云模型简介

合集下载

云模型计算公式

云模型计算公式

云模型计算公式
云模型是一种用于处理不确定性信息的数学模型,它基于随机变量的概念,并通过云函数和刻画函数来描述不确定性的分布情况。

在云模型中,计算公式包括以下几部分:
1. 云函数的计算:云函数是云模型的核心,用于描述随机变量的不确定性分布。

通常,云函数由两个参数表示,即基本云元和云元函数。

基本云元表示随机变量的取值区间,而云元函数则描述了在不同取值下的隶属度。

2. 刻画函数的计算:刻画函数用于描述云函数的形状和变化情况。

它可以通过一些统计指标来进行计算,比如均值、方差、偏度和峰度等。

刻画函数的计算可以帮助我们了解云函数的分布特征和形态。

3. 不确定性推理的计算:云模型可以进行不确定性推理,即根据已知信息推断未知信息的过程。

在推理过程中,需要根据已知的云函数和刻画函数进行计算,以得到推理结果。

总的来说,云模型的计算公式可以根据具体问题和应用场景的需求进行定制和调整,通常涉及云函数、刻画函数和不确定性推理等方面的计算。

云模型

云模型

云模型云模型(Cloud model)是我国学者李德毅教授提出的定性和定量转换模型。

随着不确定性研究的深入,越来越多的科学家相信,不确定性是这个世界的魅力所在,只有不确定性本身才是确定的。

在众多的不确定性中,随机性和模糊性是最基本的。

针对概率论和模糊数学在处理不确定性方面的不足,1995年我国工程院院士李德毅教授在概率论和模糊数学的基础上提出了云的概念,并研究了模糊性和随机性及两者之间的关联性。

自李德毅院士等人提出云模型至今短短的十多年,其已成功的应用到数据挖掘、决策分析、智能控制、图像处理等众多领域。

定义在随机数学和模糊数学的基础上,提出用"云模型"来统一刻画语言值中大量存在的随机性、模糊性以及两者之间的关联性,把云模型作为用语言值描述的某个定性概念与其数值表示之间的不确定性转换模型.以云模型表示自然语言中的基元——语言值,用云的数字特征——期望Ex,熵En和超熵He表示语言值的数学性质.“熵”这一概念最初是作为描述热力学的一个状态参量,以后又被引入统计物理学、信息论、复杂系统等,用以度量不确定的程度.在云模型中,熵代表一个定性概念的可度量粒度,熵越大粒度越大,可以用于粒度计算;同时,熵还表示在论域空间可以被定性概念接受的取值范围,即模糊度,是定性概念亦此亦彼性的度量.云模型中的超熵是不确定性状态变化的度量,即熵的熵.云模型既反映代表定性概念值的样本出现的随机性,又反映了隶属程度的不确定性,揭示了模糊性和随机性之间的关联.相关系数期望Ex是云在论域空间分布的期望,是最能够代表定性概念的点,或者说是这个概念量化的最典型样本;熵En代表定性概念的可度量粒度,熵越大,通常概念越宏观,也是定性概念不确定性的度量,由概念的随机性和模糊性共同决定.一方面, En是定性概念随机性的度量,反映了能够代表这个定性概念的云滴的离散程度;另一方面,又是定性概念亦此亦彼性的度量,反映了在论域空间可被概念接受的云滴的取值范围;超熵He是熵的不确定性度量,即熵的熵,由熵的随机性和模糊性共同决定。

云模型的具体实现方法

云模型的具体实现方法

云模型的具体实现方法云模型(Cloud Model)是一种模糊理论的数学方法,用于处理不确定性和模糊性的问题。

它可以将模糊的概念转化为具体的数学模型,用于分析和决策。

云模型的具体实现方法主要包括以下几个步骤:1. 收集数据:首先,需要收集与问题相关的数据。

这些数据可以是定量的,也可以是定性的。

定量数据可以通过测量或统计得到,而定性数据则可以通过问卷调查或专家访谈等方式获得。

2. 确定隶属函数:在云模型中,隶属函数用于描述一个概念的模糊程度。

常见的隶属函数包括三角隶属函数、梯形隶属函数和高斯隶属函数等。

根据问题的特点和数据的分布情况,选择合适的隶属函数。

3. 制定初始云:根据收集到的数据和确定的隶属函数,可以制定初始的云模型。

初始云可以是一个随机生成的云,也可以是根据数据的分布情况进行估算得到的云。

4. 云的演化:通过云的演化过程,可以逐步改进和优化云模型。

云的演化过程可以通过云生成、云退化和云变换等操作来实现。

其中,云生成操作是指根据已有的云生成新的云,云退化操作是指根据已有的云退化为更低级别的云,而云变换操作则是指将一个云转化为另一个云。

5. 云的运算:云模型中的运算包括云间的运算和云内的运算。

云间的运算可以通过云的相交、相加和相减等操作来实现,用于描述不同概念之间的关系。

云内的运算可以通过云的中心、宽度和高度等指标来描述,用于表示概念的重要程度、模糊程度和可信度等。

6. 问题求解:最后,根据问题的具体需求,可以使用云模型进行问题求解。

问题求解可以通过云模型的聚类、分类、预测和优化等方法来实现。

其中,聚类方法可以将相似的数据点分为一类,分类方法可以将数据点划分到不同的类别,预测方法可以预测未来的趋势和结果,优化方法可以找到最优的解决方案。

云模型的具体实现方法主要包括数据收集、隶属函数确定、初始云制定、云的演化、云的运算和问题求解等步骤。

通过这些步骤,可以将模糊的概念转化为具体的数学模型,用于分析和决策。

云计算服务模型

云计算服务模型

云计算服务模型云计算是一种基于互联网的计算模型,通过使用云服务提供商提供的资源和工具,用户可以按需获取计算能力、存储空间和应用程序。

云计算服务模型是指基于云计算的服务提供方式,通常分为三种主要模型:基础设施即服务(IaaS)、平台即服务(PaaS)和软件即服务(SaaS)。

本文将详细介绍这三种云计算服务模型及其特点。

一、基础设施即服务(IaaS)基础设施即服务(Infrastructure as a Service,简称IaaS)是指云服务提供商将计算资源、网络和存储等基础设施作为服务提供给客户使用。

在IaaS模型中,用户可以根据自身需求选择合适的虚拟机、存储空间和网络配置,以构建自己的应用环境。

IaaS模型的特点包括灵活性和可扩展性。

用户可以根据业务需求随时增加或减少计算资源,而无需关心底层基础设施的维护和扩展。

此外,用户还可以通过远程访问管理和监控自己的应用程序,实现对计算资源的全面控制。

二、平台即服务(PaaS)平台即服务(Platform as a Service,简称PaaS)是指云服务提供商将开发和运行应用程序所需的平台作为服务提供给客户使用。

在PaaS 模型中,云服务提供商会提供开发工具、运行环境和相关服务,用户只需要关注应用程序的开发和部署,而无需关心底层的基础设施和管理。

PaaS模型的特点包括高效性和易用性。

用户可以通过云平台提供的开发工具和运行环境快速构建和部署应用程序。

同时,云服务提供商会负责底层平台的维护和管理,用户只需专注于应用程序的业务逻辑和功能实现。

三、软件即服务(SaaS)软件即服务(Software as a Service,简称SaaS)是指云服务提供商将应用程序作为服务提供给客户使用。

在SaaS模型中,用户无需购买和安装应用程序,只需通过互联网访问云服务提供商的应用程序,即可享受到相关的功能和服务。

SaaS模型的特点包括易用性和灵活性。

用户可以根据自身需求,按需选择和使用不同的SaaS应用程序,无需关注应用程序的安装和升级问题,实现了即点即用。

云计算中的云计算模型分类

云计算中的云计算模型分类

云计算中的云计算模型分类云计算是指通过网络提供计算资源和服务的一种模式。

根据不同的服务模式和部署方式,云计算可以分为四种基本的云计算模型:公有云、私有云、混合云和社区云。

1. 公有云(Public Cloud):公有云是由云服务提供商提供并开放给公众使用的云计算服务。

这种模型下,云服务提供商经营和管理庞大的云平台,为用户提供多种计算资源和服务,如虚拟机、存储空间、数据库等。

用户可以根据需求随时购买、使用和释放计算资源,按照使用量和使用时长进行付费。

著名的公有云提供商包括亚马逊AWS、微软Azure、谷歌云等。

2. 私有云(Private Cloud):私有云是由企业或组织自己搭建和管理的云计算环境,资源和服务仅供内部使用。

在私有云模型下,企业可以根据自身需求配置和管理云计算平台,拥有更高的灵活性和控制权。

私有云多用于对数据安全性要求较高的行业,如金融、医疗等。

企业可以采用自有设备建设私有云,也可以通过外包方式将私有云托管给云服务提供商。

3. 混合云(Hybrid Cloud):混合云是将公有云和私有云结合起来使用的一种云计算模型。

企业可以同时使用公有云和私有云,根据实际需求将不同的工作负载分配到不同的云环境中,以实现最佳的性能、安全性和成本效益。

混合云模型可根据业务需求进行灵活的扩展和缩减,同时也能够解决数据隐私和安全性等问题。

社区云是针对特定行业或共同需求的组织建立的云计算平台。

组织内的多个成员可以共享该云平台上的计算资源和服务。

社区云一般由行业联盟、政府机构等共同建设和管理,为成员提供统一标准的云服务。

社区云相对于公有云和私有云而言,更加专注于特定行业或领域的需求,能够更好地满足成员的共同需求和合规要求。

总结起来,云计算模型主要分为公有云、私有云、混合云和社区云。

企业和组织可以根据不同的业务需求和数据安全要求选择适合的云计算模型,以获得最佳的性能、灵活性和成本效益。

云模型

云模型

多分辨率分析逆向云发生器X条件云发生器云模型模糊性聚类诊断云模型模糊性轮式机器人单片机泛概念树兴趣层自治域云模型电压耐受曲线模糊性激光扫描Dijkstra算法能量函数最小化BP神经网络网络安全分类算法定性概念正态云模型峰度图像分割信任声誉分类增量学习数值优化空气质量预报云模型云模型综合评价知识共享知识评价云模型云发生器云发生器不确定性阈值生成算法免疫优化算法量子免疫算法环境适应性模型可靠性云模型灰色关联度法信息融合神经网络状态评估学习质量评价教学质量评估相似性分段聚合近似云模型自适应定点直流电机逼近性推理法向量度量公式量子遗传算法函数优化数据场云模型PID交通信号自适应控制正态分布云模型云模型控制器DDE逆云模型移动最小二乘法正态分布期望曲线科技奖励云滴数字特征不确定性规则发生器轮式机器人单片机绩效结构熵权法稳健性云模型不确定性定性概念用户信用评价承包商选择评价方法云模型交通流预测交通优化云模型模糊控制信息融合不确定性鲁棒性评估边界曲线孔洞检测噪声鲁棒云分布云混合模型水质变化趋势分析宁海县云模型云变换云模型区间数满意度云相似度云模型P2P技术智能优化算法云模型云模型遥感影像熵权法云模型云模型免疫危险理论云核多阈值图像分割客户价值客户聚类自适应初始化语言值转换拓展云动态仿真云模型云模型Mann-Kendall检验A3000系统液位搬运机器人ARM云模型评价月销售量预测聚类云模型云c-均值聚类定性贝叶斯批调度自适应参数调整MPU方法布尔操作拥塞度云模型效能评估度量滑模控制平行单级双倒立摆综述威胁识别关联度分析隶属云正态云不确定性复杂系统信任决策信任变化数字水印版权保护实物期权预期现金流收益云模型暂态稳定数据挖掘交通流量数据不确定性云模型综合决策综合云效能评估裕度抢占阈值云模型关联分析云模型规则约简运营成本蒙特卡罗随机数云模型综合评判相似云度量主观信任信任云物料需求计划聚类分析振动参数云模型正态云正态云模型网络安全云模型数字参考咨询服务质量符号化统计特征矢量云模型状态评估项目相似性云发生器模糊性多属性评价军事信息网络定量转化有限状态机状态评估统计分析云模型映射定性评价指标合作伙伴云模型模糊性云模型综合评价云模型增加采样曲率自适应蚁群算法相似因子数据填充云模型矢量神经网络云模型谱聚类效能评估雷达模拟器指标权重作战方案优选云模型土遗址前件云发生器Q-学习信任评估云模型元胞自动机多信息融合云模型蠕滑QoC指标体系云模型云模型云变换效能评估灰云内部威胁感知遗传算法仿真动态模型相似度云模型产业转型战略风险预警空气质量环境评价变权综合评价云模型东江流域图像水印版权保护模糊综合评价电力市场云模型正态云知识本体数字特征隶属度指标体系改进的层次分析法能量价格上限容量价格云发生器高等院校预测云模型智能控制球棒系统云模型关联分析数据离散化概念跃升云模型灰关联驾驶状态二维云定性推理多媒体结构安全决策表云模型数据挖掘隶属度层次分析法线性加权云模型熵权雨模拟三维显示坐标变换非线性系统控制梯度下降法水质评价水体联盟评价云模型正向正态云模型云模型ET0云模型威胁影响因子权重系数特征选择入侵检测资源型城市土地适用性评价指标体系航迹关联信任云综合评判云模型数字特征小波分析云模型增量学习云模型云模型软件过程绩效隶属度模糊概念风险等级信任云理论研究综述评估词汇量云选取判优云模型刀库抛掷爆破综合评价层次分析法保障评价云模型遥感影像客户细分系统设计衰减因子相似度供应链正态云模型AHP云模型信息融合量子计算函数优化承接优势云模型企业管理匹配修复交通状态评价故障模式危害性分析质量评价数字海图质量评估云模型模糊数学云模型入侵检测检测率借阅偏好不确定性图书推荐动态均衡蓄积量Yamaguchi四分量分解遗传算法攻击区云模型云发生器预测云云模型不确定性推理层次分析法熵值法雾化因子误差分析视点特征直方图激光测距仪(LRF)人工免疫原理数据概要结构入侵检测逆向云生成评估模型云模型混合量子计算函数优化云模型幂律数字特征可靠性差异演化粒子群模型正态模糊事故树云模型正态分布云模型云模型云权重逆向云发生器红外图像弱小目标检测评分聚类属性聚类双重置乱置乱程度实数编码全局优化云模型支持向量机信任管理模糊理论云模型TOPSIS方法多因素综合评价模型内蒙古迁移相似度云模型不确定性控制蚁群算法服务选择REST架构云模型正态云评价逆向云发生器峰值法云变换云模型预警私有云负载均衡云模型网络仿真可编程控制器随机数物流服务质量大坝变形数据分析词汇化结构预测评价SWRL故障预测指标土地集约利用综合云词汇化结构预测数据包络分析云模型不完全可信性应力-强度干涉模型CIMS环境云神经网络效能评估评价云模型短时交通流预测模型不确定性推理滑模控制云模型岷江流域指标因素分析法协方差矩阵投影情境建模路径规划自适应参数调整云模型Pareto最优解云模型蒙特卡罗方法自主性评价方法云模型云模型故障诊断灰云NSGA-Ⅱ算法函数优化云模型Web服务虚拟角色模糊性粒子群优化适应度测评方法雷达图函数优化不确定性变量半定量效能评估云模型灵敏度分析云模型不确定性云模型遗传算法云模型多属性评价神经网络综合素质评价彩色图像分割云变换运作管理雷达辐射源信号识别云模型肥尾云模型坡面水毁云模型度量方法条件约束云雾化风险预测动态数据交换液位搬运机器人ARM逆向云发生器定性评价协同过滤项目相似性覆盖算法云模型以约束为中心云模型云模型维护策略评价一致性评价可信度评估效能评估LabVIEW网格任务调度项目的评分相似度时间修正证据理论发散型研讨度量一致性储能系统功率平滑云模型进化算法物元理论评教指标量化健康状态评估偏航控制风电机组探究图像云模型VIKOR方法励磁推理器多机无穷大云模型流媒体业务不确定性四叉树不确定性确定度云模型云运算评估模型店铺选址研究文化评价云模型公交电子站牌灰云聚类变权理论极大似然法飞行器辨识粗糙直方图HSV MapReduce子树同构CIELab彩色空间网格点情感分类云模型云推理确定度映射LabVIEW云模型确定度云理论灰色关联度云模型阿克苏地区云模型层次分析法云模型业绩评价云模型地表水源地不确定性推理风险评价碍航性综合评价D-S证据理论辐射源识别入侵容忍入侵识别有效传输距离评价指标边界曲线孔洞检测并行蚁群算法支持向量机风险评价定性推理板形控制云模型模糊综合评判法云模型Theil指数不确定性托肯入侵检测词袋模型不确定性概念表示云模型云模型云模型有偏好熵权电压分区中枢母线胀缩性云模型聚类查询扩展复合图书馆实体馆藏云模型控制器灾害预警云模型改进非支配排序双语教学应用图像阈值化白细胞核提取分布式传感器融合用户特征属性相似性打分偏好灰色预测模型信任向量混沌优化供应商选择AHP云重心效能评估云模型驾驶状态无线传感器网络状态估计平均无故障时间故障树分析法异常检测异常阈值云模型安全评价云相似度反精确分析灰色理论文本云相似度文本特征提取云模型文摘单元选取灾害损失评估模糊综合评价二维云模型聚类分析简化点云模型云模型情境建模CIMS推理映射评价指标体系云模型评价方法云模型项目分类云模型云理论不确定性法向计算最小二乘拟合供应链绩效评价监测系统数据采集云模型控制器ARM指标体系云模型理论云模型数据认证融合最近迭代点云模型信任二维正态云发生器反馈机制进化策略正态云不确定性推理云模型混沌理论关系数据库数值优化软硬件划分水质评价小波分析云模型信息安全风险评估检修策略云模型移动AdHoc网络评价云模型云模型实例分析视距云变换云模型指数平滑法云模型学习效果评价嵌入式SOPC系统云模型控制器数据挖掘可信推荐节点信誉模型离散微粒群批调度励磁控制汽门控制推理映射非线性映射云发生器工期-费用模型云模型计算机模拟模糊推理系统不确定性正态云云模型无线传感器网络云模型理论权重几何属性光顺去噪云变换多维关联规则轮式机器人单片机不确定语言群体一致性指标体系效能评估隶属云LQR控制串并联系统加权云状态评估故障诊断协同过滤云模型K近邻二向八叉树增量三角网格化离散小波变换数字水印REST架构云模型多属性评价决策方法人工智能云模型云发生器信任度评估声誉信任分类器癌症相关基因云模型驾驶员反应时间汽车运行工况文本分类文本聚类云模型概念客户特征知识发现云模型对称性检测模型表面分割粒化粒层次结构云模型地表水源地云模型模糊隶属函数TSP定性推理板形控制无线传感器网络状态估计PM2.5Favour排序云模型云生成器信息粒概念抽取云模型SAR评估评估AHP正态分布熵正态云云模型评价指标体系路径规划自适应参数调整水印容量云模型环域分割聚类分析云控制器不确定性聚类云模型数据融合云模型展延云模型不确定性推理评价准则异常检测异常阈值云模型映射器不确定性推理正态云熵相似度云模型效能评估云模型区域生长图像分割电磁频谱保障能力QoS参数归约调度算法定性控制二维云模型云模型要点评价去噪特征保持认知科学概念空间模型形式化云模型理论任务调度案例推理路径规划机器人特征增强谷云遗传算法公共交通蚁群优化点云特征点预测模型云模型协方差矩阵配准误差态势预测预测规则时间集中性可信度云人工鱼群算法函数优化云模型隐马尔科夫模型工程造价定性定量古建筑智能控制云理论定性推理云控制器云层次分割二维云变换分割云模型功耗约束逆云模型逆云隶属度语言评价云模型云模型效能评估多蚁群算法路由优化驾驶行为不确定性网络课程评价模型分割区域生长熵权评价最速下降法板形不确定性分析云模型心电信号ST段基于信任网络推荐冷启动推荐云模型数据场量子云旋转门量子云变异与云纠缠点聚类自适应迭代实物期权定价鉴评模糊神经网络反导作战通道多车道智能控制证据距离指标体系模型节点部署传感器模糊C均值(FCM)聚类图像增强最近的N个离散点平衡二叉树效果评估能力云图像阈值化图像分割云发生器LabVIEW变异操作云模型供水管网抗震功能指标体系云模型参数化方法几何图正态云模型区间数逆向云发生器贝叶斯分类小波变异克隆选择算法植被散射水云模型特征辐射源信息平台目标识别云变换RBF神经网络云遗传算法云模型云模型质量综合评价最小生成树K邻域逆向云变换认知计算霍夫曼树逆云模型云模型图像分割证据距离评价遗传算法云模型隶属云模型隶属云定性规则故障树蒙特卡洛云模型行为评判模型复杂网络环境各向异性图像去噪可视化云核图像分割直觉正态云模型建设项目经济评价D-S理论评价安全评价熵图像分割对数量化量化索引调制(QIM)云模型贝叶斯网络云模型服务能力多维信任云不确定因子云模型可拓学云模型数据场云模型权衡函数主观性云模型云模型模糊性多维信任云直接信任云云模型差量云模型保性能容错控制剖面图工业设备云模型粗集录井关键参数生物量水稻投篮命中率投篮角度数字水印鲁棒性效能云模型云模型危险信号最小二乘支持向量机温度补偿数据挖掘安全评价云模型运行情况监测状态检修云模型物元理论故障诊断目标识别姿态估计云模型矿井涌水量情报效能效能评估云模型云模型物元理论云模型matlab仿真警务信息处理云模型环境条件指挥控制效能云模型云重心评估法作战能力二维云规则层次分析云重心评判法云模型微粒群算法信任认知安全监控N维云模型特征速度熵权评价云模型一维正态云全局优化群体智能云模型风险评价云模型熵权云模型动力学互关因子指数法模型简化路径规划机器人故障诊断水轮机组Wiener模型系统辨识云模型变异策略隶属度判定算法点云融合三维重建云模型典型小概率法云模型自适应遗传算法云模型网络入侵云模型路径跟踪个性化推荐云模型云模型神经网络短时频率估计特征提取折线生长恶意节点信任模型变异信任决策评价方法云模型云模型理想方案ANP云模型正向云算法逆向云算法云模型层次分析法云模型比例积分微分粒聚类分析机器鱼云模型火电机组免疫克隆算法云模型不确定推理云化计算性谱聚类Laplacian矩阵云模型QoS/QoE综合评价电子电气员不确定性语义Web云模型隶属度云重心评判法目标可满足性推理云模型空域质量评估质量变化云遗传算法配煤调度遗传算法云模型路网级配数据处理三角网格用户相似性云模型LK算法旅行商问题帧缓冲深度裁剪自适应算法参数优化虚拟人摇头动作控制扩展云云发生器特征点检测k近邻物流节点物流配送槽多属性决策不确定性相似性可信模型信息可信评价规则发生器数据融合计算机模拟蚁群聚类算法标准BP算法神经网络云模型建模与仿真步进电机数字水印fact cell path query parallel协同过滤算法零水印版权保护不确定性控制云模型种群适应度函数优化函数优化迭代最近点算法加权轮式机器人单片机正态云发生器特征选择入侵检测云相似性算法区间私有云虚拟化云自适应遗传BP算法神经网络马赛克算法概念格云模型亲疏系数云模型层次分析法炮兵营线性回归模型云模型代理体系结构调度算法云理论模糊模式识别模糊理论云计算鲁棒性云模型云分类器交叉验证EM算法重建算法蚁群遗传算法正态云模型点云模型位移细分曲面旅行商问题模型识别改进云模型变异收敛性二维正态云拟合云云模型云物元分析原理数据融合动态定价生鲜食品数字线划图云模型人工免疫模型云模型自学习进化算法个体能动性云模型改进蚁群算法云计算网格FY-2C云图关联规则云模型经济车速规划条件云模糊理论云模型物元理论Fréchet距离自适应C-measure算法路由问题多目标路由问题云模型压缩感知方向场阴影线影响范围网格计算任务调度数据包络分析主成分分析数据场搜寻区域变权理论云模型特征提取点云简化云模型电网企业云模型组合评价云模型定性规则类别相似性综合相似性遗传算法云模型LSF调度算法抢占阈值联机分析处理云模型可信评价构件疲劳人耳分割3D姿态归一化业主招投标数据融合云模型并行技术农田采集优先变量模糊神经网络模糊性随机性粗糙-云模型矿山变压器意图识别模糊控制法向估算上采样高度差K-邻近点信任模型集对分析风险评估多属性评价粒子群算法支持向量回归机内脏脂肪面积健康评价过程改进CMNI主观Bayes方法云模型故障诊断熵理论人工智能技术遗传算法测点选择故障字典刀轨修改刀轨生成评价模型熵权法云模型熵权法人力资源管理外包风险安全评价云模型Clifford-Fourier变换3D点云径向基函数神经网络故障诊断云模型信任向量云理论云重心评价法模糊信息设计方案云模型故障停电云综合p阶逆向云变换分形矩阵风险评估科技奖励评价评价非一致性云模型评价指标体系综合指数评价云模型综合评估大数据云计算云推理云模型权重云推理知识共享服务质量最大最小贴近度算术平均最小贴近度Bootstrap方法雷达辐射源信号信用卡信用评价云模型改善云模型RBF神经网络线性四叉树多分辨率模型软测量云模型云模型QNN云模型RT-LAB发动机运行云模型云理论风险评估云模型指数平滑法云模型评价体系认知无线网络参数优化数字水印K近邻丢包队长信任等级定量评估概念提升定性评价云重心评估移动最小二乘法点云模型独立成分分析云模型云模型变权理论云理论效能评估年龄分布评价不确定性点云模型分水岭轮廓算法损益云模型损益比云模型惯性权重正态云模型正向正态云发生器云模型风险评估体系框架云模型工程项目质量成本预测信任模型云模型粒粒编码方式数学模型航迹控制Ad Hoc网络移动意图检测前跟踪动态规划差分进化合作式协同进化支持向量机增量学习云模型神经网络位置估计云模型指标气象相似性点云配准融合神经网络粒子群语义描述三维模型库态势提取态势感知评价云模型云模型层次分析法项目的评分相似度时间修正云模型蚁群算法参数辨识PID控制指标体系云模型评价指标云模型概念数字特征概念跃升云模型特征项线性四叉树多分辨率模型云模型确定度红外图像弱小目标检测并行蚁群算法支持向量机移动最小二乘法点云模型云理论效能评估电压分区中枢母线关联关系无监督学习云模型D-S证据合成云模型D-S证据合成云模型云重心富营养化评价水环境粒子群优化模糊逻辑粒子群优化模糊逻辑评价不确定性质量评价云模型信任传递数字特征判定矩阵对称性检测PCA分析均匀云云综合变形基函数高斯分布云模型云重心灰度服务质量绩效评价特征提取线性相关性粒子群优化模糊逻辑层次分析法模糊计算测点识别人体尺寸数字特征判定矩阵对称性检测PCA分析特征提取二叉树云计算网格蚁群算法推荐技术兴趣发现智能群体算法盘式绝缘子云模型最优判别差分进化算法云模型二元语义云模型孔洞边界点可编程控制器变频器云模型绩效评价云模型功耗约束点云简化点云分割BP网络板形预测三维重建图像改进的云神经网络T-S云推理网络透明加密双缓存价值评估模型云模型层次分析法云模型演化建模趋势预测云模型图像分割云化概念遗传算法粒子群算法综合评价云模型互动发展发展策略乘客行为云模型评价指标体系云模型灰色预估模糊控制QoS/QoE相似性度量云变换相似性度量层次聚类云模型评价体系云模型遗传算法故障诊断危险理论移动Ad Hoc网络云模型云模型可信路由概念扩展查询词权重综合评价云模型小波变换关联规则云模型等距对合谱分析主观信任模型风险评估多目标化记忆策略多样化搜索集中化搜索人件服务软件服务边缘对偶帧差法图割检测感知多边形网格实时绘制时间资源分配网络特征曲率光顺案例推理云模型可信性一体化校核与验证过程事故模式云模型云模型推理机制径向基神经网络核密度估计主观信任云模型云模型核主分量分析重构运行机制合作机制影响机制云模型云模型离群释义子空间云模型区间直觉模糊理论数字航空摄影质量元素特征选择不平衡文本云模型云安全架构区域生长图像分割信任云行为预测合作博弈云模型电力大客户运营环境信任卫星系统设计设计优化遗传算法云模型云理论泛概念树兴趣群组信任模型云计算图形处理器云模型矢量云故障诊断云模型蒙特卡洛仿真最优概率粒子群算法差分进化绩效结构云模型云模型组合预测RS特征抽取遗传算法风力机模糊推理点云模型体积计算预期现金流收益B-S公式煤与瓦斯预测云发生器本体知识服务质量评价云模型发展审计信息化审计评价模糊神经网络交通信号控制策略切片法矢量轨迹获取逆向工程多媒体信息检索时空相关性粒子群优化主成分分析植物形态重建特征匹配SFM算法EM算法证据理论贝叶斯概率推理网可视化意见综合山茶属植物数值分类人工髓核生物力学模拟计算点云切片用户评分可信度用户推荐可信度吸积盘太阳星云二维图像旋转轴网格模型体素模型指标体系评标模型。

云模型的原理

云模型的原理

云模型的原理云模型是一种基于概率统计理论的方法,用于处理不确定性问题。

它的提出主要是为了解决模糊逻辑和概率统计在处理不确定性问题时存在的问题和局限性。

云模型可以有效地处理模糊问题,如模糊分类、模糊决策和模糊控制等。

云模型是由云形状的隶属函数构成的数学模型。

云模型的隶属函数分为三个部分:云体、云元和云中心。

云体是一个表示不确定性的隶属度区间,用来表示事物在某个属性上的不确定性程度。

云元是云体的中心,表示了一个事物在某个属性上的隶属度。

云中心是指定在某个属性上的确定性程度,表示了一个事物在该属性上的确定性程度。

云模型的生成过程主要包括三个步骤:成员函数的构造、云体的生成和云元的生成。

首先,根据具体问题的特点来选择成员函数,构造一个隶属度函数。

成员函数可以是高斯型、均匀型或三角形等形式。

然后,根据成员函数生成云体。

云体是基于成员函数定义的一个概率分布函数,用来描述一个事物在某个属性上的不确定性。

最后,通过对云体的描述,生成云元。

云元是一个随机变量,表示一个事物在某个属性上的隶属度。

云模型的数学表达式可以通过使用概率密度函数来描述,具体形式为:F(a) = (α, β, γ)其中,α、β、γ分别表示云体的左边界、核心和右边界。

云模型的主要特点包括概率性、模糊性和不确定性。

概率性体现在云体的生成过程中,通过概率统计理论来描述一个事物在某个属性上的不确定性。

模糊性体现在云元的生成过程中,通过成员函数和云体的描述来表示一个事物在某个属性上的模糊程度。

不确定性体现在云体和云元的描述中,表示一个事物在某个属性上的确定性程度。

云模型的应用主要集中在不确定性问题的建模与分析。

例如,在模糊分类中可以使用云模型来描述事物在不同属性上的模糊性,从而确定事物的类别。

在模糊控制中可以使用云模型来描述控制输入和输出的不确定性,从而优化控制策略。

在决策分析中可以使用云模型来描述决策变量的不确定性,从而制定合理的决策方案。

总结起来,云模型是一种基于概率统计理论的数学模型,用于处理不确定性问题。

云计算理论模型描述模型

云计算理论模型描述模型

云计算理论模型描述模型
1. 云计算层级模型:云计算通常被划分为不同的层级,包括基础设
施层(IaaS)、平台层(PaaS)和软件层(SaaS)。

这些层级描述了云计
算模式中不同层次的服务和功能。

2. 云计算服务模型:云计算服务模型描述了云计算提供的不同服务
类型。

其中,基础设施即服务(IaaS)提供了虚拟化的硬件资源,平台即
服务(PaaS)提供了开发和部署应用程序的平台,而软件即服务(SaaS)
提供了应用程序的完整功能。

3.云计算部署模型:云计算部署模型描述了云计算资源的部署方式。

常见的云计算部署模型包括公有云、私有云、混合云和社区云。

公有云指
的是由第三方服务提供商提供的云服务,私有云指的是组织内部部署和管
理的云基础设施,混合云是公有云和私有云的结合,而社区云则由一组共
同利益的组织共享和管理。

4.云计算关键特性:云计算具有一系列关键特性,包括按需自助服务、广泛网络访问、资源池化、快速弹性扩展和量化服务等。

这些特性是云计
算的基石,为用户提供了强大的灵活性和可扩展性。

5.云计算安全和隐私模型:云计算涉及大量的敏感数据和用户隐私,
因此安全和隐私问题成为了云计算领域的关注焦点。

云计算安全和隐私模
型用于描述和研究云计算环境下的安全和隐私挑战,并提供相应的解决方
案和技术。

总的来说,云计算理论模型为研究者和从业者提供了一个统一的框架
和理论体系,有助于理解和应用云计算模式。

通过深入研究和分析云计算
理论模型,可以为云计算的发展和应用提供更有针对性的建议和解决方案,从而推动云计算技术的进一步发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章云模型简介在人类认知以及进行决策过程中,语言文字是一种强有力的思维工具,它是人类智能和其他生物智能的根本区别。

人脑进行思维不是纯粹地应用数学知识,而是靠自然语言特别是客观事物在人脑中的反映而形成的概念。

以概念为基础的语言、理论、模型是人类描述和理解世界的方法。

自然语言中,常常通过语言值,也就是词来表示概念。

而语言值、词或概念与数学和物理的符号的最大区别就是其中包含太多的不确定性。

在人工智能领域,不确定性的研究方法有很多,主要有概率理论,模糊理论,证据理论和粗糙集理论;对于确定性系统的不确定性的研究还有混沌和分形的方法。

这些方法从不同的视角研究了不确定性,优点是:有切入点明确、边界条件约束清楚、能够对问题进行深入研究等,但是在研究中常常将不确定性分成模糊性和随机性分开进行研究,然而两者之间有很强的关联性,往往不能完全的分开。

随机性是指有明确定义但是不一定出现的事件中所包含的不确定性。

例如在投掷硬币试验中,硬币落地时要么有国徽的一面向上,要么标有分值的一面向上,结果是明确的可以预知的,但是每次试验结果是随机的。

概率论和数理统计是研究和揭示这种随机现象的一门学科,至今已有几百年的研究历史.模糊性是另一种不确定性,是已经出现的但是很难精确定义的事件中所包含的不确定性。

在日常工作和生活中存在着许多模糊概念,如“胖子”“年轻人”“收入较高”等。

为处理这些模糊概念,引入了模糊集的概念[41],使用隶属度来刻画模糊事物彼此间的程度。

隶属度函数常用的确定方法有模糊统计法、例证法专家经验法等,这些方法确定隶属度函数的过程是确定的,本质上说是客观的,但每个人对于同一个模糊概念的认识理解存在差异,因此有很强的主观性,而且一旦隶属度函数确定之后,得到的概念、定理等包含着严密的数学思维,其不具有任何模糊性。

针对上述问题李德毅院士在传统的概率统计理论和模糊理论的基础上提出了定性定量不确定性转换模型——云模型,实现定性概念和定量值之间的不确定性转换。

在此工作上,一些学者对云模型做了深入系统的研究,使其日趋成熟,并将它成功地应用于不确定性推理、关联规则挖掘,空间数据的挖掘,智能控制及时间序列预测等领域。

云模型能模拟人类思维灵活划分属性空间,在较高的概念层上泛化属性值,完成定量数值到定性概念间的转换,同时允许相邻属性值或语言之间有重叠,这种划分使发现的知识具有稳健性。

而由于计算机系统的行为存在随机性和不确定性,云模型能够很好地处理具有随机性和不确定性的数据,所以可将云模型引入到入侵检测中来,通过云模型建立的入侵检测系统具有较准确的检测能力和适应能力。

3.1 云模型的引入云模型能够实现定性概念与定量值之间的不确定性转换。

同时数据挖掘是基于不同认知层次的“数据-概念-知识”视图,“数据”中包含大量的不确定性知识,而云模型能够更准确地将数据表达为概念,进而发现准确、完整的知识。

因此将云模型应用于数据挖掘中可以提高数据挖掘的准确度。

下面简单介绍云模型的一些概念和数字特征,重点介绍云的概念、正态云发生器及正态云的数学性质。

3.1.1 云和云滴定义3.1[42] 设U 是一个精确数值表示的定量论域,C 是U 上的定性概念,若定量值U x ∈,且x 是定性概念C 的一次随机实现,x 对C 的确定度]1,0[)(∈x μ是有稳定倾向的随机数]1,0[:→U μ U x ∈∀ )(x x μ→ (3.1)则x 在论域U 上的分布称为云(Cloud),每一个x 称为一个云滴[42]。

云具有以下性质[42] :(1)论域U 可以是一维或多维的;(2)定义中所提及的随机实现,是概率意义下的实现;定义中所提到的确定度,是模糊集意义下的隶属度,同时又具有概率意义下的分布;(3)对于任意一个U x ∈,x 到区间[0,1]上的映射是一对多的变换,x 对C 的确定度不是一个固定的数值,而是一个概率分布;(4)云由云滴组成,云滴之间无次序性,一个云滴是定性概念在数量上的一次实现,云滴越多,越能反映这个定性概念的整体特征;(5)云滴出现的概率大,云滴的确定度大,则云滴对概念的贡献大。

3.1.2 云的数字特征云的数字特征能够反映概念的整体性和定性知识的定量特性,它对定性概念的理解有很重要的意义。

云一般用期望Ex 、熵En 和超熵He 这三个数字特征来整体表征一个概念[43],如图3-1所示。

图3-1 云的数字特征Fig.3-1 Digital Characteristics of the Cloud期望Ex :云滴在论域空间分布的期望,是概念在论域中的中心点,它是最可以代表定性概念的点[43]。

熵En :定性概念的不确定性度量,由概念的随机性和模糊性共同决定。

一方面熵是定性概念随机性的度量,反映了能代表这个定性概念的云滴的离散程度;另一方面又是定性概念模糊度的度量,反映了论域空间中可被概念接受的云滴的取值范围,此外熵还能反映随机性和模糊性之间的关联性[43]。

超熵He :是熵的不确定性的度量,即熵En 的熵,由熵的随机性和模糊性共同决定,反映了云滴的离散程度,超熵的大小间接地反映云的厚度,超熵越大,云的厚度越大[43]。

3.1.3 云模型的类型云模型是云的具体实现方法,是云运算、云推理、云控制、云聚类等方法的基础。

由定性概念到定量表示的过程,即由云的数字特征产生云滴的过程,称为正向云发生器。

由定量表示到定性概念的过程,即由云滴群得到云的数字特征的过程,称为逆向云发生器。

云有多种实现方法,可构成不同类型的云,如半云模型、对称云模型、组合云模型等,还可以扩展到多维云模型。

3.2 正态云正态分布是概率理论中重要分布之一,通常用均值和方差两个数字特征表示;钟形隶属度函数是模糊理论中使用最多的隶属函数,通常用222)()(b a x e x -=μ来表示。

正态云正是在二者基础上发展起来的全新模型。

定义3.2 设U 是一个精确数值表示的定量论域,C 是U 上的定性概念,若定量值U x ∈,且x 是定性概念C 的一次随机实现,若x 满足:),(~2'En Ex N x ,其中),(~2'He En N En ,且x 对C 的确定度满足:2'22)()(En Ex x ex -=μ(3.2) 则x 在论域U 上的分布称为正态云[43]。

3.2.1 正态云发生器正态云发生器[44]是指用计算机实现的一种特定算法,其可以用集成的微电子器件来实现,包括正向云发生器和逆向云发生器。

(1) 正向云发生器正向云发生器是实现定性概念到定量值的转换模型,其由云的数字特征(He En Ex ,,)产生云滴,如图3-2所示。

图3-2 正向云发生器Fig.3-2 Forward Cloud Generator(2) 逆向云发生器逆向云发生器[44]是实现定量值到定性概念的转换模型,它可以将一定数量的精确数据转换为以数字特征(He En Ex ,,)表示的定性概念,如图3-3所示。

图3-3 逆向云发生器Fig.3-3 Backward Cloud Generator逆向正态云发生器的算法基于统计原理思想,基本算法有两种:一是无需确定度信息的逆向云发生器算法;二是需要确定度信息的逆向云发生器算法[44]。

3.2.2 云滴对概念的贡献在正向正态云模型中,云滴群对概念的贡献是不同的。

本文以一维正向正态云为例来说明云滴群对概念的贡献程度。

定义3.3 在一维论域U 中,X 中任一小区间上的云滴群x ∆对定性概念A 的贡献C ∆[43]为)2/()(En x x C A πμ∆*≈∆(3.3)易得,论域(+∞∞-,)上所有元素对概念A 的总贡献C 为122)()2/()(22===⎰⎰+∞∞---+∞∞-Endx e En dx x C Ex Ex x Aππμ (3.4) 同理,可得论域[En Ex En Ex 3,3+-]上所有元素对概念A 的总贡献En Ex C 3±为:En Ex C 3±=%74.99)(2133=⎰+-EnEx En Ex A dx x En μπ(3.5)因此论域U 中对定性概念A 有所贡献的云滴,主要落在]3,3[En Ex En Ex +-区间中,通常可以忽略区间]3,3[En Ex En Ex +-之外的云滴对定性概念所做的贡献,这即为正向正态云的“En 3规则”[44]。

同理位于]67.0,67.0[En Ex En Ex +-区间内的云滴,占所有定量值的22.33%,它的贡献占总贡献的50%,这部分云滴被称为“骨干元素”;位于],[En Ex En Ex +-区间内的云滴,占所有定量值的33.33%,这部分的贡献占总贡献的68.26%,这部分元素被称为“基本元素”;位于],[En Ex En Ex +-区间和]2,2[En Ex En Ex +-区间内的云滴,占所有定量的33.33%,它们对定性概念的贡献占总贡献的27.18%,该部分元素被称为“外围元素”;位于]2,2[En Ex En Ex +-区间和]3,3[En Ex En Ex +-区间内的云滴,占全部定量值的33.33%,它们对定性概念的贡献占总贡献的4.3%,这部分云滴被称为“弱外围元素”[44]。

不同区域内的云滴群对定性概念所做的贡献不同,如图3-4所示。

图3-4 云滴群对定性概念的贡献 这图能不能小点儿Fig.3-4 Cloud Droplets Contribute to Qualitative Concept3.3 正态云的数学性质3.3.1 云滴分布的统计分析根据正态云发生器算法,所有云滴x 的集合构成随机变量X ,'En 服从以En 为期望、2He 为方差的正态分布,所以'En 的概率密度函数[44]为22'2)(21)(He En x En e He x f -=π(3.6) 如果'En 为定值时,X 服从以Ex 为期望、'En 为方差的正态分布,此时X 的概率密度函数[44]为2'22)(''21)(En Ex x x e En En x f -=π(3.7)由于'En 是随机变量,由条件概率密度公式可知X 的概率密度函数为dy e y He En x f x f x f He En y y Ex x x En x ⎰∞+∞----=⨯=2222'2)(2)('21)()()(π(3.8)式(3.8)是一个概率密度函数,它不具备解析形式,对于任意的变量x ,通过数值积分可以得到与之相应的函数值。

当云滴个数为n 时,采用Parzen 窗的方法可以估算出X 的概率密度函数[44]。

特别地,当0=He 时,X 的概率密度函数为222)(21)(En Ex x e En x f -=π(3.9) 因为所有的云滴x 都来自于期望为Ex 的正态随机变量,所以期望Ex EX =,方差22He En DX +=。

相关文档
最新文档