由马氏体在500~650℃时高温回火形成。

其组织特征是由等轴状铁素体和细粒状碳化物构成的复相组织,马氏体片的痕迹已消失,渗碳体的外形已较清晰,但在光镜下也难分辨,在电镜下可看到的渗碳体颗粒较大。

13.莱氏体-奥氏体与渗碳体的共晶混合物。

呈树枝状的奥氏体分布在渗碳体的基体上。

14.粒状珠光体-由铁素体和粒状碳化物组成。

它是经球化退火或马氏体在650℃~a1温度范围内回火形成。

其特征是碳化物成颗粒状分布在铁素体上。

15.魏氏组织-如果奥氏体晶粒比较粗大,冷却速度又比较适宜,先共析相有可能呈针状(片状)形态与片状珠光体混合存在,称为魏氏组织。

亚共析钢中魏氏组织的铁素体的形态有片状、羽毛状或三角形,粗大铁素体呈平行或三角形分布。

它出现在奥氏体晶界,同时向晶内生长。

过共析钢中魏氏组织渗碳体的形态有针状或杆状,它出现在奥氏体晶粒的内部。

金相组织---铁碳合金
一、基本概念
1、铁碳合金:碳钢和铸铁的统称,都是以铁和碳为基本组元的合金
2、碳钢:含碳量为0.0218%~2.11%的铁碳合金
3、铸铁:含碳量大于2.11%的铁碳合金
4、铁碳合金相图:研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。

注:由于含碳量大于Fe3C的含碳量(6.69%)时,合金太脆,无实用价值,因此所讨论的铁碳合金相图实际上是Fe-Fe3C
二、组元
1、纯铁:纯铁指的是室温下的α-Fe,强度、硬度低,塑性、韧性好。

2、碳:碳是非金属元素,自然界存在的游离的碳有金刚石和石墨,它们是同素异构体。

3、碳在铁碳合金中的存在形式有三种:
●C与Fe形成金属化合物,即渗碳体;
●C以游离态的石墨存在于合金中。

●C溶于Fe的不同晶格中形成固溶体;
A. 铁素体:C溶于α-Fe中所形成的间隙固溶体,体心立方晶格,用符号“F”或“α”表示,铁素体是一种强度和硬度低,而塑性和韧性好的相,铁素体在室温下可稳定存在。

B. 奥氏体:C溶于γ-Fe中所形成的间隙固溶体,面心立方晶格,用符号“A”或“γ”表示,奥氏体强度低、塑性好,钢材的热加工都在奥氏体相区进行,奥氏体在高温下可稳定存在。

C. C与Fe形成金属化合物:即渗碳体Fe3C,Fe与C组成的金属化合物,Fe 与C组成的金属化合物,含碳量为6.69%。

以“Fe3C”或“Cm”符号表示,渗碳体的熔点为1227℃,硬度很高(HB=800)而脆,塑性几乎等于零。

渗碳体在钢和铸铁中,一般呈片状、网状或球状存在。

它的形状和分布对钢的性能影响很大,是铁碳合金的重要强化相。

碳在a-Fe中溶解度很低,所以常温下碳以渗碳体或石墨的形式存在。

相关文档
最新文档