计量经济学【一元线性回归模型——参数估计】

合集下载

计量经济学的2.2 一元线性回归模型的参数估计

计量经济学的2.2 一元线性回归模型的参数估计

基于样本数据,所得到的总体回归函数的一个估 计函数称为样本回归函数。
问题:当我们设定总体回归模型的函数形式后, 如何通过样本数据得到总体回归函数的一个估计 (即样本回归函数)?--参数估计问题
E (Y | X i ) 0 1 X i
ˆ ˆ ˆ Yi f ( X i ) 0 1 X i
Xi确定
作此假设的理由:当我们把PRF表述为 时,我们假定了X和u(后者代表所有被省略的变量的影 响)对Y有各自的(并且可加的)影响。但若X和u是相关 25 的,就不可能评估它们各自对Y的影响。
线性回归模型的基本假设(4)
假设4、服从零均值、同方差、零协方差的正态分布 i~N(0, 2 ) i=1,2, …,n 意为:ui服从正态分布且相互独立。因为对两个正态 分布的变量来说,零协方差或零相关意为这两个变量 独立。 作该假设的理由:i代表回归模型中末明显引进的许多解释
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
3
回归分析的主要目的是要通过样本回归函 数(模型)SRF尽可能准确地估计总体回归函 数(模型)PRF。
ˆ ˆ ˆ Yi 0 1 X i
ˆ ˆ ˆ Yi 0 1 X i ui
同方差假设表明:对应于不同X值的全部Y值具有同 样的重要性。
22
线性回归模型的基本假设(2-3)
假设2、随机误差项具有零均值、同方差和不自相关 性(不序列相关): (2.3) 不自相关: Cov(i, j|Xi, Xj)=0 i≠j i,j= 1,2, …,n 或记为 Cov(i, j)=0 i≠j i,j= 1,2, …,n 意为:相关系数为0, i, j非线性相关。 几何意义如下

计量经济学课件-第二章

计量经济学课件-第二章

重要提示
• 几乎没有哪个实际问题能够同时满足所有基本假设; • 通过模型理论方法的发展,可以克服违背基本假设 带来的问题; • 违背基本假设问题的处理构成了单方程线性计量经 济学理论方法的主要内容: 异方差问题(违背同方差假设) 序列相关问题(违背序列不相关假设) 共线性问题(违背解释变量不相关假设) 随机解释变量(违背解释变量确定性假设)
Back
第 二 章:一元线性回归模型
§2.2 一元线性回归模型的参数估计
一、古典(基本)假定 二、用普通最小二乘法(OLS)估计模型的参数 三、OLS回归直线的性质(数值性质) 四、最小二乘估计式的统计性质 (前提:满足古典(基本)假定)
一、古典(基本)假定
简单线性回归模型:
(一) 对变量和模型的假定 1)重复抽样中,解释变量 X i 与干扰项 u独立; i 是一组固定的值或虽然是随机的,但
估计总体回归方程(PRF)。
设样本回归方程为:
ˆ ˆ X ˆ Y i 1 2 i
ˆ 实际值与拟合值的离差为: Y Y i i
离差平方和为:
ˆ) Q e (Y Y
2 i i i
2
最小二乘法的基本思想(原则):寻找实际值与拟合值的离 差平方和为最小的回归直线。
ˆ ˆ X) ˆ ) (Y e (Y Y
ˆ x ˆi y 2 i
ˆ ˆ X ˆ Y i 1 2 i
ˆ ˆ X e Yi 1 2 i i
ˆ e Yi Y i i
ˆ ˆ X) ˆ ˆ X) ˆi y ( ( 1 2 i 1 2 ˆ(X X) ˆ x ˆi y 2 i 2 i
i=1,2,„n (2.1.3)
X X , X , 1 2 其中,Y 称被解释变量, „ k 称解释变量,k 为解

计量经济学第二章--一元线性回归模型

计量经济学第二章--一元线性回归模型

2 、同方差假定:每一个随机误差项的方差为常数,即:
经 济
Var(Yi ) Var(i ) 2 (常数)

该假定表明:给定X对应的每个条件
分布都是同方差的,每个Y值以相同
的分布方式在它的期望值E(Y)附近波

10
3、无自相关假定:任意两个随机误差项之间不相关,用数学
形式表示为:
Cov(i, j ) E (i E(i ))( j E( j )) 0
)
xiYi Y xi2
xi
xi 0
bˆ1
xiYi xi2
(bˆi
x12
x1Y1 x22
xn2
x12
x2Y2 x22
xn2
...
x12
xnYn x22
xn2
)
19

ki
xi xi2

bˆi
kiYi
(1) k i
(
xi xi2
)
xi xi2
0
计 量 经 ki的性质 济 学
2 n
2k1k21 2
2kn1kn n1 n
)


k12
E
(12
)
k22
E
(
2 2
)
kn2
E
(
2 n
)
2k1k2
E
(1
2
)
2kn
1kn
E
(
n1
n
)

学 由古典线性回归模型的假定可知,对每一个随机变量,有
E(i2) 2, E(i j ) 0(当i j时)
Var(bˆ1)
k12 E (12

计量经济学第2章 一元线性回归模型

计量经济学第2章 一元线性回归模型

15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)

一元线性回归模型及参数估计

一元线性回归模型及参数估计
可见,在满足一系列根本假设的情况下, 模型构造参数的最大或然估计量与普通最 小二乘估计量是一样的。
但是,随机误差项的方差的估计量是不同的。
解或然方程
sm2
L*
= n
2sm2
+1
2sm4
S(Yi
bˆ0
bˆ1Xi)2
=0
即可得到sm2的最大或然估计量为:
sˆm2
1 =nS(Yi
bˆ0
bˆ1Xi)2
s P (Y i)=
1 e2s 1m 2(Y ibˆ0bˆ1X i)2 2
i= 1,2,… ,n
因为Yi 是相互独立的,所以 Y 的所有样本观测值的联合概率, 也即或然函数(likelihood function)为:
L(bˆ0,bˆ1,sm2) = P(Y1,Y2,,Yn)
=
1
e 1 2sm2
S(Yi
,当
Q对
b$ 、 0
b$ 的一阶偏导数为 1
0 时, Q 达到最小。即
Q
bˆ 0 Q
bˆ1
=0 =0
(
( bˆ

0
0 +
+ bˆ1 X bˆ1 X i
i
Yi ) Yi ) X
= i
0 =
0
SYi SYi X i
= nbˆ0 + bˆ1SX i
=
bˆ0 SX i
+
bˆ1S
X
2 i
解得:
bˆ0 = Y bˆ1X
bˆ1
=
nSYi Xi SYiSXi nSXi2 (SXi )2
由于
bˆ 0
、bˆ 的估计结果是从最小二乘原理得到的,故称为 1

2.2 一元线性回归模型的参数估计

2.2 一元线性回归模型的参数估计

于是,Y的概率函数为
P(Yi ) = 1
− 1 2σ
2
ˆ ˆ (Yi − β 0 − β1 X i ) 2
σ 2π
e
(i=1,2,…n)
4/29/2012
14
因为Yi是相互独立的,所以的所有样本观测值的联 合概率,也即或然函数(likelihood function) 或然函数(likelihood function)为: 或然函数
§2.2 一元线性回归模型的参数估计
一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 参数的普通最小二乘估计(OLS) 参数估计的最大或然法(ML) 三、参数估计的最大或然法(ML) * 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干扰项方差的估计
4/29/2012
1
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
4/29/2012
-973 1314090 1822500 947508 -929 975870 1102500 863784 -445 334050 562500 198381 -412 185580 202500 170074 -159 23910 22500 25408 28 4140 22500 762 402 180720 202500 161283 511 382950 562500 260712 1018 1068480 1102500 1035510 963 1299510 1822500 926599 5769300 7425000 4590020

第二章 一元线性回归模型(本科生计量经济学)


即:正规方程组揭示的是残差的性质。
26
普通最小二乘估计有关 的其他性质(课后习题)
Y Y

^
e Y e y
i ^ i
^
i
0 0
27
i
2、由普通最小二乘估计系数的性质可证
得普通最小二乘估计与参数的关系如下:
1 1 k i u i
^
0 0 wi ui
( 1) ( 2)
( 1)
0 Y 1 X
^

^

Y

1 n
Y , X X
i 1 i 1 n i 1
n

n
i
18
参数的普通最小二乘估计量
ˆ ˆ X )0 (Yi 0 1 i ˆ ˆ X )X 0 ( Y i 0 1 i i
^
33
三、一元线性回归模型参数的最大似 然法(Maximum Likehood,ML)估计
• 基本原理:似然原理
• 一元线性回归模型ML使用的条件:已知随机扰动 项的分布。
34
Y1 , Y2 ,...,Yn
1 f (Yi ) e 2
1 2
1 2
2
Yi ~ N (0 1 X i , 2 )
w 1
i
22
普通最小二乘估计的例
年份
1991 1992 1993 1994
ED(X)
708 793 958 1278
FI(Y)
3149 3483 4349 5218
ed(x)
-551 -466 -301 19
fi(y)
-2351 -2017 -1151 -282

一元线性回归模型的参数估计

感谢您的观看
斜率(β1)
表示 x 每变化一个单位,y 平均变化的数量。
一元线性回归模型的假设
线性关系
因变量 y 和自变量 x 之间存在线性关系。
误差项独立
误差项 ε 之间相互独 立,且与 x 独立。
误差项的正态性
误差项 ε 的分布是正 态的。
误差项的无偏性
误差项 ε 的期望值为 0,即 E(ε) = 0。
有限的方差
回归分析的分类
一元回归分析
研究一个自变量和一个因变量之间的关系。
多元回归分析
研究多个自变量和一个因变量之间的关系。
线性回归模型
线性回归模型是一种常用的回归分析方法,它假设自变量和因变量之间存在线性关系,即可以用一条 直线来描述它们之间的关系。
在一元线性回归模型中,自变量和因变量之间的关系可以表示为一条直线,即 y = ax + b,其中 a 是斜 率,b 是截距。
确定样本数据
收集用于估计参数的样本数据。
构建估计量
根据模型和样本数据构建用于估计参数的统计量。
计算估计值
通过计算统计量的值得到参数的估计值。
评估估计质量
通过统计检验和图形方法评估估计的质量和可靠性。
05 模型的评估与检验
模型的拟合度评估
决定系数(R^2)
衡量模型解释变量变异程度的指标,值越接 近1表示模型拟合度越好。
数据整理
将数据整理成适合进行统计分析 的格式,如表格或图形,以便后 续分析。
建立一元线性回归模型
确定自变量和因变量
根据研究问题选择合适的自变量和因变量,确 保它们之间存在一定的关联性。
散点图分析
绘制散点图,观察自变量和因变量之间的关系, 初步判断是否适合建立一元线性回归模型。

计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。

第二章 一元线性回归模型

0 1
∂Q ˆ ˆ = −2∑ (Yi − β 0 − β1 X i ) = 0 ∂β ˆ0 ˆ ˆ ∂Q = −2∑ (Y − β − β X )X = 0 i 0 1 i i ˆ ∂β1
化简得: 化简得:
ˆ ˆ ∑ (Yi − β 0 − β1 X i ) = 0 ˆ ˆ ∑ (Yi − β 0 − β1 X i )X i = 0
2.总体回归方程(线)或回归函数 总体回归方程( 总体回归方程 即对( )式两端取数学期望: 即对(2.8)式两端取数学期望:
E y i)= β 0 + β 1 x i (
(2.9)
(2.9)为总体回归方程。由于随机项的影响,所 )为总体回归方程。由于随机项的影响, 有的点( )一般不在一条直线上; 有的点(x,y)一般不在一条直线上;但所有的点 (x,Ey)在一条直线上。总体回归线描述了 与y )在一条直线上。总体回归线描述了x与 之间近似的线性关系。 之间近似的线性关系。
Yi = β X i + ui
需要估计, 这个模型只有一个参数 需要估计,其最 小二乘估计量的表达式为: 小二乘估计量的表达式为:
∑XY ˆ β= ∑X
i i 2 i
例2.2.1:在上述家庭可支配收入-消费支出例中,对 :在上述家庭可支配收入-消费支出例中, 于所抽出的一组样本数据, 于所抽出的一组样本数据,参数估计的计算可通过下面 的表2.2.1进行。 进行。 的表 进行
二、一元线性回归模型 上述模型中, 为线性的, 上述模型中, 若f(Xi)为线性的,这时的模型 为线性的 一元线性回归模型: 即为 一元线性回归模型:
yi = β 0 + β1 xi + ui 其中:yi为被解释变量,xi为解释变量,ui为随机误 差项,β 0、β1为回归系数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Yi Y
(4) -410 -460 -210 -160 -10 40 90 290 440 390
( Xi X )(Yi Y )
(5) = (3) ×(4) 369000 322000 105000 48000 1000 4000 27000 145000 308000 351000
1680000
(单位:元)
Xi
Yi X i X
(1) (2) (3) 800 700 -900 1000 650 -700 1200 900 -500 1400 950 -300 1600 1100 -100 1800 1150 100 2000 1200 300 2200 1400 500 2400 1550 700 2600 1500 900 求 和 17000 11100 平 均 1700 1110
(i
)
2
,
,
,
,
,
,
,
,
i
1,
2,
n
假设3:随机误差项在不同样本点之间是独立的,不存
在序列相关,即:
Cov(i , j ) 0,,,,,,,i j,,,,i, j 1, 2, n
一、一元线性回归模型的基本假设
假设 4:随机误差项与解释变量之间不相关, 即:
Cov( Xi , i ) 0,,,,,,,,,,,i 1, 2, n
ki
(Xi X) (Xi X )2
对于引进的 ki 容易证明有如下的特性:
ki 0 ; ki (Xi X ) ki Xi 1 ; ki2
1 (Xi X )2
•(1)最小二乘估计量的线性性
➢ 证明 ki 0 ;
因为:
ki
(Xi X) (Xi X)
每 月 1500 家 庭 消 1000 费 支 500 出
Y (元) 0
0
SRF
500 1000 1500 2000 2500 3000 每月家庭可支配收入X(元)
二、参数的普通最小二乘估计(OLS)
要求真实观测值 Yi 与样本回归函数 Yˆi ˆ0 ˆ1Xi
的估计值 Yˆi 之间的误差,也就是残差 ei Yi Yˆi
三、最小二乘估计量的性质
(1)最小二乘估计量的线性性:是指参数估计量 ˆ0 和 ˆ1 可以分别表示为被解释变量观测值 Yi 的线 性组合(线性函数);
证明如下:
ˆ1 ( 其中:
X
i (X
X )(Yi i X )2
Y
)
(Xi (X
X) i X )2
(Yi
Y
)
ki (Yi Y )
单位:元
2400 2600 1550 1500
可将表中的这组样本数据代入到下面公式:
ˆ0
Y
ˆ1 X
ˆ1
( X i X )(Yi Y ) (Xi X )2
进行参数估计计算,具体计算过程见下表(表2.4):
表2.4 家庭可支配收入 Xi 和消费支出 Yi 的样本数据资料
及参数估计的计算表
(Xi X )2
(6) 810000 490000 250000 90000 10000 10000 90000 250000 490000 810000
3300000
(Yi Y )2
(7) 168100 211600 44100 25600
100 1600 8100 84100 193600 152100
(ordinary least squares estimators);将样本数据代入这
两个公式,就可以计算出 ˆ0, ˆ1 的具体数值,它们一定是
使残差平方和 ei2 取最小值的参数估计值(最小二乘估
计值)。
i
二、参数的普通最小二乘估计(OLS)
由此可得到拟合最优的样本回归直线(样本回归
函数):
(Xi X )2
(Xi X )2
Xi nX (Xi X )2
Xi n
Xi n 0
(Xi X )2
➢ 证明 ki ( Xi X ) ki Xi 1 ;
首先: ki ( Xi X ) ki Xi X ki ki Xi
然后: ki Xi
(Xi X) (Xi X )2
Xi
(Xi X) (Xi X )2
(Xi
X
X
)
(Xi
X )2 (Xi (Xi X )2
X)X
10 1
这里: (Xi X)X X (Xi X) 0
•(1)最小二乘估计量的线性性
n n
X i2 Yi X i X iYi n Xi2 ( Xi )2
X iYi X i Yi Xi2 ( Xi )2
ˆ0
ˆ1
Y
ˆ1X
( X i X )(Yi Y ) (Xi X )2
其中 X ,Y 分别代表 X 和 Y 两个变量的样本均值。
上式就称为线性回归模型参数 0, 1 的最小二乘估计量
i
ˆ0
i
ˆ0
2(Yi ˆ0 ˆ1Xi )(1) 2 (Yi ˆ0 ˆ1Xi ) 0
( ei2) ( Yi (ˆ0 ˆ1Xi )2)
i
ˆ1
i
ˆ1
2(Yi ˆ0 ˆ1Xi )(Xi ) 2 (Yi ˆ0 ˆ1Xi )Xi 0
从而得到如下方程组:
(Yi (Yi
在总体上最小,即采用残差平方和 ei2最小的准
则,也就是最小二乘准则:
i
min
ei2 min
(Yi
Yˆi
2
)
min
Yi (ˆ0 ˆ1X i )2
i
i
i
根据微积分中求极值的原理,要使 ei2 达到最小,
待定系数 ˆ0, ˆ1 应满足:
i
二、参数的普通最小二乘估计(OLS)
即:
( ei2 ) ( Yi (ˆ0 ˆ1Xi )2)
地“接近”总体回归函数E(Y | Xi ) 0 1Xi ,就是要样

Yˆi
Yi
回归线上的点 与真实观测点Yˆi 在ˆ0总体ˆ1上Xi 尽量接近;Yˆi
这也就是说要求Y样i 本回归函数ei Yi Yˆi 的估计值
与真实观测值 之间的误差
在总体上尽量
小。
每月家庭收入与消费支出散点图(样本)
2000
Yˆi
(8) 651.8181 753.6363 855.4545 957.2727 1059.091 1160.909 1262.727 1364.546 1466.364 1568.182
ei Yi Yˆi
(9)=(2)-(8) 48.18190 -103.6363 44.54550 -7.272700 40.90910 -10.90910 -62.72730 35.45450 83.63630 -68.18190
Eviews软件画出的收入 X 和支出 Y 样本数据的散点图
Y
1600 1400 1200 1000
800 600
400
Y vs. X
800 1200 1600 2000 2400 2800 X
Eviews软件输出的回归结果
Eviews软件输出的被解释变量 Y的实际值Yi 、 拟合值 Yˆi 和回归残差ei Yi Yˆi 的序列图
假设 5:随机误差项服从 0 均值,同方差的正态 分布,即
i
~
N
(0,
2
),
,
,
,
,
,
,
,
,
,
,
,
i
1, 2,
n
以上这些假设称为线性回归模型的经典假 设,满足这些假设的线性回归模型,也称为 经典线性回归模型(classical linear regression model)。在回归分析的参数估计和统计检验 理论中,许多结论都是以这些假定作为基础 的。如果违背其中的某一项假定,模型的参 数估计就会存在问题,也就是说最小二乘法 (OLS)就不再适用,需对模型进行修正或 采用其他的方法来估计模型了。
1600
1400
1200
1000
100
800
50
600
0
-50
-100
-150
1
2
3
4
5
6
7
8
9 10
Residual
Actual
Fitted
三、最小二乘估计量的性质
当采用最小二乘法将模型的参数估计出来以后,需考 虑参数估计值的精度问题;所谓精度问题就是这个参数 估计值是否能代表总体参数的真值。 这就需要考察一下参数估计量的统计性质。参数估计 量是随机变量,其统计性质主要包括线性性、无偏性和 最小方差性,也就是其均值和方差等方面的性质。 事实可以证明:在模型满足那几条基本假定的前提 下,最小二乘估计量的性质是非常理想的,它是具有最 小方差的线性无偏估计量 (best linear unbiased estimator,BLUE)。 我们就要证明一下最小二乘估计量的线性性、无偏性 和最小方差性(有效性)。
一、一元线性回归模型的基本假设
为保证参数估计量具有良好的性质, 通常对模型提出
若干基本假设,这些假设与所采用的估计方法紧密相关。
假设 1:解释变量 Xi 是确定性变量,不是随机变量;
假设 2:随机误差项具有 0 均值和同方差,即 E(i ) 0,,,,,,,,,,,,i 1, 2, n
Var
给出一元线性回归模型的一般形式:
Yi 0 1X i i , , , , , i 1, 2, , n
其中
Yi
:被解释变量,X
:解释变量,
i
0

1
:待估参
数; i :随机误差项;
相关文档
最新文档