天线的基本概念

合集下载

天线工作原理

天线工作原理

天线工作原理天线是无线通信系统中不可或缺的设备,它起到接收和发送无线信号的作用。

本文将详细介绍天线的工作原理及其相关知识。

一、天线的基本概念天线是将电信号转化为电磁波或将电磁波转化为电信号的设备。

它一般由导电材料制成,如金属,并根据特定的原理进行设计和调整。

天线可以分为接收天线和发射天线两种类型。

二、天线的工作原理天线的工作原理基于电磁波的发射和接收。

下面将分别介绍接收天线和发射天线的工作原理。

1. 接收天线的工作原理接收天线通过接收电磁波将其转化为电信号。

当电磁波经过天线时,它会激发天线中的电荷,产生电流。

这个电流会经过连接到天线的电路,从而实现信号的解调和放大。

最终,这个电信号可以被传递到无线接收器,用于进行进一步的处理和解码。

2. 发射天线的工作原理发射天线将电信号转化为电磁波,以便进行无线传输。

当电信号通过连接到天线的电路时,它会产生交变电流。

这个交变电流会导致天线上的电荷也发生交变,从而产生电磁波。

这些电磁波会在空间中传播,并被接收天线接收到。

同样地,接收天线会将电磁波转化为电信号,以进行进一步的处理和解码。

三、天线的优化设计为了提高天线的工作性能,可以进行一些优化设计。

下面列举一些常见的优化设计方法。

1. 天线长度调整:天线的长度对于接收和发射的频率有直接影响。

通过调整天线的长度,可以使其与所传输的频率匹配,从而提高效率。

2. 天线形状设计:天线的形状对于天线的辐射模式有重要影响。

通过设计合适的天线形状,可以实现不同方向的辐射或接收,以满足具体的通信需求。

3. 天线材料选择:天线的材料对于信号的传输和接收也有一定影响。

根据需要选择导电性能好、损耗小的材料,以提高天线的性能。

四、天线在无线通信中的应用天线广泛应用于各种无线通信系统中,包括移动通信、卫星通信、无线局域网等。

下面列举几个常见的应用场景。

1. 移动通信:天线用于手机、基站等设备中,将电信号转化为电磁波进行传输,以实现无线通信。

(完整版)天线原理介绍

(完整版)天线原理介绍

可能产生的三阶交调 频段(MHz) 860~890
916~973
925~940 948~966 1785~1845 1830~1860 2115~2160 2095~2140
可能产生的五阶交调 频段(MHz) 850~900
897~992
920~945 942~972 1765~1865 1820~1870 2100~2175 2080~2155
900MHz: 最小: 3m
建议:6m 1800MHz: 最 小 : 2m
建议:4m
天线原理—天线基本概念
应用 环境
密集建筑区 (室内)
密集建筑区 (室外)
一般城镇 (室内)
一般城镇 (室外)
农村
极化分集 增益(dB)
空间分集 增益(dB)
3.7
5.0
4.7
3.3
4.0
3.7
5.7
4.7
2.7
5.3
可靠性能的测试
振动试验
风洞试验
天线指标测试
高低温湿热试验
汽车模拟试验
淋水试验
Thanks!
结论
三阶、五阶都不落入到 Rx的接收范围
三阶不落入到Rx的接收 范围,五阶落入到Rx的
接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
三阶、五阶都不落入到 Rx的接收范围
天线原理—天线基本概念
前后比较差
前后比较好
天线原理—天线基本概念
实际站点的后瓣、旁瓣信号过强的原因分析
1、天线本身指标不合格,前后比、旁瓣不理想 2、扇区规划不合理、主方向反射、折射严重(如玻璃外墙阻挡、金属物质遮挡等)

天线基本原理(西电)

天线基本原理(西电)

2.天线辐射参数-方向图
辐射参数 主瓣 副瓣 半功率波束宽度 交叉极化鉴别率 增益 前后比
2.天线辐射参数-旁瓣抑制、零点填充、波束下倾角
上旁瓣 (dB)
下旁瓣 (dB)
2.天线辐射参数-波束宽度
方位即水平面方向图
2.天线辐射参数-下倾角
为使波束指向朝向地面, 需要天线下倾
2.天线辐射参数-前后比
定向辐射(接收)-具有 一定的方向性。
终端张角传输线
对称振子
1.天线基本概念-半波振子
根据C(光速)=f(频率)×λ(波长) 得出波长与频率成反比
频率越低,波长越长,天线尺寸越大 频率越高,波长越短,天线尺寸越小
波长
1/4 波长
1/2 波长
1/4 波长
1/2 波长
半波振子
1.天线基本概念-半波振子
DK系列天线长度 (mm)
675 1310 675 1310 675 1310
17.5
14 16.5 12 14.5
以京信DB和DK系列天线为例
2.天线辐射参数-极化
垂直方 式
水平方式
天线所辐射的电磁波中电 场矢量在空间运动的轨迹 称为极化; 基站天线属于线极化,极 化方向与振子轴线平行。
+ 45度
频率提高一倍。同样电气性能的天线长度就减小一半。
1.天线基本概念-增益、方向图和天线尺寸之关系
波束宽度(°) 水平面 65±6 垂直面 14 7 14 90±8 7 14 120±10 7
增 益 dBi
806~960 MHz
1710~2170 ຫໍສະໝຸດ HzDB系列天线长度 (mm)
15 1315 2615 1315 2615 1315 2615

天线基本知识汇总

天线基本知识汇总

天线基本知识汇总天线是无线通信系统的重要组成部分,它负责将电能转换为电磁波,将信号从传输介质(如空气)中发射出去或接收回来。

天线的性能直接影响着无线通信系统的质量和可靠性。

下面是关于天线基本知识的汇总。

1.天线的分类:根据应用领域和工作频率不同,天线可以分为不同的类型,如定向天线、全向天线、扇形天线、微带天线等。

2.天线的工作原理:天线的工作原理基于法拉第电磁感应定律,当电流通过天线时,它会产生一个电磁场,从而形成电磁波。

接收时,电磁波会被天线吸收,然后产生电流。

3.天线的参数:天线的主要参数包括频率范围、阻抗、增益、方向性、辐射效率等。

这些参数决定了天线的性能和适用场景。

4.天线的性能指标:-增益:天线将电能转换为电磁能的能力,通常以分贝(dB)为单位表示。

增益越高,天线的发射和接收距离越远。

-方向性:天线辐射或接收信号的特定方向能力。

定向天线具有较高的方向性,可以减少多径传播和干扰。

-阻抗:天线的输入或输出端口的电阻性质。

与发射端口匹配的阻抗可以最大程度地传递电能,减少反射损耗。

-波束宽度:天线主瓣的角度范围。

较窄的波束宽度意味着更好的方向性和更高的增益。

-辐射效率:天线将输入功率转换为有效辐射功率的能力。

辐射效率高的天线可以更好地实现远距离通信。

5.天线的结构和设计:天线的结构包含一个或多个导体元件,并且根据应用需求进行设计。

常见的天线设计包括垂直极化天线、水平极化天线、天线阵列、圆极化天线等。

6.天线的应用:天线在各种无线通信系统中广泛应用,包括移动通信、卫星通信、无线局域网、雷达、无线电广播等。

7.天线的安装和调整:为了确保天线的性能,需要正确地进行安装和调整。

安装位置和方向的选择对天线的性能和覆盖范围至关重要。

8.天线的特殊设计:根据应用需求,一些特殊设计的天线得到了广泛应用,如室内小型天线、宽带天线、增强型天线等。

9.天线的未来发展:随着无线通信技术的不断发展,天线也在不断创新和改进。

天线基础

天线基础

图1.1 a
图1.1 b
天线的方向性讨论

天线方向性是指天线向一定方向辐 射电磁波的能力。它的这种能力可采用 方向图来表示,方向图主瓣的宽度,方 向性系数等参数进行描述。所以方向性 是衡量天线优劣的重要因素之一。天线 有了方向性,就能在某种程度上相当于 提高发射机或接收机的效率,并使之具 有一定的保密性和抗干扰性。
单位换算

dBm dBi/dBd dB dBc
dBm

dBm是一个考征功率绝对值的值,计算 公式为:10lgP(功率值/1mw)。 [例1] 如果发射功率P为1mw,折算为 dBm后为0dBm。 [例2] 对于40W的功率,按dBm单位进 行折算后的值应为: 10lg(40W/1mw)=10lg(40000) =10lg4+10lg10+10lg1000=46dBm。
天线原理


导线上有交变电流流动时,就可以发生电磁波的辐射, 辐射的能力与导线的长度和形状有关。如 图1.1 a 所示,若 两导线的距离很近,电场被束缚在两导线之间,因而辐射很 微弱;将两导线张开,如 图1.1 b 所示,电场就散播在周围 空间,因而辐射增强。 必须指出,当导线的长度 L 远小于波长 λ 时,辐射很微 弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流 将大大增加,因而就能形成较强的辐射。
dBc

dBc,它也是一个表示功率相对值的单位,与 dB的计算方法完全一样。 一般来说,dBc 是相对于载波(Carrier)功 率而言,在许多情况下,用来度量与 载波功率的相对值,如用来度量干扰(同频 干扰、互调干扰、交调干扰、带外干扰等) 以及耦合、杂散等的相对量值。 在采用dBc的地方,原则上也可以使用dB替 代。 dB只是表示一个比值,并不是功率增益的单 位!!!

天线的基本概念

天线的基本概念

频率范围天线适用的最高及最小频率。

增益增益是用来表示天线集中辐射的程度。

天线在某一方向的增益定义为:在相同的输入功率下,天线在某一方向某一位置产生的电场强度的平方(E2)与无耗理想点源天线在同一方向同一位置产生的电场强度的平方(E02)的比值,通常以G 表示。

G=E2/E02(同一输入功率)同样,增益也可以这样来确定:在某一方向向某一位置产生相同电场强度的条件下,无耗理想点源天线的输入功率(Pino)与天线的输入功率(Pin)的比值,即称为该天线在该点方向的增益。

G=Pino/Pin(同一电场强度)通常是以天线在最大辐射方向的增益作为这一天线的增益。

增益通常用分贝表示。

即:G=101gPino/Pin天线增益的计算:G=η4πS/λ2=η(π/λ)2D2式中,S-天线口径面积(平方米);λ-工作波长(米);D-抛物面口径(即面口直径)(米);η-天线效率。

方向图如果反天线在各方向辐射击的强度用从原点出发的矢量长短来表示,则连接全部矢量端点所形成的包络就是天线的方向图。

它显示出天线的在不同方向辐射的相对大小,这种方向图称为立体方向图。

矢径的方向代表辐射的方向,矢径的长短代表辐射击的强度。

方向图包含有许多波瓣,其中包含最大辐射方向的波瓣称为主瓣。

其它依次称为第一副瓣,第二副瓣等。

主瓣宽度定义为在方向图上增益相对于最高增益下降3分贝的宽度,单位为度(弧度)。

副瓣电平副瓣的最大值相对主瓣最大值的比,称为副瓣电平,一般用分贝来表示,其定义为:101g(副瓣最大值功率/主瓣最大值功率)如:副瓣最大值与主瓣最大值相应功率之比为0.01,则副瓣电平为-20dB。

天线噪声温度进入天线的噪声主要来银河系的宇宙噪声和来自大地、大气的热噪声。

不同口径的天线、不同频段、不同仰角和不同环境,天线的噪声都不相同。

在C波段,宇宙噪声很小,主要是大地和大气的热噪声。

在Ku波段,这些噪声也随着频率而增加。

同一仰角时,天线尺寸越大波束越窄,因此天线的噪声温度TA(K)越小,不过随着仰角加大,这种差别变小。

天线知识点总结

天线知识点总结

天线知识点总结天线是电子设备中最基本的元件之一,它能够将电磁波转换为电信号或者将电信号转换为电磁波,是广泛应用在通讯、雷达、导航、电视等领域的不可或缺的元器件。

本文将简要介绍一些天线的相关知识点。

1. 天线的基础理论 - 反射、辐射以及电磁波的特性天线的工作原理基于电磁波的传播特性及其与天线之间的相互作用。

天线通过反射、辐射等方式将电磁波与电信号进行转换,因此温度、介质、空气湿度等环境因素都会对天线的性能产生影响。

2. 天线的类型 - 主动、被动及扫描式天线天线可以根据其在电路中的位置和作用方式分为主动和被动两种类型。

主动天线通常带有放大器来增加信号强度,而被动天线则不带放大器。

此外,扫描式天线可以通过旋转、摆动等方式改变辐射方向,以实现扫描覆盖目标区域的效果。

3. 天线的指标 - 增益、方向性、VSWR、带宽等天线的性能可由其各种指标来描述,其中增益、方向性、VSWR、带宽等是较为重要的指标。

增益是天线的辐射能力,方向性是天线辐射能力随方向变化的能力,VSWR是天线对来自外部信号反射时的反射率指标,带宽则是天线能够工作的频率范围。

4. 天线的尺寸 - λ/2、λ/4、全波长天线等天线的尺寸与工作频率密切相关,常见的天线长度有λ/2、λ/4、全波长天线等。

λ/2天线通常用于VHF和UHF频段,λ/4天线适用于较低频段,全波长天线则通常用于HF 等较低频段。

5. 天线的应用 - 通讯、雷达、导航、电视等天线在通讯、雷达、导航、电视等领域都有广泛的应用。

不同应用场景对天线的要求不同,例如通讯领域需要天线具有良好的增益和方向性,而雷达和导航领域则需要具有较高的扫描速度和快速响应能力。

6. 天线的制作和测试 - PCB天线、红外按摩仪等天线的制作和测试涉及到复杂的技术和设备,常用的制作方法包括PCB天线、红外按摩仪等。

测试方法则通常包括VSWR测试、增益测试、方向性测试等。

7. 天线的未来发展趋势 - 新材料、智能化、多功能化等随着技术的不断进步,未来天线的发展趋势将会趋向于新材料、智能化、多功能化等方向。

天线知识培训

天线知识培训

天线知识培训一、天线基本原理天线是无线通信系统中的重要组成部分,负责将电磁波传输和接收。

天线能够将电流元转换为电磁波,或者将电磁波转换为电流元。

其基本原理基于电磁波的传播和辐射。

二、天线类型与用途1. 按照工作频段:可分为超长波、长波、中波、短波、超短波以及微波等类型。

2. 按照方向性:可分为全向和定向天线。

3. 按照增益:可分为无源和有源天线。

4. 按照结构:可分为线天线和面天线。

不同类型的天线有不同的用途,例如长波天线用于通信和导航,短波天线用于电报通信和广播,超短波天线用于电视、雷达和移动通信等。

三、天线参数与性能1. 阻抗:天线的输入阻抗应与信号源的输出阻抗相匹配,以实现最佳传输效果。

2. 方向图:表示天线接收和辐射电磁波的方向和强度。

3. 增益:表示天线辐射或接收电磁波的能力,与天线的尺寸、形状和材料有关。

4. 带宽:表示天线的工作频率范围。

5. 极化:表示电场矢量的方向,影响着天线的性能。

四、天线辐射与传播天线的辐射原理是将电磁能转化为向空间发散的电磁波,或者将空间中的电磁波转化为电流元。

电磁波在传播过程中受到各种因素的影响,如空气阻力、地面反射等,形成不同的传播模式。

五、天线材料与工艺天线的材料和工艺对其性能有着重要影响。

常用的天线材料包括铜、铝、铁等金属材料,以及塑料、陶瓷等非金属材料。

工艺方面,需要考虑天线的精度、防腐、防水等因素。

六、天线设计与优化天线的设计过程需要考虑诸多因素,如阻抗匹配、增益、方向图、极化等。

现代计算机辅助设计软件的应用使得天线的优化设计成为可能,通过对天线结构、尺寸和材料等因素的调整,可以得到最佳的性能表现。

七、天线测量与调试天线的性能需要通过实际测量来评估。

测量内容包括阻抗、方向图、增益、极化等。

一旦发现性能不佳,需要进行调试,调整天线的结构、尺寸或工作参数等,以实现最佳性能。

八、天线干扰与防护天线在使用过程中可能会受到各种干扰,如其他电磁波的干扰、雷电的袭击等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线的基本概念
1.作用天线是独立于收发信机之外的重要无线电设备,它通过馈线与收发信机连接。

发射天线把已调制的高频电流转换为相应的电磁波向周围的空间辐射。

接收天线把空间电磁波中的相应无线电波截获,并将其还原为电动势。

2.基本构成天线的构成从本质上说很简单,只要有一个开口的馈源就能向外辐射。

简单的天线没有反射体,只有激励振子。

由很多振子、多馈源组成的天线,在一定条件下,即使没有反射体,也能使电波向一定方向辐射。

典型的反射体是抛物面天线反射体,它的馈源多数为喇叭型,有的抛物面反射体还配有双曲面副反射体。

3.天线参数
等效阻抗或辐射电阻,它与天线系统总电阻之比是天线的效率,总电阻是辐射电阻与损耗电阻之和,一般天线的辐射电阻(俗称“阻抗”)是75Ω或50Ω。

振子的几何尺寸,天线振子的几何尺寸必须与使用波长相适应。

天线增益。

天线的有效辐射功率与馈源施加的功率之比,通常用分贝表示。

对于有方向性的天线,其增益总是在最有扰势的方向上测量。

波束宽度与方向性,许多发射天线及定向接收天线,都需要天线有好的方向性,以便集中辐射能量,增加发射距离。

对于类似于精密跟踪雷达的天线不仅要求有好的方向性,还必须有较小的波束宽度。

描述方向性的指标是增益系数,最大方向增益与各向同性的偶极子的增益之比。

相关文档
最新文档